21,946 research outputs found

    Quantifying evolutionary constraints on B cell affinity maturation

    Full text link
    The antibody repertoire of each individual is continuously updated by the evolutionary process of B cell receptor mutation and selection. It has recently become possible to gain detailed information concerning this process through high-throughput sequencing. Here, we develop modern statistical molecular evolution methods for the analysis of B cell sequence data, and then apply them to a very deep short-read data set of B cell receptors. We find that the substitution process is conserved across individuals but varies significantly across gene segments. We investigate selection on B cell receptors using a novel method that side-steps the difficulties encountered by previous work in differentiating between selection and motif-driven mutation; this is done through stochastic mapping and empirical Bayes estimators that compare the evolution of in-frame and out-of-frame rearrangements. We use this new method to derive a per-residue map of selection, which provides a more nuanced view of the constraints on framework and variable regions.Comment: Previously entitled "Substitution and site-specific selection driving B cell affinity maturation is consistent across individuals

    IGHV mutational status of nodal marginal zone lymphoma by NGS reveals distinct pathogenic pathways with different prognostic implications

    Get PDF
    The precise B cell of origin and molecular pathogenesis of nodal marginal zone lymphoma (NMZL) remain poorly defined. To date, due to the rarity of NMZL, the vast majority of already-published studies have been conducted on a limited number of samples and the technical approach to analyze the immunoglobulin genes was of amplifying rearranged variable region genes with the classical direct sequencing of the PCR products followed by cloning. Here, we studied the B cell Ig heavy-chain repertoires by next-generation sequencing (NGS) in 30 NMZL cases. Most of the cases were mutated (20/28; 71.5%) with homologies to the respective germ line genes ranging from 85 to 97, 83%, whereas 8/28 (28.5%) were unmutated. In addition, our results show that NMZL cases have a biased usage of specific immunoglobulin heavy-chain variable (IGHV) region genes. Moreover, we documented intraclonal diversity in all (100%) of the mutated cases and ongoing somatic hypermutations (SHM) have been confirmed by hundreds of reads. We analyzed the mutational pattern to detect and quantify antigen selection pressure and we found a positive selection in 4 cases, whereas in the remaining cases there was an unspecific stimulation. Finally, the disease-specific survival and the progression-free survival were significantly different between cases with mutated and unmutated IGHV genes, pointing out mutational status as a possible new biomarker in NMZL

    The V<sub>H</sub> repertoire and clonal diversification of B cells in inflammatory myopathies

    Get PDF
    The contribution of antigen-driven B-cell adaptive immune responses within the inflamed muscle of inflammatory myopathies (IMs) is largely unknown. In this study, we investigated the immunoglobulin VH gene repertoire, somatic hypermutation, clonal diversification, and selection of infiltrating B cells in muscle biopsies from IM patients (dermatomyositis and polymyositis), to determine whether B cells and/or plasma cells contribute to the associated pathologies of these diseases. The data reveal that Ig V&lt;sub&gt;H&lt;/sub&gt; gene repertoires of muscle-infiltrating B cells deviate from the normal VH gene repertoire in individual patients, and differ between different types of IMs. Analysis of somatic mutations revealed clonal diversification of muscle-infiltrating B cells and evidence for a chronic B-cell response within the inflamed muscle. We conclude that muscle-infiltrating B cells undergo selection, somatic hypermutation and clonal diversification in situ during antigen-driven immune responses in patients with IMs, providing insight into the contribution of B cells to the pathological mechanisms of these disorders

    A Haystack Heuristic for Autoimmune Disease Biomarker Discovery Using Next-Gen Immune Repertoire Sequencing Data.

    Get PDF
    Large-scale DNA sequencing of immunological repertoires offers an opportunity for the discovery of novel biomarkers for autoimmune disease. Available bioinformatics techniques however, are not adequately suited for elucidating possible biomarker candidates from within large immunosequencing datasets due to unsatisfactory scalability and sensitivity. Here, we present the Haystack Heuristic, an algorithm customized to computationally extract disease-associated motifs from next-generation-sequenced repertoires by contrasting disease and healthy subjects. This technique employs a local-search graph-theory approach to discover novel motifs in patient data. We apply the Haystack Heuristic to nine million B-cell receptor sequences obtained from nearly 100 individuals in order to elucidate a new motif that is significantly associated with multiple sclerosis. Our results demonstrate the effectiveness of the Haystack Heuristic in computing possible biomarker candidates from high throughput sequencing data and could be generalized to other datasets

    Inferring processes underlying B-cell repertoire diversity

    Full text link
    We quantify the VDJ recombination and somatic hypermutation processes in human B-cells using probabilistic inference methods on high-throughput DNA sequence repertoires of human B-cell receptor heavy chains. Our analysis captures the statistical properties of the naive repertoire, first after its initial generation via VDJ recombination and then after selection for functionality. We also infer statistical properties of the somatic hypermutation machinery (exclusive of subsequent effects of selection). Our main results are the following: the B-cell repertoire is substantially more diverse than T-cell repertoires, due to longer junctional insertions; sequences that pass initial selection are distinguished by having a higher probability of being generated in a VDJ recombination event; somatic hypermutations have a non-uniform distribution along the V gene that is well explained by an independent site model for the sequence context around the hypermutation site.Comment: acknowledgement adde

    Avian Resistance to Campylobacter jejuni Colonization Is Associated with an Intestinal Immunogene Expression Signature Identified by mRNA Sequencing

    Get PDF
    peer-reviewedThis research was funded by the The Irish Department of Agriculture and Food’s Food Institutional Research Measure (http://www.agriculture.gov.ie/ research/foodinstitutionalresearchmeasurefirm) – Grant No: 06_RDD_486.Campylobacter jejuni is the most common cause of human bacterial gastroenteritis and is associated with several post-infectious manifestations, including onset of the autoimmune neuropathy Guillain-Barré syndrome, causing significant morbidity and mortality. Poorly-cooked chicken meat is the most frequent source of infection as C. jejuni colonizes the avian intestine in a commensal relationship. However, not all chickens are equally colonized and resistance seems to be genetically determined. We hypothesize that differences in immune response may contribute to variation in colonization levels between susceptible and resistant birds. Using high-throughput sequencing in an avian infection model, we investigate gene expression associated with resistance or susceptibility to colonization of the gastrointestinal tract with C. jejuni and find that gut related immune mechanisms are critical for regulating colonization. Amongst a single population of 300 4-week old chickens, there was clear segregation in levels of C. jejuni colonization 48 hours post-exposure. RNAseq analysis of caecal tissue from 14 C. jejuni-susceptible and 14 C. jejuni-resistant birds generated over 363 million short mRNA sequences which were investigated to identify 219 differentially expressed genes. Significantly higher expression of genes involved in the innate immune response, cytokine signaling, B cell and T cell activation and immunoglobulin production, as well as the renin-angiotensin system was observed in resistant birds, suggesting an early active immune response to C. jejuni. Lower expression of these genes in colonized birds suggests suppression or inhibition of a clearing immune response thus facilitating commensal colonization and generating vectors for zoonotic transmission. This study describes biological processes regulating C. jejuni colonization of the avian intestine and gives insight into the differential immune mechanisms incited in response to commensal bacteria in general within vertebrate populations. The results reported here illustrate how an exaggerated immune response may be elicited in a subset of the population, which alters host-microbe interactions and inhibits the commensal state, therefore having wider relevance with regard to inflammatory and autoimmune disease

    Variable domain N-linked glycosylation and negative surface charge are key features of monoclonal ACPA: implications for B-cell selection

    Full text link
    Autoreactive B cells have a central role in the pathogenesis of rheumatoid arthritis (RA), and recent findings have proposed that anti-citrullinated protein autoantibodies (ACPA) may be directly pathogenic. Herein, we demonstrate the frequency of variable-region glycosylation in single-cell cloned mAbs. A total of 14 ACPA mAbs were evaluated for predicted N-linked glycosylation motifs in silico and compared to 452 highly-mutated mAbs from RA patients and controls. Variable region N-linked motifs (N-X-S/T) were strikingly prevalent within ACPA (100%) compared to somatically hypermutated (SHM) RA bone marrow plasma cells (21%), and synovial plasma cells from seropositive (39%) and seronegative RA (7%). When normalized for SHM, ACPA still had significantly higher frequency of N-linked motifs compared to all studied mAbs including highly-mutated HIV broadly-neutralizing and malaria-associated mAbs. The Fab glycans of ACPA-mAbs were highly sialylated, contributed to altered charge, but did not influence antigen binding. The analysis revealed evidence of unusual B-cell selection pressure and SHM-mediated decreased in surface charge and isoelectric point in ACPA. It is still unknown how these distinct features of anti-citrulline immunity may have an impact on pathogenesis. However, it is evident that they offer selective advantages for ACPA+ B cells, possibly also through non-antigen driven mechanisms
    • …
    corecore