7 research outputs found

    Alzheimers Disease Diagnosis by Deep Learning Using MRI-Based Approaches

    Full text link
    The most frequent kind of dementia of the nervous system, Alzheimer's disease, weakens several brain processes (such as memory) and eventually results in death. The clinical study uses magnetic resonance imaging to diagnose AD. Deep learning algorithms are capable of pattern recognition and feature extraction from the inputted raw data. As early diagnosis and stage detection are the most crucial elements in enhancing patient care and treatment outcomes, deep learning algorithms for MRI images have recently allowed for diagnosing a medical condition at the beginning stage and identifying particular symptoms of Alzheimer's disease. As a result, we aimed to analyze five specific studies focused on AD diagnosis using MRI-based deep learning algorithms between 2021 and 2023 in this study. To completely illustrate the differences between these techniques and comprehend how deep learning algorithms function, we attempted to explore selected approaches in depth

    A novel cascade machine learning pipeline for Alzheimer’s disease identification and prediction

    Get PDF
    IntroductionAlzheimer’s disease (AD) is a progressive and irreversible brain degenerative disorder early. Among all diagnostic strategies, hippocampal atrophy is considered a promising diagnostic method. In order to proactively detect patients with early Alzheimer’s disease, we built an Alzheimer’s segmentation and classification (AL-SCF) pipeline based on machine learning.MethodsIn our study, we collected coronal T1 weighted images that include 187 patients with AD and 230 normal controls (NCs). Our pipeline began with the segmentation of the hippocampus by using a modified U2-net. Subsequently, we extracted 851 radiomics features and selected 37 features most relevant to AD by the Hierarchical clustering method and Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. At last, four classifiers were implemented to distinguish AD from NCs, and the performance of the models was evaluated by accuracy, specificity, sensitivity, and area under the curve.ResultsOur proposed pipeline showed excellent discriminative performance of classification with AD vs NC in the training set (AUC=0.97, 95% CI: (0.96-0.98)). The model was also verified in the validation set with Dice=0.93 for segmentation and accuracy=0.95 for classification.DiscussionThe AL-SCF pipeline can automate the process from segmentation to classification, which may assist doctors with AD diagnosis and develop individualized medical plans for AD in clinical practice

    BrainPrint: A discriminative characterization of brain morphology

    Get PDF
    We introduce BrainPrint, a compact and discriminative representation of brain morphology. BrainPrint captures shape information of an ensemble of cortical and subcortical structures by solving the eigenvalue problem of the 2D and 3D Laplace–Beltrami operator on triangular (boundary) and tetrahedral (volumetric) meshes. This discriminative characterization enables new ways to study the similarity between brains; the focus can either be on a specific brain structure of interest or on the overall brain similarity. We highlight four applications for BrainPrint in this article: (i) subject identification, (ii) age and sex prediction, (iii) brain asymmetry analysis, and (iv) potential genetic influences on brain morphology. The properties of BrainPrint require the derivation of new algorithms to account for the heterogeneous mix of brain structures with varying discriminative power. We conduct experiments on three datasets, including over 3000 MRI scans from the ADNI database, 436 MRI scans from the OASIS dataset, and 236 MRI scans from the VETSA twin study. All processing steps for obtaining the compact representation are fully automated, making this processing framework particularly attractive for handling large datasets.National Cancer Institute (U.S.) (1K25-CA181632-01)Athinoula A. Martinos Center for Biomedical Imaging (P41-RR014075)Athinoula A. Martinos Center for Biomedical Imaging (P41-EB015896)National Alliance for Medical Image Computing (U.S.) (U54-EB005149)Neuroimaging Analysis Center (U.S.) (P41-EB015902)National Center for Research Resources (U.S.) (U24 RR021382)National Institute of Biomedical Imaging and Bioengineering (U.S.) (5P41EB015896-15)National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01EB006758)National Institute on Aging (AG022381)National Institute on Aging (5R01AG008122-22)National Institute on Aging (AG018344)National Institute on Aging (AG018386)National Center for Complementary and Alternative Medicine (U.S.) (RC1 AT005728-01)National Institute of Neurological Diseases and Stroke (U.S.) (R01 NS052585-01)National Institute of Neurological Diseases and Stroke (U.S.) (1R21NS072652-01)National Institute of Neurological Diseases and Stroke (U.S.) (1R01NS070963)National Institute of Neurological Diseases and Stroke (U.S.) (R01NS083534)National Institutes of Health (U.S.) ((5U01-MH093765

    BrainPrint: A discriminative characterization of brain morphology

    Get PDF
    We introduce BrainPrint, a compact and discriminative representation of brain morphology. BrainPrint captures shape information of an ensemble of cortical and subcortical structures by solving the eigenvalue problem of the 2D and 3D Laplace–Beltrami operator on triangular (boundary) and tetrahedral (volumetric) meshes. This discriminative characterization enables new ways to study the similarity between brains; the focus can either be on a specific brain structure of interest or on the overall brain similarity. We highlight four applications for BrainPrint in this article: (i) subject identification, (ii) age and sex prediction, (iii) brain asymmetry analysis, and (iv) potential genetic influences on brain morphology. The properties of BrainPrint require the derivation of new algorithms to account for the heterogeneous mix of brain structures with varying discriminative power. We conduct experiments on three datasets, including over 3000 MRI scans from the ADNI database, 436 MRI scans from the OASIS dataset, and 236 MRI scans from the VETSA twin study. All processing steps for obtaining the compact representation are fully automated, making this processing framework particularly attractive for handling large datasets.National Cancer Institute (U.S.) (1K25-CA181632-01)Athinoula A. Martinos Center for Biomedical Imaging (P41-RR014075)Athinoula A. Martinos Center for Biomedical Imaging (P41-EB015896)National Alliance for Medical Image Computing (U.S.) (U54-EB005149)Neuroimaging Analysis Center (U.S.) (P41-EB015902)National Center for Research Resources (U.S.) (U24 RR021382)National Institute of Biomedical Imaging and Bioengineering (U.S.) (5P41EB015896-15)National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01EB006758)National Institute on Aging (AG022381)National Institute on Aging (5R01AG008122-22)National Institute on Aging (AG018344)National Institute on Aging (AG018386)National Center for Complementary and Alternative Medicine (U.S.) (RC1 AT005728-01)National Institute of Neurological Diseases and Stroke (U.S.) (R01 NS052585-01)National Institute of Neurological Diseases and Stroke (U.S.) (1R21NS072652-01)National Institute of Neurological Diseases and Stroke (U.S.) (1R01NS070963)National Institute of Neurological Diseases and Stroke (U.S.) (R01NS083534)National Institutes of Health (U.S.) ((5U01-MH093765

    Detecting global and local hippocampal shape changes in Alzheimer's disease using statistical shape models.

    No full text
    The hippocampus is affected at an early stage in the development of Alzheimer's disease (AD). With the use of structural magnetic resonance (MR) imaging, we can investigate the effect of AD on the morphology of the hippocampus. The hippocampal shape variations among a population can be usually described using statistical shape models (SSMs). Conventional SSMs model the modes of variations among the population via principal component analysis (PCA). Although these modes are representative of variations within the training data, they are not necessarily discriminative on labeled data or relevant to the differences between the subpopulations. We use the shape descriptors from SSM as features to classify AD from normal control (NC) cases. In this study, a Hotelling's T2 test is performed to select a subset of landmarks which are used in PCA. The resulting variation modes are used as predictors of AD from NC. The discrimination ability of these predictors is evaluated in terms of their classification performances with bagged support vector machines (SVMs). Restricting the model to landmarks with better separation between AD and NC increases the discrimination power of SSM. The predictors extracted on the subregions also showed stronger correlation with the memory-related measurements such as Logical Memory, Auditory Verbal Learning Test (AVLT) and the memory subscores of Alzheimer Disease Assessment Scale (ADAS)

    Detecting global and local hippocampal shape changes in Alzheimer's disease using statistical shape models

    No full text
    The hippocampus is affected at an early stage in the development of Alzheimer's disease (AD). With the use of structural magnetic resonance (MR) imaging, we can investigate the effect of AD on the morphology of the hippocampus. The hippocampal shape variations among a population can be usually described using statistical shape models (SSMs). Conventional SSMs model the modes of variations among the population via principal component analysis (PCA). Although these modes are representative of variations within the training data, they are not necessarily discriminative on labeled data or relevant to the differences between the sub-populations. We use the shape descriptors from SSM as features to classify AD from normal control (NC) cases. In this study, a Hotelling's T-2 test is performed to select a subset of landmarks which are used in PCA. The resulting variation modes are used as predictors of AD from NC. The discrimination ability of these predictors is evaluated in terms of their classification performances with bagged support vector machines (SVMs). Restricting the model to landmarks with better separation between AD and NC increases the discrimination power of SSM. The predictors extracted on the subregions also showed stronger correlation with the memory-related measurements such as Logical Memory, Auditory Verbal Learning Test (AVLT) and the memory subscores of Alzheimer Disease Assessment Scale (ADAS). Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved
    corecore