986 research outputs found

    Uniparallel Execution and its Uses.

    Full text link
    We introduce uniparallelism: a new style of execution that allows multithreaded applications to benefit from the simplicity of uniprocessor execution while scaling performance with increasing processors. A uniparallel execution consists of a thread-parallel execution, where each thread runs on its own processor, and an epoch-parallel execution, where multiple time intervals (epochs) of the program run concurrently. The epoch-parallel execution runs all threads of a given epoch on a single processor; this enables the use of techniques that are effective on a uniprocessor. To scale performance with increasing cores, a thread-parallel execution runs ahead of the epoch-parallel execution and generates speculative checkpoints from which to start future epochs. If these checkpoints match the program state produced by the epoch-parallel execution at the end of each epoch, the speculation is committed and output externalized; if they mismatch, recovery can be safely initiated as no speculative state has been externalized. We use uniparallelism to build two novel systems: DoublePlay and Frost. DoublePlay benefits from the efficiency of logging the epoch-parallel execution (as threads in an epoch are constrained to a single processor, only infrequent thread context-switches need to be logged to recreate the order of shared-memory accesses), allowing it to outperform all prior systems that guarantee deterministic replay on commodity multiprocessors. While traditional methods detect data races by analyzing the events executed by a program, Frost introduces a new, substantially faster method called outcome-based race detection to detect the effects of a data race by comparing the program state of replicas for divergences. Unlike DoublePlay, which runs a single epoch-parallel execution of the program, Frost runs multiple epoch-parallel replicas with complementary schedules, which are a set of thread schedules crafted to ensure that replicas diverge only if a data race occurs and to make it very likely that harmful data races cause divergences. Frost detects divergences by comparing the outputs and memory states of replicas at the end of each epoch. Upon detecting a divergence, Frost analyzes the replica outcomes to diagnose the data race bug and selects an appropriate recovery strategy that masks the failure.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/89677/1/kaushikv_1.pd

    SmartTrack: Efficient Predictive Race Detection

    Full text link
    Widely used data race detectors, including the state-of-the-art FastTrack algorithm, incur performance costs that are acceptable for regular in-house testing, but miss races detectable from the analyzed execution. Predictive analyses detect more data races in an analyzed execution than FastTrack detects, but at significantly higher performance cost. This paper presents SmartTrack, an algorithm that optimizes predictive race detection analyses, including two analyses from prior work and a new analysis introduced in this paper. SmartTrack's algorithm incorporates two main optimizations: (1) epoch and ownership optimizations from prior work, applied to predictive analysis for the first time; and (2) novel conflicting critical section optimizations introduced by this paper. Our evaluation shows that SmartTrack achieves performance competitive with FastTrack-a qualitative improvement in the state of the art for data race detection.Comment: Extended arXiv version of PLDI 2020 paper (adds Appendices A-E) #228 SmartTrack: Efficient Predictive Race Detectio

    Precise static happens-before analysis for detecting UAF order violations in android

    Full text link
    © 2019 IEEE. Unlike Java, Android provides a rich set of APIs to support a hybrid concurrency system, which consists of both Java threads and an event queue mechanism for dispatching asynchronous events. In this model, concurrency errors often manifest themselves in the form of order violations. An order violation occurs when two events access the same shared object in an incorrect order, causing unexpected program behaviors (e.g., null pointer dereferences). This paper presents SARD, a static analysis tool for detecting both intra-and inter-thread use-after-free (UAF) order violations, when a pointer is dereferenced (used) after it no longer points to any valid object, through systematic modeling of Android's concurrency mechanism. We propose a new flow-and context-sensitive static happens-before (HB) analysis to reason about the interleavings between two events to effectively identify precise HB relations and eliminate spurious event interleavings. We have evaluated SARD by comparing with NADROID, a state-of-the-art static order violation detection tool for Android. SARD outperforms NADROID in terms of both precision (by reporting three times fewer false alarms than NADROID given the same set of apps used by NADROID) and efficiency (by running two orders of magnitude faster than NADROID)

    Data Races vs. Data Race Bugs: Telling the Difference with Portend

    Get PDF
    Even though most data races are harmless, the harmful ones are at the heart of some of the worst concurrency bugs. Alas, spotting just the harmful data races in programs is like finding a needle in a haystack: 76%-90% of the true data races reported by state-of-the- art race detectors turn out to be harmless [45]. We present Portend, a tool that not only detects races but also automatically classifies them based on their potential con- sequences: Could they lead to crashes or hangs? Could their effects be visible outside the program? Are they harmless? Our proposed technique achieves high accuracy by efficiently analyzing multiple paths and multiple thread schedules in combination, and by performing symbolic comparison between program outputs. We ran Portend on 7 real-world applications: it detected 93 true data races and correctly classified 92 of them, with no human effort. 6 of them are harmful races. Portend’s classification accuracy is up to 88% higher than that of existing tools, and it produces easy- to-understand evidence of the consequences of harmful races, thus both proving their harmfulness and making debugging easier. We envision Portend being used for testing and debugging, as well as for automatically triaging bug reports

    Accurately Classifying Data Races with Portend

    Get PDF
    Even though most data races are harmless, the harmful ones are at the heart of some of the worst concurrency bugs. Eliminating all data races from programs is impractical (e.g., system performance could suffer severely), yet spotting just the harmful ones is like finding a needle in a haystack: state-of-the-art data race detectors and classifiers suffer from high false positive rates of 37%–84%. We present Portend, a technique and system for automatically triaging suspect data races based on their potential consequences: Could they lead to crashes or hangs? Alter system state? Could their effects be externalized? Or are they harmless? Our proposed technique achieves very high accuracy by efficiently analyzing multiple paths and multiple thread schedules in combination, and by performing symbolic comparison between program states. We ran Portend on several dozen data races from real-world applications, and it correctly classified all of them, with no human effort. It also produced easy-to-understand evidence of the consequences of harmful races, thus proving their harmfulness and making debugging easier. We envision using Portend for testing and debugging, as well as for automatically triaging bug reports

    Epidemiology and integrated control of Potato Late Blight in Europe

    Get PDF
    Phytophthora infestans, the causal agent of late blight, is a major threat to potato production in northwestern Europe. Before 1980, the worldwide population of P. infestans outside Mexico appeared to be asexual and to consist of a single clonal lineage of A1 mating type characterized by a single genotype. It is widely believed that new strains migrated into Europe in 1976 and that this led to subsequent population changes including the introduction of the A2 mating type. The population characteristics of recently collected isolates in NW Europe show a diverse population including both mating types, sexual reproduction and oospores, although differences are observed between regions. Although it is difficult to find direct evidence that new strains are more aggressive, there are several indications from experiments and field epidemics that the aggressiveness of P. infestans has increased in the past 20 years. The relative importance of the different primary inoculum sources and specific measures for reducing their role, such as covering dumps with plastic and preventing seed tubers from becoming infected, is described for the different regions. In NW Europe, varieties with greater resistance tend not to be grown on a large scale. From the grower’s perspective, the savings in fungicide input that can be achieved with these varieties are not compensated by the higher (perceived) risk of blight. Fungicides play a crucial role in the integrated control of late blight. The spray strategies in NW Europe and a table of the specific attributes of the most important fungicides in Europe are presented. The development and use of decision support systems (DSSs) in NW Europe are described. In The Netherlands, it is estimated that almost 40% of potato growers use recommendations based on commercially available DSS. In the Nordic countries, a new DSS concept with a fixed 7-day spray interval and a variable dose rate is being tested. In the UK, commercially available DSSs are used for c. 8% of the area. The validity of Smith Periods for the new population of P. infestans in the UK is currently being evaluated

    Effective testing for concurrency bugs

    Get PDF
    In the current multi-core era, concurrency bugs are a serious threat to software reliability. As hardware becomes more parallel, concurrent programming will become increasingly pervasive. However, correct concurrent programming is known to be extremely challenging for developers and can easily lead to the introduction of concurrency bugs. This dissertation addresses this challenge by proposing novel techniques to help developers expose and detect concurrency bugs. We conducted a bug study to better understand the external and internal effects of real-world concurrency bugs. Our study revealed that a significant fraction of concurrency bugs qualify as semantic or latent bugs, which are two particularly challenging classes of concurrency bugs. Based on the insights from the study, we propose a concurrency bug detector, PIKE that analyzes the behavior of program executions to infer whether concurrency bugs have been triggered during a concurrent execution. In addition, we present the design of a testing tool, SKI, that allows developers to test operating system kernels for concurrency bugs in a practical manner. SKI bridges the gap between user-mode testing and kernel-mode testing by enabling the systematic exploration of the kernel thread interleaving space. Our evaluation shows that both PIKE and SKI are effective at finding concurrency bugs.Im gegenwärtigen Multicore-Zeitalter sind Fehler aufgrund von Nebenläufigkeit eine ernsthafte Bedrohung der Zuverlässigkeit von Software. Mit der wachsenden Parallelisierung von Hardware wird nebenläufiges Programmieren nach und nach allgegenwärtig. Diese Art von Programmieren ist jedoch als äußerst schwierig bekannt und kann leicht zu Programmierfehlern führen. Die vorliegende Dissertation nimmt sich dieser Herausforderung an indem sie neuartige Techniken vorschlägt, die Entwicklern beim Aufdecken von Nebenläufigkeitsfehlern helfen. Wir führen eine Studie von Fehlern durch, um die externen und internen Effekte von in der Praxis vorkommenden Nebenläufigkeitsfehlern besser zu verstehen. Diese ergibt, dass ein bedeutender Anteil von solchen Fehlern als semantisch bzw. latent zu charakterisieren ist -- zwei besonders herausfordernde Klassen von Nebenläufigkeitsfehlern. Basierend auf den Erkenntnissen der Studie entwickeln wir einen Detektor (PIKE), der Programmausführungen daraufhin analysiert, ob Nebenläufigkeitsfehler aufgetreten sind. Weiterhin präsentieren wir das Design eines Testtools (SKI), das es Entwicklern ermöglicht, Betriebssystemkerne praktikabel auf Nebenläufigkeitsfehler zu überprüfen. SKI füllt die Lücke zwischen Testen im Benutzermodus und Testen im Kernelmodus, indem es die systematische Erkundung der Kernel-Thread-Verschachtelungen erlaubt. Unsere Auswertung zeigt, dass sowohl PIKE als auch SKI effektiv Nebenläufigkeitsfehler finden

    Dynamic Analysis of Embedded Software

    Get PDF
    abstract: Most embedded applications are constructed with multiple threads to handle concurrent events. For optimization and debugging of the programs, dynamic program analysis is widely used to collect execution information while the program is running. Unfortunately, the non-deterministic behavior of multithreaded embedded software makes the dynamic analysis difficult. In addition, instrumentation overhead for gathering execution information may change the execution of a program, and lead to distorted analysis results, i.e., probe effect. This thesis presents a framework that tackles the non-determinism and probe effect incurred in dynamic analysis of embedded software. The thesis largely consists of three parts. First of all, we discusses a deterministic replay framework to provide reproducible execution. Once a program execution is recorded, software instrumentation can be safely applied during replay without probe effect. Second, a discussion of probe effect is presented and a simulation-based analysis is proposed to detect execution changes of a program caused by instrumentation overhead. The simulation-based analysis examines if the recording instrumentation changes the original program execution. Lastly, the thesis discusses data race detection algorithms that help to remove data races for correctness of the replay and the simulation-based analysis. The focus is to make the detection efficient for C/C++ programs, and to increase scalability of the detection on multi-core machines.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    • …
    corecore