36 research outputs found

    A comprehensive review of 3D convolutional neural network-based classification techniques of diseased and defective crops using non-UAV-based hyperspectral images

    Full text link
    Hyperspectral imaging (HSI) is a non-destructive and contactless technology that provides valuable information about the structure and composition of an object. It can capture detailed information about the chemical and physical properties of agricultural crops. Due to its wide spectral range, compared with multispectral- or RGB-based imaging methods, HSI can be a more effective tool for monitoring crop health and productivity. With the advent of this imaging tool in agrotechnology, researchers can more accurately address issues related to the detection of diseased and defective crops in the agriculture industry. This allows to implement the most suitable and accurate farming solutions, such as irrigation and fertilization before crops enter a damaged and difficult-to-recover phase of growth in the field. While HSI provides valuable insights into the object under investigation, the limited number of HSI datasets for crop evaluation presently poses a bottleneck. Dealing with the curse of dimensionality presents another challenge due to the abundance of spectral and spatial information in each hyperspectral cube. State-of-the-art methods based on 1D- and 2D-CNNs struggle to efficiently extract spectral and spatial information. On the other hand, 3D-CNN-based models have shown significant promise in achieving better classification and detection results by leveraging spectral and spatial features simultaneously. Despite the apparent benefits of 3D-CNN-based models, their usage for classification purposes in this area of research has remained limited. This paper seeks to address this gap by reviewing 3D-CNN-based architectures and the typical deep learning pipeline, including preprocessing and visualization of results, for the classification of hyperspectral images of diseased and defective crops. Furthermore, we discuss open research areas and challenges when utilizing 3D-CNNs with HSI data

    3deepm: An ad hoc architecture based on deep learning methods for multispectral image classification

    Get PDF
    Current predefined architectures for deep learning are computationally very heavy and use tens of millions of parameters. Thus, computational costs may be prohibitive for many experimental or technological setups. We developed an ad hoc architecture for the classification of multispectral images using deep learning techniques. The architecture, called 3DeepM, is composed of 3D filter banks especially designed for the extraction of spatial-spectral features in multichannel images. The new architecture has been tested on a sample of 12210 multispectral images of seedless table grape varieties: Autumn Royal, Crimson Seedless, Itum4, Itum5 and Itum9. 3DeepM was able to classify 100% of the images and obtained the best overall results in terms of accuracy, number of classes, number of parameters and training time compared to similar work. In addition, this paper presents a flexible and reconfigurable computer vision system designed for the acquisition of multispectral images in the range of 400 nm to 1000 nm. The vision system enabled the creation of the first dataset consisting of 12210 37-channel multispectral images (12 VIS + 25 IR) of five seedless table grape varieties that have been used to validate the 3DeepM architecture. Compared to predefined classification architectures such as AlexNet, ResNet or ad hoc architectures with a very high number of parameters, 3DeepM shows the best classification performance despite using 130-fold fewer parameters than the architecture to which it was compared. 3DeepM can be used in a multitude of applications that use multispectral images, such as remote sensing or medical diagnosis. In addition, the small number of parameters of 3DeepM make it ideal for application in online classification systems aboard autonomous robots or unmanned vehicles.This research was funded by BFU 2017-88300-C2-1-R to J.W. and M.E.-C, BFU 2017-88300- C2-2-R to P.J.N. and CDTI 5117/17CTA-P to M.E.-C, P.J.N. and J.D.S.P

    A comprehensive review of 3D convolutional neural network-based classification techniques of diseased and defective crops using non-UAV-based hyperspectral images

    Get PDF
    Hyperspectral imaging (HSI) is a non-destructive and contactless technology that provides valuable information about the structure and composition of an object. It has the ability to capture detailed information about the chemical and physical properties of agricultural crops. Due to its wide spectral range, compared with multispectral-or RGB-based imaging methods, HSI can be a more effective tool for monitoring crop health and productivity. With the advent of this imaging tool in agrotechnology, researchers can more accurately address issues related to the detection of diseased and defective crops in the agriculture industry. This allows to implement the most suitable and accurate farming solutions, such as irrigation and fertilization, before crops enter a damaged and difficult-to-recover phase of growth in the field. While HSI provides valuable insights into the object under investigation, the limited number of HSI datasets for crop evaluation presently poses a bottleneck. Dealing with the curse of dimensionality presents another challenge due to the abundance of spectral and spatial information in each hyperspectral cube. State-of-the-art methods based on 1D and 2D convolutional neural networks (CNNs) struggle to efficiently extract spectral and spatial information. On the other hand, 3D-CNN-based models have shown significant promise in achieving better classification and detection results by leveraging spectral and spatial features simultaneously. Despite the apparent benefits of 3D-CNN-based models, their usage for classification purposes in this area of research has remained limited. This paper seeks to address this gap by reviewing 3D-CNN-based architectures and the typical deep learning pipeline, including preprocessing and visualization of results, for the classification of hyperspectral images of diseased and defective crops. Furthermore, we discuss open research areas and challenges when utilizing 3D-CNNs with HSI data."This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors."https://www.sciencedirect.com/science/article/pii/S277237552300145

    A deep multi-task learning approach to identifying mummy berry infection sites, the disease stage, and severity

    Get PDF
    IntroductionMummy berry is a serious disease that may result in up to 70 percent of yield loss for lowbush blueberries. Practical mummy berry disease detection, stage classification and severity estimation remain great challenges for computer vision-based approaches because images taken in lowbush blueberry fields are usually a mixture of different plant parts (leaves, bud, flowers and fruits) with a very complex background. Specifically, typical problems hindering this effort included data scarcity due to high manual labelling cost, tiny and low contrast disease features interfered and occluded by healthy plant parts, and over-complicated deep neural networks which made deployment of a predictive system difficult.MethodsUsing real and raw blueberry field images, this research proposed a deep multi-task learning (MTL) approach to simultaneously accomplish three disease detection tasks: identification of infection sites, classification of disease stage, and severity estimation. By further incorporating novel superimposed attention mechanism modules and grouped convolutions to the deep neural network, enabled disease feature extraction from both channel and spatial perspectives, achieving better detection performance in open and complex environments, while having lower computational cost and faster convergence rate.ResultsExperimental results demonstrated that our approach achieved higher detection efficiency compared with the state-of-the-art deep learning models in terms of detection accuracy, while having three main advantages: 1) field images mixed with various types of lowbush blueberry plant organs under a complex background can be used for disease detection; 2) parameter sharing among different tasks greatly reduced the size of training samples and saved 60% training time than when the three tasks (data preparation, model development and exploration) were trained separately; and 3) only one-sixth of the network parameter size (23.98M vs. 138.36M) and one-fifteenth of the computational cost (1.13G vs. 15.48G FLOPs) were used when compared with the most popular Convolutional Neural Network VGG16.DiscussionThese features make our solution very promising for future mobile deployment such as a drone carried task unit for real-time field surveillance. As an automatic approach to fast disease diagnosis, it can be a useful technical tool to provide growers real time disease information that can prevent further disease transmission and more severe effects on yield due to fruit mummification

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports

    Proceedings of the 2021 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    2021, the annual joint workshop of the Fraunhofer IOSB and KIT IES was hosted at the IOSB in Karlsruhe. For a week from the 2nd to the 6th July the doctoral students extensive reports on the status of their research. The results and ideas presented at the workshop are collected in this book in the form of detailed technical reports

    On the Use of Imaging Spectroscopy from Unmanned Aerial Systems (UAS) to Model Yield and Assess Growth Stages of a Broadacre Crop

    Get PDF
    Snap bean production was valued at $363 million in 2018. Moreover, the increasing need in food production, caused by the exponential increase in population, makes this crop vitally important to study. Traditionally, harvest time determination and yield prediction are performed by collecting limited number of samples. While this approach could work, it is inaccurate, labor-intensive, and based on a small sample size. The ambiguous nature of this approach furthermore leaves the grower with under-ripe and over-mature plants, decreasing the final net profit and the overall quality of the product. A more cost-effective method would be a site-specific approach that would save time and labor for farmers and growers, while providing them with exact detail to when and where to harvest and how much is to be harvested (while forecasting yield). In this study we used hyperspectral (i.e., point-based and image-based), as well as biophysical data, to identify spectral signatures and biophysical attributes that could schedule harvest and forecast yield prior to harvest. Over the past two decades, there have been immense advances in the field of yield and harvest modeling using remote sensing data. Nevertheless, there still exists a wide gap in the literature covering yield and harvest assessment as a function of time using both ground-based and unmanned aerial systems. There is a need for a study focusing on crop-specific yield and harvest assessment using a rapid, affordable system. We hypothesize that a down-sampled multispectral system, tuned with spectral features identified from hyperspectral data, could address the mentioned gaps. Moreover, we hypothesize that the airborne data will contain noise that could negatively impact the performance and the reliability of the utilized models. Thus, We address these knowledge gaps with three objectives as below: 1. Assess yield prediction of snap bean crop using spectral and biophysical data and identify discriminating spectral features via statistical and machine learning approaches. 2. Evaluate snap bean harvest maturity at both the plant growth stage and pod maturity level, by means of spectral and biophysical indicators, and identify the corresponding discriminating spectral features. 3. Assess the feasibility of using a deep learning architecture for reducing noise in the hyperspectral data. In the light of the mentioned objectives, we carried out a greenhouse study in the winter and spring of 2019, where we studied temporal change in spectra and physical attributes of snap-bean crop, from Huntington cultivar, using a handheld spectrometer in the visible- to shortwave-infrared domain (400-2500 nm). Chapter 3 of this dissertation focuses on yield assessment of the greenhouse study. Findings from this best-case scenario yield study showed that the best time to study yield is approximately 20-25 days prior to harvest that would give out the most accurate yield predictions. The proposed approach was able to explain variability as high as R2 = 0.72, with spectral features residing in absorption regions for chlorophyll, protein, lignin, and nitrogen, among others. The captured data from this study contained minimal noise, even in the detector fall-off regions. Moving the focus to harvest maturity assessment, Chapter 4 presents findings from this objective in the greenhouse environment. Our findings showed that four stages of maturity, namely vegetative growth, budding, flowering, and pod formation, are distinguishable with 79% and 78% accuracy, respectively, via the two introduced vegetation indices, as snap-bean growth index (SGI) and normalized difference snap-bean growth index (NDSI), respectively. Moreover, pod-level maturity classification showed that ready-to-harvest and not-ready-to-harvest pods can be separated with 78% accuracy with identified wavelengths residing in green, red edge, and shortwave-infrared regions. Moreover, Chapters 5 and 6 focus on transitioning the learned concepts from the mentioned greenhouse scenario to UAS domain. We transitioned from a handheld spectrometer in the visible to short-wave infrared domain (400-2500 nm) to a UAS-mounted hyperspectral imager in the visible-to-near-infrared region (400-1000 nm). Two years worth of data, at two different geographical locations, were collected in upstate New York and examined for yield modeling and harvest scheduling objectives. For analysis of the collected data, we introduced a feature selection library in Python, named “Jostar”, to identify the most discriminating wavelengths. The findings from the yield modeling UAS study show that pod weight and seed length, as two different yield indicators, can be explained with R2 as high as 0.93 and 0.98, respectively. Identified wavelengths resided in blue, green, red, and red edge regions, and 44-55 days after planting (DAP) showed to be the optimal time for yield assessment. Chapter 6, on the other hand, evaluates maturity assessment, in terms of pod classification, from the UAS perspective. Results from this study showed that the identified features resided in blue, green, red, and red-edge regions, contributing to F1 score as high as 0.91 for differentiating between ready-to-harvest vs. not ready-to-harvest. The identified features from this study is in line with those detected from the UAS yield assessment study. In order to have a parallel comparison of the greenhouse study against the UAS study, we adopted the methodology employed for UAS studies and applied it to the greenhouse studies, in Chapter 7. Since the greenhouse data were captured in the visible-to-shortwave-infrared (400-2500 nm) domain, and the UAS study data were captured in the VNIR (400-1000 nm) domain, we truncated the spectral range of the collected data from the greenhouse study to the VNIR domain. The comparison experiment between the greenhouse study and the UAS studies for yield assessment, at two harvest stages early and late, showed that spectral features in 450-470, 500-520, 650, 700-730 nm regions were repeated on days with highest coefficient of determination. Moreover, 46-48 DAP with high coefficient of determination for yield prediction were repeated in five out of six data sets (two early stages, each three data sets). On the other hand, the harvest maturity comparison between the greenhouse study and the UAS data sets showed that similar identified wavelengths reside in ∼450, ∼530, ∼715, and ∼760 nm regions, with performance metric (F1 score) of 0.78, 0.84, and 0.9 for greenhouse, 2019 UAS, and 2020 UAS data, respectively. However, the incorporated noise in the captured data from the UAS study, along with the high computational cost of the classical mathematical approach employed for denoising hyperspectral data, have inspired us to leverage the computational performance of hyperspectral denoising by assessing the feasibility of transferring the learned concepts to deep learning models. In Chapter 8, we approached hyperspectral denoising in spectral domain (1D fashion) for two types of noise, integrated noise and non-independent and non-identically distributed (non-i.i.d.) noise. We utilized Memory Networks due to their power in image denoising for hyperspectral denoising, introduced a new loss and benchmarked it against several data sets and models. The proposed model, HypeMemNet, ranked first - up to 40% in terms of signal-to-noise ratio (SNR) for resolving integrated noise, and first or second, by a small margin for resolving non-i.i.d. noise. Our findings showed that a proper receptive field and a suitable number of filters are crucial for denoising integrated noise, while parameter size was shown to be of the highest importance for non-i.i.d. noise. Results from the conducted studies provide a comprehensive understanding encompassing yield modeling, harvest scheduling, and hyperspectral denoising. Our findings bode well for transitioning from an expensive hyperspectral imager to a multispectral imager, tuned with the identified bands, as well as employing a rapid deep learning model for hyperspectral denoising

    Satellite and UAV Platforms, Remote Sensing for Geographic Information Systems

    Get PDF
    The present book contains ten articles illustrating the different possible uses of UAVs and satellite remotely sensed data integration in Geographical Information Systems to model and predict changes in both the natural and the human environment. It illustrates the powerful instruments given by modern geo-statistical methods, modeling, and visualization techniques. These methods are applied to Arctic, tropical and mid-latitude environments, agriculture, forest, wetlands, and aquatic environments, as well as further engineering-related problems. The present Special Issue gives a balanced view of the present state of the field of geoinformatics

    Fruit Detection and Tree Segmentation for Yield Mapping in Orchards

    Get PDF
    Accurate information gathering and processing is critical for precision horticulture, as growers aim to optimise their farm management practices. An accurate inventory of the crop that details its spatial distribution along with health and maturity, can help farmers efficiently target processes such as chemical and fertiliser spraying, crop thinning, harvest management, labour planning and marketing. Growers have traditionally obtained this information by using manual sampling techniques, which tend to be labour intensive, spatially sparse, expensive, inaccurate and prone to subjective biases. Recent advances in sensing and automation for field robotics allow for key measurements to be made for individual plants throughout an orchard in a timely and accurate manner. Farmer operated machines or unmanned robotic platforms can be equipped with a range of sensors to capture a detailed representation over large areas. Robust and accurate data processing techniques are therefore required to extract high level information needed by the grower to support precision farming. This thesis focuses on yield mapping in orchards using image and light detection and ranging (LiDAR) data captured using an unmanned ground vehicle (UGV). The contribution is the framework and algorithmic components for orchard mapping and yield estimation that is applicable to different fruit types and orchard configurations. The framework includes detection of fruits in individual images and tracking them over subsequent frames. The fruit counts are then associated to individual trees, which are segmented from image and LiDAR data, resulting in a structured spatial representation of yield. The first contribution of this thesis is the development of a generic and robust fruit detection algorithm. Images captured in the outdoor environment are susceptible to highly variable external factors that lead to significant appearance variations. Specifically in orchards, variability is caused by changes in illumination, target pose, tree types, etc. The proposed techniques address these issues by using state-of-the-art feature learning approaches for image classification, while investigating the utility of orchard domain knowledge for fruit detection. Detection is performed using both pixel-wise classification of images followed instance segmentation, and bounding-box regression approaches. The experimental results illustrate the versatility of complex deep learning approaches over a multitude of fruit types. The second contribution of this thesis is a tree segmentation approach to detect the individual trees that serve as a standard unit for structured orchard information systems. The work focuses on trellised trees, which present unique challenges for segmentation algorithms due to their intertwined nature. LiDAR data are used to segment the trellis face, and to generate proposals for individual trees trunks. Additional trunk proposals are provided using pixel-wise classification of the image data. The multi-modal observations are fine-tuned by modelling trunk locations using a hidden semi-Markov model (HSMM), within which prior knowledge of tree spacing is incorporated. The final component of this thesis addresses the visual occlusion of fruit within geometrically complex canopies by using a multi-view detection and tracking approach. Single image fruit detections are tracked over a sequence of images, and associated to individual trees or farm rows, with the spatial distribution of the fruit counting forming a yield map over the farm. The results show the advantage of using multi-view imagery (instead of single view analysis) for fruit counting and yield mapping. This thesis includes extensive experimentation in almond, apple and mango orchards, with data captured by a UGV spanning a total of 5 hectares of farm area, over 30 km of vehicle traversal and more than 7,000 trees. The validation of the different processes is performed using manual annotations, which includes fruit and tree locations in image and LiDAR data respectively. Additional evaluation of yield mapping is performed by comparison against fruit counts on trees at the farm and counts made by the growers post-harvest. The framework developed in this thesis is demonstrated to be accurate compared to ground truth at all scales of the pipeline, including fruit detection and tree mapping, leading to accurate yield estimation, per tree and per row, for the different crops. Through the multitude of field experiments conducted over multiple seasons and years, the thesis presents key practical insights necessary for commercial development of an information gathering system in orchards
    corecore