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ABSTRACT

Sound and Precise Analysis of Multithreaded
Programs through Schedule Specialization and

Execution Filters

Jingyue Wu

Multithreaded programs are known to be difficult to analyze. A key reason is that they typically

have an enormous number of execution interleavings, or schedules. Static analysis with respect

to all schedules requires over-approximation, resulting in poor precision; dynamic analysis rarely

covers more than a tiny fraction of all schedules, so its result may not hold for schedules not covered.

To address this challenge, we propose a novel approach called schedule specialization that re-

stricts the schedules of a program to make it easier to analyze. Schedule specialization combines

static and dynamic analysis. It first statically analyzes a multithreaded program with respect to a

small set of schedules for precision, and then enforces these schedules at runtime for soundness of

the static analysis results.

To demonstrate that this approach works, we build three systems. The first system is a spe-

cialization framework that specializes a program into a simpler program based on a schedule for

precision. It allows stock analyses to automatically gain precision with only little modification.

The second system is Peregrine, a deterministic multithreading system that collects and

enforces schedules on future inputs. Peregrine reuses a small set of schedules on many inputs,

ensuring our static analysis results to be sound for a wide range of inputs. It also enforces these

schedules efficiently, making schedule specialization suitable for production usage.

Although schedule specialization can make static concurrency error detection more precise, some

concurrency errors such as races may still slip detection and enter production systems. To mitigate

this limitation, we build Loom, a live-workaround system that protects a live multithreaded pro-

gram from races that slip detection. It allows developers to easily write execution filters to safely

and efficiently work around deployed races in live multithreaded programs without restarting them.
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Chapter 1

Introduction

1.1 Problem

Multithreaded programs are increasingly pervasive and critical because of two technology trends.

The first is the rise of multicore hardware. The speed of a single processor core is limited by

fundamental physical constraints, forcing processors into multicore designs. Thus, developers must

resort to parallel code for best performance on multicore processors. The second is our accelerating

computational demand. Scientific computing, video and image processing, financial simulation,

“big data” analytics, web search, and online social networking are all massive computations and

employ various kinds of parallel programs for performance.

However, multithreaded programs are often plagued with concurrency errors [Lu et al., 2008],

such as races and deadlocks. Some of the worst of these bugs have killed people in the Therac 25

incidents [Leveson and Turner, 1993] and caused the 2003 Northeast blackout [Poulsen, 2004]. One

study also reveals that these bugs may be exploited by attackers to violate confidentiality, integrity,

and availability of critical systems [Yang et al., 2011].

A key reason for these bugs is that multithreaded programs are difficult to analyze using auto-

mated tools. These programs typically have an enormous—asymptotically exponential in the total

execution lengths—number of execution interleavings, or schedules. Neither static nor dynamic

analysis can effectively analyze these many schedules. Static analysis with respect to all these

schedules requires over-approximations, resulting in poor precision. For instance, RELAY [Voung

et al., 2007], a state-of-the-art static race detector for C programs, emits 5,022 warnings over
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Linux kernel 2.6.15. Only roughly 100 of these warnings correspond to real data races. These

false positives bury the true errors, and consequently make the tool less useful. Dynamic analysis

can precisely analyze the schedules observed, but it rarely covers more than a tiny fraction of all

possible schedules, and the next execution may well run into an unchecked schedule with errors.

1.2 Hypothesis and Approach

Our key insight is that, although a multithreaded program can have exponentially many schedules,

not all these schedules are necessary for good performance. A small set often suffices, as illustrated

by recent work on efficient deterministic multithreading [Olszewski et al., 2009; Liu et al., 2011;

Aviram et al., 2010; Bergan et al., 2010a; Berger et al., 2009; Bocchino et al., 2009] and stable

multithreading [Cui et al., 2010; Cui et al., 2011].

Based on this insight, we propose the following hypothesis: we can dramatically improve the

precision of static analysis while maintaining its soundness by considering only a small set of

schedules in static analysis and enforcing the program to follow the analyzed schedules at runtime.

We call this approach schedule specialization.

Specifically, the idea of schedule specialization is two-fold. First, it statically analyzes a program

with respect to a small set of schedules for precision. By focusing on a small set of schedules, we can

enumerate these schedules, and analyze a program with respect to each of them. Being aware of a

schedule can dramatically improve the precision of static analysis, because a schedule can usually

preclude a majority of the executions. Second, schedule specialization restricts the schedules of

the program for soundness of the static analysis results. Because schedule specialization analyzes

only a subset of all schedules, its analysis results may not hold for program executions that deviate

from these schedules. To ensure these analysis results are sound, schedule specialization enforces

the program to follow the analyzed schedules at runtime.

1.3 Challenges

The idea of schedule specialization sounds appealing. However, building a real system that imple-

ments this idea faces three main challenges.
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1.3.1 Collecting and Enforcing Schedules

To effectively maintain soundness, schedule specialization needs to collect highly reusable schedules,

and deterministically and efficiently enforce these schedules at runtime. These requirements make

both collecting and enforcing schedules challenging.

1.3.1.1 Collecting Schedules

Schedule specialization must collect highly reusable schedules for two reasons. First, the set of

collected schedules needs to be small. Schedule specialization enumerates the collected schedules,

and analyzes the program with respect to each one of them. Each run of the analysis takes time.

To amortize the cost of the static analysis, we want to analyze as few schedules as possible. Second,

the collected schedules must cover a wide range of inputs. The static analysis results produced by

schedule specialization hold only when the program follows the analyzed schedules. To maximize

the soundness of the analysis results, we want the analyzed schedules to cover as many inputs as

possible. A finite set of schedules may not cover all inputs. To retain soundness on such inputs on

uncovered inputs, we may resort to dynamic analysis (§2.2.3.1).

However, collecting highly reusable schedules is challenging. Statically computing these sched-

ules is extremely difficult due to the undecidability of the halting problem. Dynamically collecting

these schedules during program execution requires complicated computation and can incur large

performance overhead.

1.3.1.2 Enforcing Schedules

Schedule specialization must deterministically and efficiently enforce schedules for two reasons.

First, if schedule specialization cannot deterministically enforce a schedule, a program may deviate

from the enforced schedule even if the input can be processed using this schedule. This deviation can

mislead the program into executions where our analysis results do not hold, and consequently lose

soundness. Second, since schedule specialization enforces a schedule for each program execution, the

overhead in enforcing schedules directly contributes to the runtime overhead. If enforcing schedules

is not efficient, the runtime overhead can easily offset the benefits of high precision and soundness.

However, enforcing schedules both deterministically and efficiently for general programs on

commodity hardware is an open challenge because these programs may have data races. Existing
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systems either enforce a deterministic order of shared memory accesses (e.g., CoreDet [Bergan

et al., 2010a]), which can incur prohibitive overhead, or enforce only a deterministic order of

synchronizations (e.g., Kendo [Olszewski et al., 2009]), which sacrifices determinism on programs

containing data races.

1.3.2 Analyzing a Program with respect to a Schedule

How much we can improve the precision of static analysis depends on how effectively these analyses

can leverage information provided by a schedule. If a static analysis fails to leverage a schedule, its

precision will remain the same no matter how small the set of schedules is.

Unfortunately, analyzing a program with respect to a schedule is challenging because a static

analysis tool usually involves many static analyses. One näıve method of leveraging a schedule is

to manually make every analysis involved aware of the schedule. However, given so many static

analyses, this method is quite labor-intensive and error-prone. It would also be fragile: if a crucial

analysis is unaware of schedules, its imprecision may easily pollute other analyses. So, instead, one

might need a more scalable approach that can automatically improve multiple static analyses.

1.3.3 Handling Concurrency Bugs that Slip Detection

One natural application of schedule specialization is detecting concurrency errors such as data races.

For instance, we can statically detect data races with respect to a set of schedules. After fixing

them, we claim the program is race-free as long as we enforce the analyzed schedules in production.

However, this approach still cannot detect all concurrency errors, because schedule specialization

cannot eliminate all false negatives and false positives of a static analysis. Our static analysis results

may not hold for inputs that cannot be covered by any analyzed schedules, causing false negatives.

Unlike dynamic analysis which can virtually access all dynamic information, static analysis built

atop schedule specialization only leverages schedules, and can emit more false positives than users’

expectations.

Due to these limitations of schedule specialization, some concurrency bugs may slip detection

of static analysis, and surface in production. These “deployed” concurrency errors can cause ap-

plication crashes, data corruptions, and even security holes that may be exploited by attackers.

The traditional approach of fixing deployed concurrency errors is software update. However,
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this approach requires application restarts, and is not suitable for server programs which require

high availability. Live update systems [Arnold and Kaashoek, 2009; Chen et al., 2006; Altekar et

al., 2005; Makris and Ryu, 2007; Neamtiu et al., 2006; Neamtiu and Hicks, 2009; Subramanian et

al., 2009] can avoid restarts by adapting conventional patches into hot patches and applying them

to live systems, but the reliance on conventional patches has two problems. First, conventional

patches are hard to write, reason about and deploy into production because they are written in

general programming languages such as C. Second, even if the patch is correct by construction,

applying it to a live application can introduce new errors because the application may be running

in an inconsistent state with the patch.

Two recent systems, Dimmunix [Jula et al., 2008] and Gadara [Wang et al., 2008], can fix

deadlock bugs in legacy multithreaded programs without using conventional patches. Dimmunix

extracts signatures from occurred deadlocks (or starvations) and dynamically avoids them in future

executions. Gadara uses control theory to statically transform a program into a deadlock-free

program.

However, deadlocks are only a minority of all concurrency bugs, empirically more than 70%

of the concurrency errors are non-deadlock bugs [Lu et al., 2008]. In this thesis, we denote non-

deadlock bugs by “races”, which include data races, atomicity violations and order violations.

While Dimmunix and Gadara can control the orders of existing locks to avoid deadlocks, fixing

races requires more fine-grained control over the program, e.g., adding new locks to arbitrary

program locations.

1.4 Overview of Contributions

To address the three main challenges (§1.3) facing schedule specialization, we build three systems

which form the three main contributions of this thesis: the Peregrine system that collects and

enforces schedules, a specialization framework that analyzes a program with respect to a schedule,

and the Loom system that bypasses races that slip detection. Figure 1.1 shows the architecture

and workflow of schedule specialization. We first use Peregrine to collect a set of schedules from

real program executions. We then enumerate these schedules and use the specialization framework

to statically analyze the program with respect to each schedule. At runtime, we run the program
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Figure 1.1: Architecture of the schedule specialization framework. The shaded boxes represent

the Peregrine system we build to collect and enforce schedules; the gray box represents the

specialization framework we build to analyze a program with respect to collected schedules; the

dotted box represents the Loom live-update engine we build to handle races that slip detection.

with both Peregrine and Loom, Peregrine enforcing the analyzed schedules for soundness and

Loom handling deployed races.

Each of the following three subsections talks about a system that solves one of the challenges.

1.4.1 Peregrine

To collect and enforce schedules, we build Peregrine [Cui et al., 2011], a deterministic multi-

threading (DMT) system. To compute highly reusable schedules, Peregrine records schedules

from past real executions, and reuses these schedules on future inputs. Recording schedules from

real executions guarantees these schedules are feasible, sidestepping the halting problem. Given a

recorded schedule, Peregrine computes what other inputs can be processed using this schedule,

and reuses this schedule for them in the future.

To deterministically and efficiently enforce schedules, Peregrine enforces “hybrid” schedules

that combine synchronization schedules and memory access schedules. The key insight of the

authors of Peregrine is that races tend to occur only within minor portions of an execution.

Therefore, we can schedule synchronizations for the race-free portions of an execution, and re-
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sort to scheduling memory accesses only for the racy portions, combining both the efficiency of

synchronization schedules and the determinism of memory access schedules.

1.4.2 Specialization Framework

To analyze a program with respect to a schedule, we have built a specialization framework which

forms our second contribution. To avoid the need to manually modify every analysis, our special-

ization framework uses a set of sound and precise algorithms to specialize a program according to a

schedule. The resultant program thus has simpler control and data flow than the original program,

and can be analyzed with stock analyses for improved precision.

The specialization framework dramatically eases the process of making static analyses schedule-

aware. Instead of thinking about how to leverage schedules in every static analysis, developers can

simply use our specialization framework to generate a new program and then run stock analyses as

is on top of the specialized program.

The framework can also dramatically improve the precision of static analysis. Our specialization

algorithms specialize both the control and data flow of a program. For instance, it can detect code

that is unreachable if the program follows a certain schedule, so dead-code elimination can further

simplify the control flow of a program. It can also “straighten” loops according to a schedule,

making more variables computable at compile time. Because the specialized program has simpler

control and data flow, static analyses can automatically gain precision without being modified.

1.4.3 Loom

To handle deployed races, we build Loom, a live-update engine designed to quickly and safely

bypass application races at runtime, providing a last-resort protection for multithreaded programs.

To overcome the drawbacks of conventional patches, we create a new language in which de-

velopers can write an execution filter that synchronizes the application source to filter out racy

schedules. For instance, developers can write an execution filter that makes two code regions

mutually exclusive. Using execution filters instead of conventional patches has three benefits.

• Execution filters are easier to write than conventional patches because they match developers’

intents more directly. For instance, to fix an atomicity violation, developers can write an
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execution filter “code region r1 and r2 are mutually exclusive” without worrying about low-

level mutex operations.

• Execution filters are more flexible because they are temporary workarounds instead of final

fixes. For instance, if a developer suspects that two code regions r1 and r2 contain a data

race, she can temporarily apply a mutual exclusion filter before investigating the root cause

and writing the final fix. Loom also allows users to uninstall an execution filter applied to a

live application. For instance, if the developer later finds making r1 and r2 mutually exclusive

is not enough and wants to conservatively run r1 and r2 in single-threaded mode, she can

easily revoke the old execution filter and apply a new one.

• Execution filters make safety easier to reason about. Unlike general programming languages

such as C, Loom’s execution filter language allows only well-formed synchronization con-

straints. Therefore, Loom need not reverse-engineer developer intents (e.g.what goes into a

critical region) from scattered operations (e.g.lock and unlock).

With the help of execution filters, Loom addresses the safety challenge using our new algorithm

termed evacuation. Given an execution filter, this algorithm first uses static analysis to conser-

vatively compute a set of “unsafe” program locations. A program location is unsafe if applying

the execution filter when any thread is running at this location may introduce new errors. Then,

the evacuation algorithm proactively evacuates threads out of unsafe locations and block them at

safe program locations. After evacuating all threads, it installs the filter and then resumes these

threads.

Loom reduces the instrumentation overhead using the idea of hybrid instrumentation which

combines static and dynamic instrumentation. It statically transforms an application to keep two

versions: a fast original version, and a slow version which can then be updated arbitrarily by

execution filters at runtime. It also inserts switches where an execution can be quickly switched

between the fast and slow version. To install an execution filter at runtime, Loom dynamically

updates the slow version according to the filter, and switches the execution to the slow version to

run the updated code. Realizing an execution filter usually requires very limited program change.

For example, realizing a mutual exclusion filter only requires updating the entry and exit of the

critical region. Therefore, the program will run in the fast original version most of the time.
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1.4.4 My Roles in These Projects

All the three projects are collaborated with my colleagues. Heming Cui is the main contributor of

the Peregrine system. My main roles in this project are:

1. building the instrumentation framework Peregrine uses to enforce schedules (§3.3.2);

2. building basic static analyses (e.g., alias analysis) used by the slicing algorithm Peregrine

uses to compute preconditions. Please refer to our peregrine paper [Cui et al., 2011] for more

details.

I am the main contributor of the specialization framework. Yang Tang was in charge of the

evaluation of the specialization framework. Gang Hu speeded up the data flow specialization of the

framework by parallelizing constraint solving (§4.3.2). Heming built the path slicing application

(§4.4) based on the framework.

I also lead the Loom project. My colleague Heming Cui built the Loom controller (§5.1) that

interacts with users and initiates live update sessions.

1.5 Results Summary

We evaluate the approach of schedule specialization from five aspects.

Precision. Improving the precision of static analysis is the main goal of schedule specialization.

To measure precision, we built atop our specialization framework three highly precise schedule-

aware analyses: alias analysis, path slicing, and race detection. We compare their precision with

and without schedule specialization. Results show schedule specialization greatly improves the

precision of these analyses. For example, a static race detector reports on average 69% fewer false

data races (§4.5) on a schedule-specialized program than on the original program.

Soundness. Ideally, we would want our static analysis results to hold for all inputs. However,

because a finite set of schedules cannot cover all inputs, we want our static analysis results to hold

for as many inputs as possible. Our evaluation results show that Peregrine, the system we built

to collect and enforce schedules, can frequently use a small number of schedules can cover a wide

range of workloads. For instance, Peregrine can use about a hundred schedules to cover over

90% of requests in a real HTTP trace for Apache [Apache, 2012].
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Overhead of enforcing schedules. To encourage user adoption, schedule specialization needs

to have low overhead of enforcing schedules. Our evaluation results show that Peregrine can

enforce schedules with a runtime overhead ranging from 68.7% faster to 46.6% slower than the

original program on a diverse set of 18 programs, including Apache.

Overhead of instrumentation. Both Peregrine and Loom use a hybrid instrumentation

framework we built to reduce instrumentation overhead. Our evaluation results show that this

framework incurs negligible instrumentation overhead and in some cases even speeds up the ap-

plication. The only exception is MySQL, whose throughput drops by 3.76% when running on our

framework.

Effectiveness of bypassing deployed races. We also evaluate how effective Loom can bypass

deployed races. The results show that Loom can flexibly and safely fix all races we have studied;

it maintains application availability when applying fixes; it can install a fix within a second even

under heavy workload.

1.6 Thesis Organization

The remaining of this thesis is organized as follows. Chapter 2 formally defines schedule specializa-

tion and discusses its key properties. Chapter 3 describes how we collect and enforce schedules for

soundness. Chapter 4 presents how we specialize a program with respect to a schedule for preci-

sion. Chapter 5 describes how we protect multithreaded programs against deployed races. Finally,

Chapter 6 concludes the thesis and discusses future work.
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Chapter 2

Preliminaries

This chapter first defines key terms and notations we use in the thesis (§2.1), and then describes

schedule specialization and its properties (§2.2).

2.1 Terms and Notations

There are many models for writing parallel programs. While we anticipate our approach will

work well with many parallel programming models, this thesis focuses on multithreaded programs

that use shared memory threaded programming. Specifically, we target C/C++ programs that

use Pthreads, which provides APIs for the program to create threads, and manipulate threads

using traditional synchronization constructs such as mutexes and semaphores. We focus on this

implementation of the shared memory threaded programming model, because we believe it is the

one mostly used.

Program. We implemented schedule specialization based on the LLVM compiler. We compile a

program to the LLVM intermediate representation (LLVM IR) [llv, 2013], and analyze and rewrite

the program in that level. LLVM IR uses a RISC-like instruction set with some key high-level

information for analysis. It has three key features that ease the implementation of schedule spe-

cialization:

• Explicit control flow graph. LLVM makes the control flow graph (CFG) of every function

explicit in the representation. A function in LLVM is a set of basic blocks. Each basic

block is a sequence of LLVM instructions, ending in exactly one terminator instruction, such
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as branches and return. This representation generalizes the analysis of compound C/C++

statements such as if, switch, while and for.

• Explicit data flow representation. LLVM represents the data flow of a program primarily

using the SSA (Static Single Assignment [Cytron et al., 1991]) form with an infinite virtual

register set. The SSA form makes def-use chains more explicit and therefore simplifies data

flow analysis. For memory locations that are not in SSA form, LLVM IR accesses them

using the load and store instruction, which take a single pointer and do not perform any

indexing. All pointer arithmetics (e.g., computing an internal pointer of an array or a struct)

are explicitly represented using the getelementptr instruction.

• Type information. LLVM IR preserves type information in the source code, such as array

types and struct types, at its best effort. In contrast, some other IRs, such as the DEX IR used

by Dalvik virtual machine [dal, 2013], represent composite types as byte arrays. Providing

rich type information helps data flow analysis such as alias analysis. For instance, type-based

alias analysis [Diwan et al., 1998] can prove two pointers do not alias if their types are not

compatible.

Statement. We define a statement as an instruction in the LLVM IR of a program. Each program

has a unique entry statement (typically the entry of function main for C/C++) where the program

starts executing. To identify statements, we assign each statement in a program a unique static

label lj .

Thread. A thread is a concurrent unit of execution of program statements. In the Pthread

implementation, a program spawns a thread by calling pthread create with a start routine. The

created thread will execute the specified routine once it is created.

Dynamic statement instance. A dynamic statement instance i = 〈t, l〉 indicates that i is an

instance of statement l executed by thread t. Given i = 〈t, l〉, we use i.thread to access t, and

i.label to access l.

Data races. Programs that use shared memory threaded programming may have data races.

The existence of data races poses a great challenge for deterministically executing multithreaded

programs: even if we enforce a certain schedule, the order between two statement instances involved
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in a data race can be arbitrary, causing the program to observe non-deterministic values from the

shared memory location.

A data race is a condition where two dynamic statement instances i1 and i2 satisfy all the

following requirements:

1. i1 and i2 access a common memory location;

2. at least one of the two accesses is for writing;

3. i1 and i2 are potentially concurrent: i1.thread and i2.thread use no explicit mechanism

(e.g. mutexes or semaphores) to prevent i1 and i2 from being simultaneous.

Two dynamic statement instances in an execution are racy if they are involved in a data race

in that execution. Two statements l1 and l2 are racy in an execution if an instance of l1 and an

instance of l2 are racy in that execution. l1 and l2 are racy in general if l1 and l2 are racy in at

least one execution.

Trace. A trace of program P , denoted by T , is a potentially infinite sequence of dynamic statement

instances i0, i1, . . . that includes every instance executed during an execution. A trace needs to

satisfy two requirements:

• Order constraints. If ij was completed before the start of in, then j < n (concurrently

executed statements can be ordered either way).

• Control-flow integrity. Control-flow integrity [Abadi et al., 2005], a program property

assumed by most compilers, dictates that program execution must follow a path of the CFG of

the program. For multithreaded programs, the sub-trace of each thread must follow the CFG

of the thread routine executed by that thread. Note that these CFGs are inter-procedural:

they include the edges from a call site to all its possible callees, and those from a function

return to all possible callers. Given trace T and predicate p on a dynamic statement instance,

we use filter(T, p) to denote the subsequence of every dynamic instance i in T where p(i)

is true. The sub-trace for thread t, denoted by Tt, therefore equals filter(T, i.thread = t).

Control-flow integrity states that, for each pair of consecutive dynamic instances itj and itj+1

in Tt, edge (itj , i
t
j+1) is in P ’s CFG.
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We assume sequential consistency for data-race-free programs, i.e., the result of any execution

of a data-race-free program is the same as the dynamic statement instances of all the threads were

executed in some sequential order. This assumption matches the memory model of Java [Manson

et al., 2005] and C++ [Boehm and Adve, 2008] programs. Therefore, each execution of a data-

race-free program corresponds to a trace.

Some executions of a program that contains data races may not be characterized by traces in

our definition. However, because the executions Peregrine collects and enforces are guaranteed

not to contain data races (§3.1), ignoring these executions from our consideration does not affect

the soundness of our static analysis results (§2.2.3.1).

We use run(P ) to denote the set of all possible traces of P , including non-terminating ones. Due

to the non-determinism of multithreading, a multithreaded program may have many executions on

the same input. We use runI(P ) to denote the set of all traces when running P on input I.

Synchronization statements. The set of synchronization statements H is a subset of all program

statements that includes the following three types:

• statements that call Pthread APIs that perform synchronizations1,

• entries and exits of thread functions (i.e., functions passed to pthread create) and main

required by the implementation of our control-flow specialization algorithm (§4.2.1),

• additional function calls to resolve ambiguity when a synchronization statement of the first

two types may be invoked in different calling contexts (explained in §4.2.1).

We call the first two classes true synchronization statements and the last class derived synchroniza-

tion statements. Our algorithm automatically computes derived synchronization statements from

true synchronization statements, and does not require user annotation.

1These APIs are pthread barrier wait, pthread cond broadcast, pthread cond signal,

pthread cond timedwait, pthread cond wait, pthread create, pthread exit, pthread join, pthread kill,

pthread mutex lock, pthread mutex timedlock, pthread mutex trylock, pthread mutex unlock,

pthread rwlock rdlock, pthread rwlock timedrdlock, pthread rwlock timedwrlock, pthread rwlock tryrdlock,

pthread rwlock trywrlock, pthread rwlock unlock, pthread rwlock wrlock, pthread spin lock,

pthread spin trylock, and pthread spin unlock.
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Synchronization. A synchronization is a dynamic statement instance i that i.label ∈ H. If

i.label is a true synchronization statement, i is a true synchronization; otherwise, i is a derived

synchronization. Unless otherwise specified, we use synchronizations to refer to both true and

derived synchronizations.

Schedule. A schedule, denoted by S, is a terminating sequence of synchronizations s0, s1, . . .,

sN . Trace T and schedule S are compatible if (1) T terminates and filter(T, i.label ∈ H) = S, or

(2) T does not terminate and filter(T, i.label ∈ H) is a prefix of S. Similarly, an execution and a

schedule are compatible if the trace of the execution is compatible with the schedule. One schedule

may be compatible with multiple traces because traces are more fine-grained than schedules. We

use runS(P ) to denote the set of all traces that are compatible with schedule S.

Enforcing a schedule. Some runtime systems, such as Peregrine, can control the environment

of program execution so that P only runs a subset of runI(P ) on input I. We use runI
S (P ) to

denote the set of all possible traces when running P on I with the control of system S . A system

S enforces schedule S on input I if runI
S (P ) ⊆ runS(P ).

Precondition. One can hardly enforce one schedule on all possible inputs. For instance, if an

input requires four threads to process, we cannot enforce a schedule of two threads on that input.

Therefore, before enforcing a schedule on an input, Peregrine needs to check whether the input

can be processed with the schedule. Ideally, Peregrine would compute the weakest precondition

of an enforced schedule, denoted by wp(P, S), a predicate that characterizes all inputs that P

can process with schedule S enforced. In other terms, wp(P, S)(I) ⇔ runI(P ) ∩ runS(P ) 6= ∅

holds for any input I. Since computing weakest preconditions is undecidable [Aho et al., 1986],

the precondition Peregrine computes, denoted by cond(P, S), stays on the conservative side, i.e.,

cond(P, S)⇒ wp(P, S). For simplicity, we say input I is compatible with schedule S if cond(P, S)(I)

is true. We will discuss how Peregrine computes preconditions (§3.2), and empirically measure

how close they are to the weakest preconditions (§3.4.3).

Program analysis, soundness, and precision. A program analysis determines whether a

certain property holds for a program. From the perspective of an error detector, a sound analysis

reports all violations of the property of interest, but may report false positives, i.e., violations

that cannot actually occur. A complete analysis never reports false positives; any violation of the
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property of interest reported by a complete analysis is an actual violation. However, a complete

analysis may miss some actual violations. We call these missed violations false negatives.

We illustrate these concepts using race detection. A race detector determines whether a program

is free of races. A sound race detector guarantees to detect all actual races in the program, but

does not guarantee all the races detected are actual races. In other words, a sound race detector

does not have false negatives, but may have false positives. A complete race detector guarantees

all the races detected are actual races, but does not guarantee to find all actual races. In other

words, a complete race detector does not have false positives, but may have false negatives.

We measure the precision of an analysis by its false positive rate. Under this definition, a static

analysis is typically imprecise, because it usually over-approximates the behavior of the program

and reports many false positives. A dynamic analysis is typically precise, because it examines the

actual behavior of the analyzed program, and any violation detected is an actual violation.

2.2 Schedule Specialization and Its Properties

Schedule specialization restricts the behavior of the program to make it easier to analyze. With-

out schedule specialization, a static analysis has to consider conceptually all traces in run(P ) for

soundness. With schedule specialization, the program runs with a set of schedules enforced; thus,

a static analysis needs to consider only traces in runS(P ) for each enforced schedule S, potentially

computing much more precise results.

To realize the idea of schedule specialization, we leverage our Peregrine system to compute

and enforce a set of schedules, and use our specialization framework to analyze a program with

respect to these schedules. The rest of this section describes the functionality of the Peregrine

system (§2.2.1) and the specialization framework (§2.2.2), and then discusses the assumptions and

non-assumptions of our system (§2.2.3).

2.2.1 Enforcing Schedules

Our Peregrine system first computes a finite set of schedules to enforce and analyze. We use

SC to denote these schedules. Peregrine computes these schedules by recording the traces of the

program on real representative workload and filtering synchronizations from terminating traces.
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Because these schedules are computed from real executions, they are guaranteed to be feasible, i.e.,

runS(P ) 6= ∅. Peregrine also ensures that different schedules in SC have disjoint preconditions.

In other words, if S1, S2 ∈ SC and S1 6= S2, then ¬(cond(P, S1)∧ cond(P, S2)). Therefore, an input

can be processed by at most one schedule in SC.

Peregrine then enforces each schedule in SC on the inputs that satisfy its precondition. When

input I arrives, Peregrine searches SC for schedule S such that cond(P, S)(I), and enforces S

on input I. Since SC is finite, it may not cover all the inputs. §2.2.3 will discuss how we handle

inputs that are not covered.

2.2.2 Specialization Framework

With a set of schedules enforced by Peregrine, schedule specialization analyzes the program with

respect to each enforced schedule. One method to provide schedule-aware analysis is to modify every

analysis to be aware of the schedule, but this method has the drawbacks discussed in §1.4.2. To

avoid modifying every analysis, our specialization framework rewrites P into a specialized program

PS for each enforced schedule S so that run(PS) ⊇ runS(P ). PS can then be analyzed with many

stock analyses for improved precision. To analyze P over a set of schedules, we can generate a

specialized program for each schedule, then merge the analysis results. In addition, our framework

provides a constraint-based def-use analysis on PS that computes precise must-def-use chains on

memory locations allowed only by schedule S. By querying this def-use analysis, stock or slightly

modified advanced analyses such as alias analysis can then compute schedule-aware results.

Precision of the specialization framework. Ideally for full precision, our specialization frame-

work should make run(PS) = runS(P ), so that static analysis of PS considers only traces in

runS(P ). In our current framework, run(PS) may still include traces not in runS(P ) because,

without enforcing S with Peregrine, an execution of PS may use a different schedule. Nonethe-

less, since run(PS) is much smaller than run(P ), stock analyses on PS should still yield more

precise results than on P . Our def-use analysis excludes def-use chains forbidden by the total order

in S. That is, it considers traces in runS(PS), which our specialization algorithms (§4.2) guarantee

to include runS(P ). The def-use results provided by our framework are thus much more precise

than what a stock def-use analysis can compute on PS (§4.5.1).

Soundness of the specialization framework. Our specialization framework guarantees that
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static analysis results on PS hold for all traces in runS(P ), because (1) the results from a static

analysis on PS should hold for all traces in run(PS); and (2) our specialization algorithms guarantee

run(PS) ⊇ runS(P ) which we will prove in §4.2.3. In addition, our framework guarantees that the

def-use results it provides hold for runS(PS), which includes runS(P ).

2.2.3 Assumptions and Non-Assumptions

2.2.3.1 Soundness

In our current system, the soundness of static analysis results is conditioned on that one of the

analyzed schedules is enforced. A finite set of schedules collected by Peregrine, however, may not

cover all inputs. If an input cannot be processed by any of the schedules (or it can but our framework

cannot determine this fact), the static analysis results may no longer hold for the execution on this

input. If users want to retain soundness on such inputs, they may use dynamic analysis. For

instance, if the analysis goal is to verify race freedom, they may use dynamic data race detection

on such inputs. If dynamic analysis is used, the overall runtime overhead of our framework may

depend on the actual workload, or how frequently it can enforce an analyzed schedule. If it can

never enforce any analyzed schedule, it degenerates to pure dynamic analysis on the entire workload

with potentially high overhead; if it can always enforce an analyzed schedule, it pays no dynamic

analysis overhead except the overhead to enforce a schedule. Fortunately, our Peregrine results

show that, for many programs, a small set of schedules can cover a wide range of the workloads

(§3.3.2). For these programs and workloads, our framework rarely needs to use dynamic analysis.

Moreover, even if we cannot use a small set of schedules to cover a wide range of workloads,

schedule specialization is still useful for many applications. These applications include all read-only

applications such as error detection and post-mortem analysis which do not require soundness on

the inputs not covered by analyzed schedules. They also include optimizations because we can

simply run the original program on the inputs not covered.

2.2.3.2 Data Race Freedom

At the algorithmic level, we do not assume data-race-free programs because we intend to keep

our framework general and applicable to not just optimizations, but other applications such as

verification and error detection. In particular, even if the program has data races, we can still
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enforce a schedule on it (§3.3.2). Nonetheless, if optimization is the only goal, we can easily modify

our algorithms to exploit this assumption for better results. At the implementation level, our

current framework leverages the LLVM compiler, which may indeed assume race freedom. This

assumption may be removed by re-implementing the LLVM components we leverage.

2.2.3.3 Lattice of Sub-Schedules

Our framework does not require that a schedule collected from a trace includes all synchronizations

in the trace. Instead, users can customize the schedule granularity, or which synchronizations go

into the schedules, by blacklisting certain synchronization statements.

Given a schedule S, we use (L ,v) to denote a lattice of all sub-schedules of S we can get by

blacklisting synchronization statements. To ensure our specialization algorithms can work correctly,

sub-schedules in L need to include at least the entry and exits of main; otherwise, our specialization

framework would generate an empty program. We denote this minimum set of synchronization

statements by H⊥. Therefore, L includes all filter(S, i.label ∈ H ′) where H⊥ ⊆ H ′ and H ′ ⊆ H.

The partial order of the lattice reflects the granularity of the sub-schedules of S: S1 v S2 if

S1 is more fine-grained than S2. In other term, S1 v S2 if S1 = filter(S, i.label ∈ H1), S2 =

filter(S, i.label ∈ H2), and H1 ⊆ H2. Under this partial order, the top of L , denoted by >, is

schedule S; the bottom of L , denoted by ⊥, is filter(S, i.label ∈ H⊥) which contains only two

synchronizations, the entry and one of the exits of function main.

Specializing programs with respect to coarse-grained sub-schedules enables users to make flexible

three-way tradeoffs between precision, analysis time, and schedule reuse-rate. In general, fine-

grained sub-schedules have lower reuse-rates and lead to larger specialized programs and longer

analysis time, but make the analysis results more precise. One exception is that users should

typically blacklist synchronizations hidden behind an abstraction boundary, such as a memory

allocator interface, because these synchronizations rarely improve precision but worsen analysis time

and reuse-rate. For instance, we blacklisted the lock operations in the custom memory allocator in

cholesky (§4.3). An interesting research question is how to optimally make this three-way tradeoff,

which we leave for future work.
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Chapter 3

Collecting and Enforcing Schedules

As mentioned in §1.3.1, the goal of Peregrine is to collect reusable schedules and enforce these

schedules deterministically and efficiently at runtime. Achieving this goal faces two challenges.

• How to collect reusable schedules? One possibility is to use static analysis to compute these

schedules. However, doing so is extremely difficult for complicated programs, because the

halting problem makes computing even feasible schedules undecidable. Another possibility is

to compute these schedules during program execution. However, these computations may be

complicated and incur large performance overhead which can discourage user adoption.

• How to collect reusable schedules? One possibility is to use static analysis to compute these

schedules. However, predicting the behavior of the program without running it is extremly

difficult. Therefore, static analysis can hardly compute schedules that are compatible with

non-trivial executions.

Another possibility is to compute these schedules during program execution. For instance,

existing DMT systems typically use a deterministic scheduling algorithm to ensure that a

program runs into the same schedule under the same input. However, such algorithms do not

reuse schedules on different inputs: if the input slightly changes, the program may run into a

complete different schedule. Therefore, simply leveraging these DMT systems into schedule

specialization may result in too many schedules to enforce and analyze. To reuse schedules,

one could compute whether a schedule can be used to process an input. However, this

computation tends to be complicated, and performing this computation entirely at runtime
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can incur large performance overhead which can discourage user adoption.

• How to deterministically and efficiently enforce schedules? Enforcing schedules both deter-

ministically and efficiently for general programs on commodity hardware is an open challenge,

because these programs may have data races. Existing systems that enforce schedules solve

only one of the two problems. One type of systems enforces a deterministic order of shared

memory accesses to resolve data races. However, scheduling all shared memory accesses can

incur prohibitive overhead. For instance, CoreDet [Bergan et al., 2010a] enforces memory ac-

cess orders and incurs 1.2X-6X runtime overhead. The other type of systems enforces only a

deterministic order of synchronizations. Although such systems can reduce runtime overhead

(e.g., Kendo [Olszewski et al., 2009] has a low overhead of 16%), they cannot guarantee full

determinism on programs containing data races.

To address the challenge of collecting schedules, Peregrine records schedules from past real

executions and reuses these schedules on future inputs. It works as follows. At runtime, Peregrine

maintains a persistent cache of schedules recorded from past executions. When an input arrives,

Peregrine searches the cache for a schedule compatible with the input. If it finds one, it simply

runs the program while enforcing the schedule. Otherwise, it runs the program as is while recording

a new schedule from the execution, and saves the schedule into the cache for future reuse.

This approach of collecting schedules has several benefits for schedule specialization. First, the

schedules recorded by Peregrine are guaranteed to be feasible because they are recorded from

real executions. Second, by reusing a schedule on future compatible inputs, Peregrine shrinks

the set of schedules schedule specialization needs to statically analyze, and makes soundness easier

to achieve. Finally, Peregrine explicitly stores schedules, so schedule specialization can easily

analyze them for precision. In fact, Peregrine also benefits from this explicitness because it

analyzes a schedule to compute what inputs are compatible with it (§3.2).

One problem this approach needs to solve is how to check that an input is compatible with a

schedule before executing the input under the schedule. Peregrine solves this problem by using

an idea called determinism-preserving slicing. When recording a schedule, Peregrine records a

detailed execution trace. Then, Peregrine slices the trace to keep only the statement instances

that affect the feasibility of the schedule. Finally, Peregrine symbolically executes the slice
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and computes the input constraints required to ensure that the execution is compatible with the

schedule. The conjunction of these input constraints is the precondition of using the schedule.

When an input arrives, Peregrine checks the input against the precondition of each schedule to

determine which one to reuse.

To deterministically and efficiently enforce schedules, Peregrine enforces hybrid schedules:

it enforces memory access schedules only in racy portions of an execution and synchronization

schedules otherwise. Although the idea of hybrid schedules sounds appealing, how to efficiently

enforce memory access schedules in racy portions still remains unclear. Statically instrumenting

all memory accesses involved in statically-detected data races would be too expensive due to the

imprecision of static race detectors.

Peregrine solves this problem using dynamic instrumentation. Before a program enters a racy

portion, Peregrine dynamically updates the running program to enforce memory access orders

in the racy portion. Because a dominant majority of the execution is race-free, the program runs

the original code most of the time, which allows Peregrine to pay only the bare instrumentation

overhead. Furthermore, to reduce the instrumentation overhead, we leverage a fast instrumentation

framework we built for Loom (§5.4).

In the remainder of this chapter, we first describe the architecture of Peregrine and illustrate

the functionality of each component using an example. We then describe two ideas of Peregrine

that are crucial to schedule specialization: computing preconditions (§3.2) and hybrid schedules

(§3.3). Then, we show the evaluation results (§3.4), and related work (§3.5). Finally, we summarize

this chapter (§3.6).

3.1 Overview and Example

Figure 3.1 shows the architecture of Peregrine. It has four main components. The instrumentor

is an LLVM compiler plugin that prepares a program for use with Peregrine. It instruments

synchronization operations such as pthread mutex lock(), which the recorder and replayer control

at runtime. It automatically marks the main() arguments, data read from read(), fscanf(), and

recv(), and values returned by random()-variants as inputs, so precondition computing can know

what variables to compute constraints on.
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Figure 3.1: Architecture of Peregrine.

The recorder is similar to existing systems that deterministically record executions [Laadan et

al., 2010; Bhansali et al., 2006; Dunlap et al., 2008]. Our current recorder is implemented as an

LLVM interpreter. When a program runs, the recorder saves the LLVM instructions interpreted for

each thread into a central log file. The interpreter ensures dynamic statement instances across all

threads are executed in a sequential order. Therefore, no data races occur in the recording phase.

Given the programs we consider use a sequentially consistent concurrent memory order, every

trace Peregrine collects corresponds to a real execution. Our recorder does not record external

input data, such as data read from a file, because our analysis does not need this information. To

schedule synchronization operations issued by different threads, the recorder can use a variety of

DMT algorithms [Cui et al., 2010].

Given the program and an execution trace, the analyzer is a stand-alone program that computes

(1) a hybrid schedule S and (2) the precondition C required for reusing the schedule on future

inputs. To compute a hybrid schedule, the analyzer first extracts a total order of synchronization

operations from the execution trace. It then detects data races according to this synchronization

order. Because the synchronizations in the schedule form a total order, statement instance i1

happens before i2 (denoted by i1 ≺ i2) as long as we can find two synchronizations sj and sk

such that i1 ≺ sj ∧ sk ≺ i2 ∧ j < k. Therefore, our data race detection algorithm is much

simpler than traditional dynamic data race detection based on vector clocks. After detecting

data races according to a synchronization order, Peregrine computes additional execution order

constraints to deterministically order the statement instances involved the detected races. To

compute the precondition of a schedule, Peregrine first slices the execution trace into a trace
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Figure 3.2: Decision tree of Peregrine’s schedule cache.

slice with instructions required to 1) reach all events in the schedule and 2) avoid races that did

not occur in the recorded execution. For example, if a branch that is not taken in the recorded

execution may introduce new races, the computation of the branch condition will be included in

the slice. Peregrine then uses symbolic execution [King, 1975] to collect preconditions from the

input-dependent branches in the slice. The trace slice is typically much smaller than the execution

trace, so that the analyzer can compute relaxed preconditions, allowing frequent reuses of the

schedule. The analyzer finally stores 〈C, S〉 into the schedule cache, which conceptually holds a set

of such tuples.

Although the schedule cache is conceptually a set of 〈C, S〉 tuples, its actual structure is a

decision tree because a program may incrementally read inputs from its environment. Figure 3.2

illustrates how Peregrine constructs the decision tree of the schedule cache. Given a 〈C, S〉 tuple,

Peregrine breaks it down to sub-tuples 〈Ci, Si〉 separated by symbolic() calls, where Si contains

the synchronization operations logged and Ci contains the constraints collected between the ith

and (i + 1)th calls that read external input. It then merges the sub-tuples into the ith level of the

decision tree.

The replayer is a lightweight user-space scheduler for reusing schedules. When an input arrives,

it searches the schedule cache for a 〈C, S〉 tuple such that the input satisfies the precondition C. If it

finds such a tuple, it simply runs the program enforcing schedule S efficiently and deterministically.

Otherwise, it forwards the input to the recorder.
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3.1.1 An Example

Figure 3.3 shows our running example, a simple multithreaded program based on the real ones used

in our evaluation. It first parses the command line arguments into nthread (line L1) and size

(L2), then spawns nthread threads including the main thread (L4–L5) and processes size/nthread

bytes of data in each thread. The thread function worker() allocates a local buffer (L10), reads

data from a file (L11), processes the data (L12–L13), and sums the results into the shared variable

result (L14–L16). The main() function may further update result depending on argv[3] (L7–

L8), and finally prints out result (L9). This example has read-write and write-write races on

result due to missing pthread join(). This error pattern matches some of the real errors in the

evaluated programs such as PBZip2.

Instrumentor. To run this program with Peregrine, we first compile it into LLVM IR and

instrument it with the instrumentor. The instrumentor replaces the synchronization operations

(lines L5, L14, and L16) with Peregrine-provided wrappers controlled by the recorder and replayer

at runtime. It also inserts code to mark the contents of argv[i] and the data from read() (line

L11) as input.

Recorder: execution trace. When we run the instrumented program with arguments “2 2 0” to

spawn two threads and process two bytes of data, suppose that the recorder records the execution

trace in Figure 3.4. (This figure also shows the hybrid schedule and preconditions Peregrine

computes, explained later in this subsection.) This trace is just one possible trace depending on

the scheduling algorithm the recorder uses.

Analyzer: hybrid schedule. Given the execution trace, the analyzer starts by computing a

hybrid schedule. It first extracts a sync-schedule consisting of the operations tagged with (1), (2),

..., (8) in Figure 3.4. It then detects races in the trace according to this sync-schedule, and finds

the race on result between L15 of thread t1 and L9 of t0. It then computes an execution order

constraint to deterministically resolve this race, shown as the dotted arrow in Figure 3.4. The

sync-schedule and execution order constraint together form the hybrid schedule. Although this

hybrid schedule constrains the order of synchronization and the last two accesses to result, it can

still be efficiently reused because the core computation done by worker can still run in parallel.

Analyzer: trace slice. The analyzer uses determinism-preserving slicing to reduce the execution
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int size; // total size of data

int nthread; // total number of threads

unsigned long result = 0;

int main(int argc, char *argv[ ]) {

L1: nthread = atoi(argv[1]);

L2: size = atoi(argv[2]);

L3: assert(nthread>0 && size>=nthread);

L4: for(int i=1; i<nthread; ++i)

L5: pthread create(. . ., worker, NULL);

L6: worker(NULL);

// NOTE: missing pthread join()

L7: if(atoi(argv[3]) == 1)

L8: result += . . .; // race with line L15

L9: printf("result = %lu\n", result); // race with line L15

. . .

}

void *worker(void *arg) {

L10: char *data = malloc(size/nthread);

L11: read(. . ., data, size/nthread);

L12: for(int i=0; i<size/nthread; ++i)

L13: data[i] = . . .; // compute using data

L14: pthread mutex lock(&mutex);

L15: result += . . .; // race with lines L8 and L9

L16: pthread mutex unlock(&mutex);

. . .

}

Figure 3.3: Running example. It uses the common divide-and-conquer idiom to split work among

multiple threads. It contains write-write (lines L8 and L15) and read-write (lines L9 and L15) races

on result because of missing pthread join().
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Figure 3.4: Execution trace, hybrid schedule, and trace slice. An execution trace of the program in

Figure 3.3 on arguments “2 2 0” is shown. Each executed instruction is tagged with its static line

number Li. Branch instructions are also tagged with their outcome (true or false). Synchronization

operations (green), including thread entry and exit, are tagged with their relative positions in the

synchronization order. They form a sync-schedule whose order constraints are shown with solid

arrows. L15 of thread t1 and L9 of thread t0 race on result, and this race is deterministically

resolved by enforcing an execution order constraint shown by the dotted arrow. Together, these

order constraints form a hybrid schedule. Instruction L7 of t0 (italic and blue) is included in the

trace slice to avoid new races, while L6, L4:false, L4:true, L3, L2, and L1 of t0 are included due to

intra-thread dependencies. Crossed-out (gray) instructions are elided from the slice.
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(atoi argv1 = 2) ∧ (atoi argv2 ≥ atoi argv1) ∧ (atoi argv3 6= 1)

Figure 3.5: Preconditions computed from the trace slice in Figure 3.4. Variable atoi argvi represents

the return of atoi(arg[i]).

trace into a trace slice, so that it can compute relaxed preconditions. The final trace slice consists

of the instructions not crossed out in Figure 3.4. The analyzer computes this trace slice using

inter-thread and intra-thread steps. In the inter-thread step, it adds instructions required to avoid

new races into the slice. Specifically, for t0 it adds the false branch of L7, or L7:false, because if

the true branch is taken, a new race between L8 of t0 and L15 of t1 occurs. It ignores branches of

line L12 because alias analysis already determines that L13 of t0 and L13 of t1 never race.

In the intra-thread step, the analyzer adds instructions required to reach all instructions identi-

fied in the inter-thread step (L7:false of t0 in this example) and all events in the hybrid schedule. It

does so by traversing the execution trace backwards and tracking control- and data-dependencies.

In this example, it removes L15, L13, L12, L11, and L10 because no instructions currently in the

trace slice depend on them. It adds L6 because without this call, the execution will not reach

instructions L14 and L16 of thread t0. It adds L4:false because if the true branch is taken, the

execution of t0 will reach one more pthread create(), instead of L14, pthread mutex lock(), of

t0. It adds L4:true because this branch is required to reach L5, the pthread create() call. It

similarly adds L3, L2, and L1 because later instructions in the trace slice depend on them.

Analyzer: preconditions. After slicing, all branches from L12 are gone. The analyzer joins

the remaining branches together as the preconditions, using a version of klee [Cadar et al., 2008]

augmented with thread support [Cui et al., 2010]. Specifically, the analyzer marks input data as

symbolic, and then uses klee to track how this symbolic data is propagated and observed by the

instructions in the trace slice. If a branch instruction inspects symbolic data and proceeds down the

true branch, the analyzer adds the precondition that the symbolic data makes the branch condition

true. The analyzer uses symbolic summaries [Costa et al., 2007] to succinctly generalize common

library functions. For instance, it considers the return of atoi(arg) symbolic if arg is symbolic.

Figure 3.5 shows the preconditions the analyzer computes from the trace slice in Figure 3.4.

These preconditions illustrate two key benefits of Peregrine. First, they are sufficient to ensure

deterministic reuses of the schedule. Second, they only loosely constrain the data size (atoi argv2)
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and do not constrain the data contents (from read()), allowing frequent schedule-reuses. The

reason is that L10–L13 are all sliced out. One way to leverage this benefit is to populate a schedule

cache with small workloads to reduce analysis time, and then reuse the schedules on large workloads.

Replayer. Suppose we run this program again on different arguments “2 1000 8.” The replayer

checks the new arguments against the preconditions in Figure 3.5 using klee’s constraint checker,

and finds that these arguments satisfy the preconditions, despite the much larger data size. It can

therefore reuse the hybrid schedule in Figure 3.4 on this new input by enforcing the same order of

synchronization operations and accesses to result.

3.2 Computing Preconditions

One challenge for computing reusable schedules is how to check whether a input is compatible with

a recorded schedule before executing the input under the schedule. Otherwise, if Peregrine tries

to enforce a schedule, for instance, of two threads on an input that requires four, the execution

would not follow the schedule. This challenge turns out to be the most difficult one we must solve in

building Peregrine. Our final solution leverages several advanced program analysis techniques,

including two new ones we invent. We refer interested readers to our papers [Cui et al., 2010;

Cui et al., 2011] for details, and only describe the high level idea here.

Peregrine computes preconditions of a schedule using a modified version [Cui et al., 2011]

of path slicing [Jhala and Majumdar, 2005] on the recorded execution trace to remove statement

instances that do not affect the feasibility of the hybrid schedule, i.e., the reachability of all syn-

chronizations in the schedule. Our version of path slicing correctly tracks dependencies (e.g.shared

data accesses) across threads. We call this slicing algorithm determinism-preserving slicing. Once

we compute a path slice for each thread, we symbolically execute the slice, tracking the path con-

straints on input data, such as command line arguments and data read from a file or socket. We

then use the conjunction of the constraints from each thread as the preconditions of the hybrid

schedule.

These preconditions Peregrine computes have three properties.

• They do not guarantee program termination because we want to sidestep the difficult problem

of statically establishing termination. This property is inherited from path slicing [Jhala and
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Majumdar, 2005].

• Since computing weakest preconditions is undecidable, the preconditions Peregrine com-

putes stay on the sound side: if an input satisfies these preconditions, it can be processed by

the corresponding hybrid schedule (modulo termination). However, these preconditions may

preclude inputs that can indeed be processed by the hybrid schedule.

• These preconditions avoid data races, which may cause an execution to diverge, preventing

Peregrine from enforcing a given hybrid schedule. When computing preconditions, Pere-

grine detects potential races that did not occur in a recorded trace, but may occur if we

reuse the hybrid schedule on different inputs. It computes preconditions sufficient to avoid

these races.

Our evaluation results (§3.4.3) show that a small number of schedules can cover a wide range

of workloads for half of the 18 evaluated programs. We observe that the synchronizations in these

programs depend mostly on “meta” properties such as the number of processor cores, and tend to

be loosely coupled with the inputs. For these programs, the coverage of a schedule can be extremely

high. For instance, consider PBZip2 which divides an input file evenly among multiple threads to

compress. Two schedules are sufficient to compress any file for PBZip2 as long as the number of

worker threads remains the same. (PBZip2 needs one schedule if the file size can be evenly divided

and another otherwise.) Another data point: about a hundred schedules are sufficient to cover over

90% of requests in a real HTTP trace for Apache [Apache, 2012]. This stability [Cui et al., 2010]

not only makes program behaviors repeatable across inputs, but also reduces the runtime overhead

of our specialization framework (Chapter 4).

3.3 Deterministically and Efficiently Enforcing Schedules

To deterministically and efficiently enforce schedules, Peregrine enforces “hybrid” schedules that

combine synchronization schedules and memory access schedules. Our insight is that although

many programs have races, the races tend to occur only within small portions of an execution, and

the majority of the execution is still race-free. Intuitively, if a program is full of data races, most

of them would have been caught during testing. Empirically, we analyzed the executions of seven
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real programs with races, and found that, despite millions of memory accesses, only up to 10 data

races were detected per execution.

3.3.1 Construct a Hybrid Schedule

Peregrine constructs a hybrid schedule in two steps. It first extracts a synchronization schedule

from the execution trace, and includes this synchronization schedule into the hybrid schedule. Then,

Peregrine detects data races that occurred during the recorded execution, computes execution

order constraints to deterministically resolve these races, and includes these constraints into the

hybrid schedule.

Detecting data races using an off-the-shelf race detector would flag too many races because

it considers the original synchronization constraints of the program. Since Peregrine already

extracts the synchronization schedule and will enforce it, Peregrine only needs to detect races

according to this schedule. This schedule-aware race detection is significantly more precise than

general race detection. Researchers observed that schedules anecdotally reduced the number of

possible races greatly, in one extreme case, from more than a million to four [Park et al., 2009b;

Ronsse and De Bosschere, 1999].

To later enforce a hybrid schedule, Peregrine explicitly represents a hybrid schedule in a

data structure. Peregrine represents the synchronization schedule simply as a total order of

synchronizations. Peregrine gives each static instruction in the executable file an unique ID.

Therefore, each synchronization is simply identified by the unique ID of the static instruction. For

each detected race, Peregrine includes into the hybrid schedule an execution order constraint

inst1 → inst2 where inst1 and inst2 are the two dynamic instruction instances involved in the

race. Peregrine identifies a dynamic instruction instance by 〈sid, tid, nbr〉 where sid refers to the

unique ID of the static instruction; tid refers to the internal thread ID maintained by Peregrine,

which always starts from zero and increments deterministically upon each pthread create(); and

nbr refers to the number of control-transfer instructions (branch, call, and return) locally executed

within the thread from the last synchronization to inst1 or inst2. We must distinguish different

dynamic instances of a static instruction because some of these dynamic instances may be involved

in races while others are not. We do so by counting branches because if an instruction is exe-

cuted twice, there must be a control-transfer between the two instances [Dunlap et al., 2008]. We
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count branches starting from the last synchronization because the partial schedule preceding this

synchronization is already made deterministic.

3.3.2 Enforcing a Hybrid Schedule

A hybrid schedule contains a synchronization schedule and execution order constraints. Pere-

grine uses different techniques to enforce the synchronization schedule and the execution order

constraints.

To enforce a synchronization schedule, Peregrine uses a technique called semaphore relay [Cui

et al., 2010] that orders synchronizations with per-thread semaphores. Peregrine statically wraps

each synchronization statement. At runtime, a synchronization wrapper waits on the semaphore

of the current thread. Once it is woken up, it proceeds with the actual synchronization, and then

wakes up the next thread according to the synchronization order.

Efficiently enforcing a memory access schedule is more challenging, because memory accesses

occur much more frequently than synchronizations. If we simply statically instrument all memory

accesses, the program will run much slower. Even if we use a static race detector and only instrument

memory accesses that involve in detected races, the runtime overhead can still be large.

To address this challenge, Peregrine uses dynamic instrumentation to enforce memory access

schedules. Our insight is that, although many memory accesses can be involved in data races,

when enforcing a hybrid schedule, few of them are really involved. Dynamic instrumentation allows

Peregrine to only instrument occurred races, and leave most of the program uninstrumented.

Figure 3.6 shows the function Peregrine instruments the program to call before each static

instruction sid. Given a dynamic instruction instance 〈sid, tid, nbr〉 (§3.3.1), if it is used as the

target of an execution order, Peregrine inserts a semaphore down() operation before the static

instruction sid; if the instance is used as a source, Peregrine inserts a semaphore up() operation

after sid (Line 4–8). It also instruments the branch instructions counted in nbr so that when each of

these branch instructions runs, a per-thread branch counter is incremented (Line 2–3). Peregrine

activates the inserted semaphore operation for thread tid only when the thread’s branch counter

matches nbr (Line 7). To avoid interference and unnecessary contention when there are multiple

order constraints, Peregrine assigns a unique semaphore to each constraint.

Although using dynamic instrumentation avoids lots of unnecessary instrumentation, running
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1: void slot(int sid) { // sid is static instruction id

2: if(instruction sid is branch)

3: nbr[self()] ++; // increment per-thread branch counter

4: // get semaphore operations for current thread at instruction sid

5: my actions = actions[sid][self()];

6: for action in my actions

7: if nbr[self()] == action.nbr // check branch counter

8: actions.do(); // perform up() or down()

9: }

Figure 3.6: Instrumentation to enforce execution order constraints.

dynamic instrumentation tools alone may cause large performance overhead. For example, Pin has

been reported to incur 199% overhead [Luk et al., 2005], and we observed 10 times slowdown on

Apache with a CPU-bound workload (§5.5). To reduce this instrumentation overhead, Peregrine

leverages a fast instrumentation framework we built for Loom. Running our instrumentation

framework alone incurs negligible overhead for most of the evaluations programs. We will detail

this framework in §5.4.

3.4 Evaluation

We evaluated our Peregrine implementation on a diverse set of 17 programs, including Apache, a

popular web server; PBZip2, a parallel compression utility; aget, a parallel wget-like utility; pfscan,

a parallel grep-like utility; parallel implementations of 13 computation-intensive algorithms, 10 in

SPLASH2 and 3 in PARSEC; and racey, a benchmark specifically designed to exercise deterministic

execution and replay systems [Hill and Xu, 2009]. All SPLASH2 benchmarks were included except

one that we cannot compile, one that our current prototype cannot handle due to an implementation

bug, and one that does not run correctly in 64-bit environment. The chosen PARSEC benchmarks

(blackscholes, swaptions and streamcluster) include the ones that (1) we can compile, (2) use

threads, and (3) use no x86 inline assemblies. These programs were widely used in previous studies

(e.g., [Lu et al., 2008; Xiong et al., 2010; Berger et al., 2009]).

Our evaluation machine was a 2.67 GHz dual-socket quad-core Intel Xeon machine with 24
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Program Race Description

Apache Reference count decrement and check against 0 are not atomic, resulting in a program

crash.

PBZip2 Variable fifo is used by one thread after being freed by another thread, resulting in

a program crash.

barnes Variable tracktime is read by one thread before assigned the correct value by another

thread.

fft initdonetime and finishtime are read by one thread before assigned the correct

values by another thread.

lu-non-contig Variable rf is read by one thread before assigned the correct value by another thread.

streamcluster PARSEC has a custom barrier implementation that synchronizes using a shared

integer flag is arrival phase.

racey Numerous intentional races caused by multiple threads reading and writing global

arrays sig and m without synchronization.

Table 3.1: Programs used for evaluating Peregrine’s determinism.

GB memory running Linux 2.6.35. When evaluating Peregrine on Apache and aget, we ran

the evaluated program on this machine and the corresponding client or server on another to avoid

contention between the programs. These machines were connected via 1Gbps LAN. We compiled

all programs to machine code using llvm-gcc -O2 and the LLVM compiler llc. We used eight

worker threads for all experiments.

Unless otherwise specified, we used the following workloads in our experiments. For Apache,

we used ApacheBench [apa, 2014] to repeatedly download a 100 KB webpage. For PBZip2, we

compressed a 10 MB randomly generated text file. For aget, we downloaded a 77 MB file

(Linux-3.0.1.tar.bz2). For pfscan, we scanned the keyword return from 100 randomly chosen

files in GCC. For SPLASH2 and PARSEC programs, we ran workloads which typically completed

in 1-100 ms.

In the remainder of this section, we focus on three questions:

• Is Peregrine deterministic if there are data races (§3.4.1)? Determinism is one of the

strengths of Peregrine over the approach that enforces synchronization schedules.
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• Is Peregrine fast (§3.4.2)? For typical multithreaded programs that have rare data races,

Peregrine should be roughly as fast as the approach using synchronization schedules. Effi-

ciency is one of the strengths of Peregrine over the approach using memory access schedules.

• Is Peregrine stable (§3.4.3)? That is, can it frequently reuse schedules? The higher the

reuse rate, the more repeatable program behaviors become and the more Peregrine can

amortize the cost of computing hybrid schedules.

3.4.1 Determinism

We evaluated Peregrine’s determinism by checking whether Peregrine could deterministically

resolve races. Table 3.1 lists the seven racy programs used in this experiment. We selected the

first five because they were frequently used in previous studies [Lu et al., 2006; Park et al., 2009a;

Lu et al., 2008; Park et al., 2009b] and we could reproduce their races on our evaluation machine.

We selected the integer flag race in PARSEC to test whether Peregrine can handle ad hoc

synchronization [Xiong et al., 2010]. We selected racey to stress test Peregrine: each run of

racey may have thousands of races, and if any of these races is resolved differently, racey’s final

output changes with high probability [Hill and Xu, 2009].

For each program with races, we recorded an execution trace and computed a hybrid sched-

ule from the trace. Table 3.2 shows for each program (1) the number of dynamic races detected

according to the synchronization schedule and (2) the number of execution order constraints in

the hybrid schedule. The latter can be smaller than the former because Peregrine can remove

redundant execution constraints that are subsumed by others. In particular, Peregrine prunes

94% of the constraints for racey. For Apache and streamcluster, their races are already re-

solved deterministically by their synchronization schedules, so Peregrine adds no execution order

constraints.

To verify that the hybrid schedules Peregrine computed are deterministic, we first manually

inspected the order constraints Peregrine added for each program except racey (because it has

too many races for manual verification). Our inspection results show that these constraints are

sufficient to resolve the corresponding races. We then re-ran each program including racey 1000

times while enforcing the hybrid schedule and injecting delays; and verified that each run reused the

schedule and computed equivalent results. (We determined result equivalence by checking either
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Program Races Order Constraints

Apache 0 0

PBZip2 4 3

barnes 5 1

fft 10 4

lu-non-contig 10 7

streamcluster 0 0

racey 167974 9963

Table 3.2: Hybrid schedule statistics. Column Races shows the number of races detected according

the corresponding synchronization schedule, and Column Order Constraints shows the number

of execution order constraints Peregrine adds to the final hybrid schedule. The latter can be

smaller than the former because Peregrine prunes subsumed execution order constraints. Pere-

grine detected no races for Apache and streamcluster because the corresponding synchronization

schedules are sufficient to resolve the races deterministically; it thus adds no order constraints for

these programs.

the output or whether the program crashed.)

We also compared the determinism of Peregrine to our previous work [Cui et al., 2010]

which only enforces synchronization schedules. Specifically, we reran the seven programs with

races 50 times enforcing only the synchronization schedules and injecting delays, and checked

whether the reuse runs computed equivalent results as the recorded run. As shown in Table 3.3,

synchronization schedules are unsurprisingly deterministic for Apache and streamcluster, because

no races are detected according to the corresponding synchronization schedules. However, they are

not deterministic for the other five programs, illustrating one advantage of Peregrine over the

synchronization schedule approach.

3.4.2 Enforcing Overhead

The most performance-critical component of Peregrine is the replayer (Figure 3.1) which enforces

a schedule, because it operates within a deployed program. Figure 3.7 shows the execution times

when reusing hybrid schedules; these times are normalized to the nondeterministic execution time.
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Program
Deterministic?

synchronization schedule hybrid schedule

Apache 4 4

PBZip2 6 4

barnes 6 4

fft 6 4

lu-non-contig 6 4

streamcluster 4 4

racey 6 4

Table 3.3: Determinism of synchronization schedules v.s. hybrid schedules.

(The next paragraph compares these times to those of synchronization schedules.) For Apache,

we show the throughput (TPUT) and response time (RESP). All numbers reported were averaged

over 500 runs. Peregrine has relatively high overhead on water-nsquared (22.6%) and cholesky

(46.6%) because these programs do a large number of mutex operations within tight loops. Still,

this overhead is lower than the reported 1.2X-6X overhead of a mem-schedule DMT system [Bergan

et al., 2010a]. Moreover, Peregrine speeds up barnes, lu-non-contig, radix, water-spatial,

and ocean (by up to 68.7%) because Peregrine already enforces schedules and can safely skips

some synchronization and sleep operations. For the other programs, Peregrine’s overhead or

speedup is within 15%. (Note that increasing the page or file sizes of the workload tends to reduce

Peregrine’s relative overhead because the network and disk latencies dwarf Peregrine’s.)

For comparison, Figure 3.7 shows the normalized execution time when enforcing just the syn-

chronization schedules. This overhead is comparable to our previous work [Cui et al., 2010]. For

all programs except water-nsquared, the overhead of enforcing hybrid schedules is only slightly

larger (at most 5.4%) than that of enforcing synchronization schedules. This slight increase comes

from two sources: (1) Peregrine has to enforce execution order constraints to resolve races deter-

ministically for PBZip2, barnes, fft, and lu-non-contig; and (2) the instrumentation framework

Peregrine uses also incurs overhead (§5.4). The overhead for water-nsquared increases by 13.4%

because it calls functions more frequently than the other benchmarks, and our instrumentation

framework inserts code at each function entry and return (§5.4).
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Figure 3.7: Normalized execution time when reusing synchronization schedules v.s. hybrid schedules.

A time value greater than 1 indicates a slowdown compared to a nondeterministic execution without

Peregrine. We did not include racey because it was not designed for performance benchmarking.



CHAPTER 3. COLLECTING AND ENFORCING SCHEDULES 39

0
10
20
30
40
50
60
70
80

   
   

  A
pa

ch
e

   
   

  P
B

Zi
p2

   
   

   
 a

ge
t

   
   

  p
fs

ca
n

   
   

  b
ar

ne
s

   
   

   
  f

ft
   

  l
u-

co
nt

ig
 lu

-n
on

-c
on

tig
   

   
   

ra
di

x
 w

at
er

-s
pa

tia
l

w
at

er
-n

sq
ua

re
d

   
   

   
oc

ea
n

   
   

   
  f

m
m

   
   

ch
ol

es
ky

  b
la

ck
sc

ho
le

s
   

  s
w

ap
tio

ns
 s

tre
am

cl
us

te
rS

lic
e 

S
iz

e/
Tr

ac
e 

S
iz

e 
(%

)

0.
07

  

0.
00

05

0.
00

03

0.
01

  

0.
09

  

Figure 3.8: Slicing ratio after applying determinism-preserving slicing

3.4.3 Stability

Stability measures how frequently Peregrine can reuse schedules. The more frequently Pere-

grine reuses schedules, the fewer schedules schedule specialization needs to analyze.

A key factor determining Peregrine’s schedule-reuse rates is how effectively it can slice out

irrelevant instructions from the execution traces. Figure 3.8 shows the ratio of the slice size over

the trace size for Peregrine’s determinism-preserving slicing technique. The slicing technique

reduces the trace size by over 50% for all programs except pfscan, lu-non-contig, and ocean.

Recall that Peregrine computes the preconditions of a schedule from the input-dependent

branches in a trace slice. The fewer branches included in the slice, the more general the precon-

ditions Peregrine computes tend to be. We further measured the number of such branches in

the trace slices. Table 3.4 shows the results, together with a upper bound determined by the total

number of input-dependent branches in the execution trace, and a lower bound determined by only

including branches required to reach the recorded synchronization operations. This lower bound

may not be tight as we ignored data dependency. For barnes, fft, blackscholes, swaptions, and
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Program UB Slicing LB

Apache 4,522 624 56

PBZip2 913 101 94

aget 20,826 9,514 9,491

pfscan 1,062,047 992,520 992,501

barnes 92 52 52

fft 2,266 17 17

lu-contig 2,823,379 131 128

lu-non-contig 2,962,621 2,876,364 128

radix 175,679 89,732 75

water-spatial 98,054 76,763 233

water-nsquared 89,348 76,242 1,843

ocean 2,605,185 2,361,256 400

fmm 299,816 56,532 1,642

cholesky 7,459 1,627 1,233

blackscholes 421,909 10 10

swaptions 35,584 21 21

streamcluster 20,851 42 42

Table 3.4: Effectiveness of program analysis techniques. UB shows the total number of input-

dependent branches in the corresponding execution trace, an upper bound on the number included

in the trace slice. Slicing shows the number of input-dependent branches in the slice after applying

determinism-preserving slicing (§3.2). LB shows a lower bound on the number of input-dependent

branches, determined by only including branches required to reach the recorded synchronization

operations. This lower bound may not be tight as we ignored data dependency when computing it.
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streamcluster, our slicing achieves the best possible reduction. For PBZip2, aget, pfscan, and

lu-contig, the number of input-dependent branches in the trace slice is close to the lower bound.

In the remaining programs, Apache, fmm, and cholesky also enjoy large reduction, while the other

five programs do not.

We manually examined the preconditions Peregrine computed from the input-dependent

branches for these programs. We categorize these programs below.

Best case: PBZip2, fft, lu-contig, blackscholes, swaptions, and streamcluster. Peregrine

computes the weakest (i.e., most relaxed) preconditions for these programs. The preconditions

often allow Peregrine to reuse one or two schedules for each number of threads, putting no or

few constraints on the data processed. Schedule-guided simplification is crucial for these programs;

without simplification, the preconditions would fix the data size and contents.

Slicing limitation: Apache and aget. The preconditions Peregrine computes for Apache fix

the URL length; they also constrain the page size to be within an 8 KB-aligned range if the page

is not cached. The preconditions Peregrine computes for aget fix the positions of “/” in the

URL and narrow down the file size to be within an 8 KB-aligned range. These preconditions thus

unnecessarily reduce the schedule-reuse rates. Nonetheless, they can still match many different

inputs, because they do not constrain the page or file contents.

Symbolic execution limitation: barnes. barnes reads in two floating point numbers from a

file, and their values affect schedules. Since Peregrine cannot symbolically execute floating point

instructions, it currently does not collect preconditions from them.

Alias limitation: lu-non-contig, radix, water-spatial, water-nsquared, ocean, and cholesky.

Even with simplification, Peregrine’s alias analysis sometimes reports may-alias for pointers

accessed in different threads, causing Peregrine to include more instructions than necessary

in the slices and compute preconditions that fix the input data. For instance, each thread in

lu-non-contig accesses disjoint regions in a global array, but the accesses from one thread are not

continuous, confusing Peregrine’s alias analysis. (In contrast, each thread in lu-contig accesses

a contiguous array partition.)

Programs that rarely reuse schedules: pfscan and fmm. For instance, pfscan searches a

keyword in a set of files using multiple threads, and for each match, it grabs a lock to increment a
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counter. A schedule computed on one set of files is unlikely to suit another.

3.5 Related Work

Deterministic execution. Existing DMT systems can enforce one schedule for the same input.

However, when the input changes slightly, these systems may choose a completely different schedule.

By reusing schedules, Peregrine mitigates input nondeterminism and makes program behaviors

repeatable across inputs. This method is based on the schedule-memoization idea in our previous

work Tern [Cui et al., 2010], but Peregrine largely eliminates manual annotations, and provides

stronger determinism guarantees than Tern. To our knowledge, no other DMT systems mitigate

input nondeterminism; some actually aggravate it, potentially creating “input-heisenbugs.”

Peregrine and other DMT systems can be complementary: Peregrine can use an existing

DMT algorithm when it runs a program on a new input so that it may compute the same schedules

at different sites; existing DMT systems can speed up their pathological cases using the schedule-

relaxation idea.

Parallel functional languages automatically enjoy the benefits of determinism given its nature

of referential transparency [Halstead, 1985]. However, they provide more restrictive parallel pro-

gramming models than imperative languages we target in this thesis. For example, [Trinder et al.,

1998] introduced the par and pseq operations into Haskell as the basis of constructing parallel

programs. However, these operations are difficult to use because using them requires program-

mers to understand operational properties of the language [Marlow et al., 2011]. [Marlow et al.,

2011] makes writing parallel programs easier by proposing a new programming model that uses I-

structures [Arvind et al., 1989] for communication. However, I-structures are still more restrictive

than process interaction (e.g. shared memory) in imperative languages. For instance, I-structures

can only be written once.

Determinator [Aviram et al., 2010] advocates a new, radical programming model that con-

verts all races, including races on memory and other shared resources, into exceptions, to achieve

pervasive determinism. This programming model is not designed to be backward-compatible.

dOS [Bergan et al., 2010b] provides similar pervasive determinism with backward compatibility,

using a DMT algorithm first proposed in [Devietti et al., 2009] to enforce mem-schedules. While
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Peregrine currently focuses on multithreaded programs, the ideas in Peregrine can be applied

to other shared resources to provide pervasive determinism. Peregrine’s hybrid schedule idea

may help reduce dOS’s overhead. Grace [Berger et al., 2009] makes multithreaded programs with

fork-join parallelism behave like sequential programs. It detects memory access conflicts efficiently

using hardware page protection. Unlike Grace, Peregrine aims to make general multithreaded

programs, not just fork-join programs, repeatable.

Concurrent to our work, DThreads [Liu et al., 2011] is another efficient DMT system. It tracks

memory modifications using hardware page protection and provides a protocol to deterministically

commit these modifications. In contrast to DThreads, Peregrine is software-only and does not

rely on page protection hardware which may be expensive and suffer from false sharing; Peregrine

records and reuses schedules; thus it can handle programs with ad hoc synchronizations [Xiong et

al., 2010] and make program behaviors stable.

Program analysis. Program slicing [Tip, 1995] is a general technique to prune irrelevant state-

ments from a program or trace. Recently, systems researchers have leveraged or invented slicing

techniques to block malicious input [Costa et al., 2007], synthesize executions for better error di-

agnosis [Zamfir and Candea, 2010], infer source code paths from log messages for postmortem

analysis [Yuan et al., 2010], and identify critical inter-thread reads that may lead to concurrency

errors [Zhang et al., 2011]. Our determinism-preserving slicing technique produces a correct trace

slice for multithreaded programs and supports multiple ordered targets. It thus has the potential

to benefit existing systems that use slicing.

Replay and re-execution. Deterministic replay [Guo et al., 2008; Geels et al., 2007; Srinivasan et

al., 2004; Dunlap et al., 2002; Konuru et al., 2000; VMWare Virtual Lab Automation, ; Dunlap et al.,

2008; Park et al., 2009b; Laadan et al., 2010; Altekar and Stoica, 2009; Montesinos et al., 2009] aims

to replay the exact recorded executions, whereas Peregrine “replays” schedules on different inputs.

Some recent deterministic replay systems include Scribe, which tracks page ownership to enforce

deterministic memory access [Laadan et al., 2010]; Capo, which defines a novel software-hardware

interface and a set of abstractions for efficient replay [Montesinos et al., 2009]; PRES and ODR,

which systematically search for a complete execution based on a partial one [Park et al., 2009b;

Altekar and Stoica, 2009]; SMP-ReVirt, which uses page protection for recording the order of

conflicting memory accesses [Dunlap et al., 2008]; and Respec [Lee et al., 2010], which uses online
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replay to keep multiple replicas of a multithreaded program in sync. Several systems [Park et al.,

2009b; Lee et al., 2010] share the same insight as Peregrine: although many programs have races,

these races tend to occur infrequently.

Peregrine can help these systems reduce CPU, disk, or network bandwidth overhead, because

for inputs that hit Peregrine’s schedule cache, these systems do not have to record a schedule.

Retro [Kim et al., 2010] shares some similarity with Peregrine because it also supports “mu-

tated” replay. When repairing a compromised system, Retro can replay legal actions while removing

malicious ones using a novel dependency graph and predicates to detect when changes to an object

need not be propagated further. Peregrine’s determinism-preserving slicing algorithm may be

used to automatically compute these predicates, so that Retro does not have to rely on programmer

annotations.

3.6 Summary

This chapter described how Peregrine collects and enforces schedules. Peregrine records sched-

ules and maps one schedule to multiple inputs by computing its preconditions. This approach of

collecting schedules provides schedule specialization a small set of highly reusable schedule to ana-

lyze.

Leveraging the insight that races are rare, Peregrine combines synchronization orders and

memory access orders into hybrid schedules, and enforces these hybrid schedules for both deter-

minism and efficiency. It uses static instrumentation to schedule synchronizations and uses dynamic

instrumentation to enforce the order between data races.
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Chapter 4

Analyzing a Program with respect to

Schedules

As mentioned in §1.3.2, the goal of our specialization framework is to precisely analyze a program

with respect to a schedule. Intuitively, a schedule restricts the behavior of a program and can make

static analysis easier. For example, if a schedule tells us only two threads are created, schedule

specialization can focus on only the two-thread scenarios and analyze them more extensively for

improved precision.

Although building precise schedule-aware analysis seems promising, achieving this goal faces

one key challenge: there are too many static analysis techniques (“static analyses” for short). How

are we going to improve the precision of all of them? One näıve method of leveraging a schedule is

to manually make every static analyses involved aware of the schedule. However, this method has

two drawbacks:

First, this method would be quite labor intensive and error prone. For instance, Chord [Naik et

al., 2006], a static race detector, uses at least alias analysis, thread-escaping analysis, lock analysis,

and call graph analysis. Modifying each of them to leverage information a schedule provides would

require much manual labor. Moreover, to emit precise analysis results, static analysis algorithms

tend to be complicated; thus, implementing these algorithms is prone to bugs. For instance, a

system we built [Wu et al., 2013] found 29 bugs in the implementations of two very popular alias

analysis algorithms that are not even aware of schedules.
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Second, this method would be fragile. Static analyses depend on each other. If a crucial

analysis is unaware of schedules, its imprecision may easily pollute other analyses. For instance,

escaping analysis requires alias analysis to determine whether a locally-constructed variable can be

accessed by other threads; call graph construction also requires alias analysis to resolve function

pointers. If alias analysis is unaware of schedules, it can easily render escaping analysis and call

graph construction imprecise, and further affect the precision of the tools that use them.

To address this challenge, we build a framework that uses a set of sound and precise algorithms

to specialize a program according to a schedule (§2.2.2). The resultant program thus has simpler

control and data flow than the original program, and can be analyzed with stock analyses for

improved precision. In addition, our framework provides a precise def-use analysis that computes

schedule-aware, must-def-use results on memory locations, which can be the foundation of many

other powerful analyses (§4.4).

The specialization framework dramatically eases the process of making static analyses schedule

aware. Instead of thinking about how to leverage schedules in every static analysis, developers can

simply use our specialization framework to generate a new program and then run stock analyses as

is or with slight modification (leveraging more advanced def-use results) on top of the specialized

program.

The framework can also dramatically improve the precision of static analysis. For instance, it

can easily detect code that is dead with respect to a schedule, so dead-code elimination can further

simplify the control flow of a program. It can also “straighten” loops according to a schedule so

that each synchronization statement is control-equivalent1 to each other, making more variables

computable at compile time. Because the specialized program has simpler control and data flow,

static analyses automatically gain precision without being modified.

Our specialization framework works in two steps: control-flow and data-flow specialization.

One key challenge for traditional static analysis is distinguishing different instances of a static

statement. To mitigate this issue, control-flow specialization rewrites the program to map each

synchronization in the schedule to a unique statement. As a result, each synchronization statement

1Two statements l1 and l2 are control-equivalent if l1 dominates l2 and l2 post-dominates l1 or if l2 dominates l1

and l1 post-dominates l2. Given two control-equivalent statements, an execution runs either both of them or neither

of them.
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in the specialized program corresponds to a unique dynamic instance. Also, two instances of the

same statement that are separated by synchronizations will be mapped to two different statements

in the specialized program.

The key algorithm used in control-flow specialization is graph traversal. For every two con-

secutive synchronizations of a thread, the algorithm traverses the control flow graph to find all

statements between the two synchronizations, and copies these statements to the control-flow spe-

cialized program. This transformation makes all synchronization statements control-equivalent to

each other, and prunes out statements that are guaranteed not executed according to a schedule.

§4.2.1 will describe our control-flow specialization algorithm in more detail.

After control-flow specialization, we specialize the data flow of the program. Analyzing data

flow of multithreaded programs is very challenging, because data can flow across threads. For

instance, data written by one thread can be read by another. Due to this challenge, traditional

data flow analysis is typically very conservative about inter-thread data flow. For example, both

GCC and LLVM consider synchronization statements such as pthread mutex lock to read from

or write to any memory locations, and reuse traditional sequential data flow analysis techniques to

analyze a multithreaded program.

Data-flow specialization addresses this challenge by leveraging the synchronization order indi-

cated by a schedule to more precisely model inter-thread data flow. Because control-flow special-

ization already computes what statements can be executed between every two consecutive synchro-

nization, we can easily compute the happens-before relation between two statements across threads

by analyzing the order of their preceding and succeeding synchronizations.

Our data-flow specialization algorithm consists of a series of constrainted-based analyses lever-

aging the STP [Ganesh and Dill, 2007] integer constraint solver. We collect constraints on both

top-level variables and variables in memory locations. For variables in memory locations, we com-

pute def-use chains with respect to the synchronization order in the schedule, which gives much

more precise results than a stock def-use analysis. §4.2.2 will describe our data-flow specialization

in more detail.

Schedule specialization has broad applications. For instance, we can build precise static verifiers

(e.g., to verify error freedom) because our verifiers need only verify a program with respect to

the schedules enforced. Stock compiler optimizations automatically become more effective on a
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specialized program because it has simpler control and data flow. Schedule specialization can also

benefit “read-only” analyses which do not require enforcing schedules at runtime. For instance, we

can build precise error detectors that check a program against a set of common schedules to detect

errors more likely to occur, while drastically reducing false positive rates. We can perform precise,

automated post-mortem analysis of a failure by analyzing only the schedule recorded in a system

log to trim down possible causes.

We have implemented our framework within the LLVM compiler [LLVM, 2013] and evaluated

it on 17 multithreaded programs, including 2 real programs such as a popular parallel compression

utility PBZip2 [PBZIP2, 2011] and 15 widely used parallel benchmarks from SPLASH2 [SPLASH2,

2007] and PARSEC [PARSEC, 2010]. Our results show that schedule specialization greatly improves

precision. We have built a schedule-aware alias analyzer, a static race detector, and a path slicer.

Our specialization framework, on average, reduced may aliases by 61.9%, false race reports by

69%, and path slices by 48.7%. The improved precision also helped detect 7 unknown bugs in

well-checked [Zhang et al., 2011; Zhang et al., 2010; Park et al., 2009a; Lu et al., 2008; Gao et al.,

2011] programs.

This chapter is organized as follows. We first present the key algorithms using an example

(§5.2.1) and detailed descriptions (§4.2). We then discuss implementation issues (§4.3), describe

the analyses (§4.4) we build on top of our framework, and show the evaluation results (§4.5). We

finally discuss related work (§4.6) and conclude (§4.7).

4.1 An Example and Algorithm Overview

This section illustrates how our specializer operates using an example based on two programs in our

evaluation benchmarks: aget, a parallel wget-like utility; and fft, a parallel scientific benchmark.

Figure 4.1 shows the example program. As can be seen from the code, each thread accesses

a disjoint partition of results. Suppose we want to build a precise alias analysis to compute

this fact, so that we can for example avoid wrongly flagging accesses to results as races for a

static race detector. Unfortunately, doing so requires solving a variety of difficult problems. For

instance, since p, the number of threads, is determined at runtime, static analysis often has to

approximate these dynamic threads as one or two abstract thread instances. It may thus collapse
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1 : int results[MAX];

2 : struct {int first; int last;} ranges[MAX];

3 : int global id = 0;

4 : int main(int argc, char *argv[ ]) {

5 : int i;

6 : int p = atoi(argv[1]), n = atoi(argv[2]);

7 : for (i = 0; i < p; ++i) {

8 : ranges[i].first = n * i / p;

9 : ranges[i].last = n * (i + 1) / p;

10: }

11: for (i = 0; i < p; ++i)

12: pthread create(&child[i], 0, worker, 0);

13: for (i = 0; i < p; ++i)

14: pthread join(child[i], 0);

15: return 0;

16: }

17: void *worker(void *arg) {

18: pthread mutex lock(&global id lock);

19: int my id = global id++;

20: pthread mutex unlock(&global id lock);

21: for (int i = ranges[my id].first; i < ranges[my id].last; ++i)

22: results[i] = compute(i);

23: return 0;

24: }

Figure 4.1: An example showing how schedule specialization works. Variable n and p are two inputs

that specify the size of the global array results and the number of worker threads, respectively.

The code first partitions results evenly by the number of worker threads p and saves the range of

each thread to ranges (lines 7–10); it then starts p worker threads to process the partitions (lines

11–12). Each worker enters a critical section to set its instance of my id and increment global id

(lines 18–20), and then computes and saves the results to its partition (lines 21–22).



CHAPTER 4. ANALYZING A PROGRAM WITH RESPECT TO SCHEDULES 50

Thread 0 Thread 1 Thread 2

program entry

pthread_create
thread entry

pthread_create
thread entry

pthread_lock

pthread_unlock
pthread_lock

pthread_unlock

thread exit
thread exit

pthread_join

pthread_join

program exit

Figure 4.2: A possible schedule of the example in Figure 4.1 when p is 2.

distinct accesses to results from different threads as one access, computing imprecise alias results.

Even if an analysis can (1) distinguish the accesses to results by different threads and (2) infer

bounds on integers such as array indices using range analysis [Rugina and Rinard, 2000], it may

still fail to compute that these accesses are disjoint. The reason is that the array partition each

worker accesses depends on its instance of my id, which further depends on the schedule (or the

order in which worker threads enter the critical section at lines 18–20). In short, if a static analysis

has to consider all possible schedules of this program, it would be very difficult to compute precise

results.

Fortunately, these difficult problems are greatly simplified by schedule specialization. Suppose

whenever p is 2, we always enforce the schedule shown in Figure 4.2. Since the number of threads

is fixed, distinguishing them becomes easy. In addition, since the order in which threads enter

the critical section at lines 18–20 is fixed, each worker thread always gets a fixed my id and thus

accesses a fixed partition of results.

To practically take advantage of these observations, our framework specializes a program with

respect to a schedule. It does so in two steps. In the first step, it specializes the control flow of the

program by “straightening” the program so that each synchronization in the schedule maps to a

unique statement, and the synchronizations within each thread are control-equivalent. Specifically,

it first constructs a super control flow graph (CFG) of the program, which includes function call

and return edges. It then iterates through each pair of consecutive synchronizations (s1, s2) in a
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1 : . . . // same global declarations as in Figure 4.1

2 : int main(int argc, char *argv[ ]) {
3 : int i;

4 : int p = atoi(argv[1]), n = atoi(argv[2]);

5 : for (i = 0; i < p; ++i) {
6 : ranges[i].first = n * i / p;

7 : ranges[i].last = n * (i + 1) / p;

8 : }
9 : i = 0; assume(i < p);

10: pthread create(&child[i], 0, worker CLONE1, 0);

11: ++i; assume(i < p);

12: pthread create(&child[i], 0, worker CLONE2, 0);

13: ++i; assume(i >= p);

14: i = 0; assume(i < p);

15: pthread join(child[i], 0);

16: ++i; assume(i < p);

17: pthread join(child[i], 0);

18: ++i; assume(i >= p);

19: return 0;

20: }
21: void *worker CLONE1(void *arg) {
22: pthread mutex lock(&global id lock);

23: int my id = global id++;

24: pthread mutex unlock(&global id lock);

25: for (int i = ranges[my id].first; i < ranges[my id].last; ++i)

26: results[i] = compute(i);

27: return 0;

28: }
29: void *worker CLONE2(void *arg) {
30: pthread mutex lock(&global id lock);

31: int my id = global id++;

32: pthread mutex unlock(&global id lock);

33: for (int i = ranges[my id].first; i < ranges[my id].last; ++i)

34: results[i] = compute(i);

35: return 0;

36: }

Figure 4.3: The resultant program after control-flow specialization. The loops at lines 11–12 and

lines 13–14 in Figure 4.1 are unrolled because they contain synchronizations in the schedule, while

the other loops are not. Thread function worker is cloned twice, making it easy for an analysis to

distinguish the two worker threads. The algorithm adds special assume calls to pass constraints on

variables to the data-flow specialization step.
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thread, and clones the statements between s1 and s2 in the CFG. Figure 4.3 shows the result after

specializing control flow. Loops containing synchronizations such as pthread create are unrolled,

and thread functions are cloned, making it easy for an analysis to distinguish threads. Note that

such cloning and unrolling are selectively done only to functions that may do synchronizations, so

they would not explode the size of a specialized program.

In the second step, our framework specializes the data flow through a series of analyses. For

instance, it constructs an advanced def-use graph for variables and memory locations according

to the schedule, and replaces variables with constant values when it can. It does these analyses

by collecting constraints from the program and querying a constraint solver. For instance, from

lines 9, 11, and 13 in Figure 4.3, it infers that p must be 2, so it replaces p with 2. Similarly, it

computes a precise def-use chain for the accesses to global id, and infers that each my id instance

has a constant value. Once variables are replaced with constants, we can apply techniques such

as constant folding, dead code elimination, and loop unrolling to further specialize the program.

Moreover, these stock techniques and our analyses can run iteratively, until the program cannot be

specialized any more. Figure 4.4 shows the result of specializing data flow.

Benefits of schedule specialization. The specialized program in Figure 4.4 has much simpler

control and data flow than the original program in Figure 4.1, enabling stock analyses to compute

more precise results. For instance, range analysis can now compute thread-sensitive results because

the worker function is cloned; it can also compute precise bounds for the loop index i in the worker

clones because the indice to ranges are now constant, not my id which can have a large range if

no schedule is enforced.

Our framework guarantees that static analysis results on Figure 4.4 hold for the set of all

traces with the schedule in Figure 4.2 enforced. This set is fairly large because this schedule can be

enforced as long as the number of threads p is 2, regardless of the data size n or the contents of other

input data. A small set of such schedules, including one for each number of threads, can practically

cover all inputs because (1) most parallel programs we evaluate achieve peak performance when

the number of worker threads is identical or close to the number of processor cores and (2) the

number of cores a machine has is typically small (e.g., smaller than 100). This example illustrates

the best case of our approach: by analyzing only a small set of schedules, we enjoy both precision

and soundness for practically all inputs.
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. . . // same global declarations as in Figure 4.1

int main(int argc, char *argv[ ]) {
int p = atoi(argv[1]), n = atoi(argv[2]);

ranges[0].first = 0;

ranges[0].last = n / 2;

ranges[1].first = n / 2;

ranges[1].last = n;

pthread create(&child[0], 0, worker CLONE1, 0);

pthread create(&child[1], 0, worker CLONE2, 0);

pthread join(child[0], 0);

pthread join(child[1], 0);

return 0;

}
void *worker CLONE1(void *arg) {

pthread mutex lock(&global id lock);

global id = 1;

pthread mutex unlock(&global id lock);

for (int i = 0; i < ranges[0].last; ++i)

results[i] = compute(i);

return 0;

}
void *worker CLONE2(void *arg) {

pthread mutex lock(&global id lock);

global id = 2;

pthread mutex unlock(&global id lock);

for (int i = ranges[1].first; i < ranges[1].last; ++i)

results[i] = compute(i);

return 0;

}

Figure 4.4: The resultant program after data-flow specialization. All uses of variable p and my id

are replaced with constants, the loop at lines 5–8 in Figure 4.3 is unrolled, and some dead code is

removed.
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(a) Intra-procedural ambiguity
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caller
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(b) Inter-procedural ambiguity

Figure 4.5: Two types of ambiguity. The black nodes are synchronizations. The hatched nodes are

the statements between s1 and s2 computed by the reachability analysis. The gray “call” node is

a derived synchronization marked to resolve inter-procedural ambiguity.

4.2 Algorithms

This section first describes our algorithms to specialize the control flow (§4.2.1) and data flow

(§4.2.2) of a program toward a schedule, and then discusses the soundness of these specialization

algorithms (§4.2.3).

4.2.1 Specializing Control Flow

To ease the description of our algorithms, we define a segment, denoted by G, as the maximal

portion of the CFG between two synchronization statements l1 and l2 that is free of other syn-

chronization statements. A segment between l1 and l2 includes any statement such that (1) l1 can

reach this statement in the CFG without reaching any other synchronization statements and (2)

this statement can reach l2 without reaching any other synchronization statements. We denote the

set of statements in G by G.L, and the set of control-flow edges in G by G.E.

To specialize the control flow, we clone the segment between every two consecutive synchroniza-

tions within a thread, and then join all cloned segments together to form the specialized program.

Since we recognize entries and exits of thread functions as synchronizations, every instruction is

included in at least one segment. One difficulty to find all statements between two consecutive

synchronizations is ambiguity : there may be multiple ways from one synchronization to another.

For instance, Figure 4.5a shows an ambiguous case caused by multiple paths in the CFG. The loop
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body shown has two paths, only one of which contains synchronization s2. This loop has to be

transformed so that s1 and s2 become control-equivalent. Our algorithm to specialize control flow

automatically handles this case, described later in this subsection.

Figure 4.5b shows another ambiguous case caused by multiple paths in the call graph. From

s1 to s2, we can go through either call. To resolve inter-procedural ambiguity, we instrument calls

to functions that may transitively do synchronizations, and include these derived synchronizations

in the schedule as well. The result is that we can compute exactly one call stack for each synchro-

nization in a schedule. Our evaluation shows that the number of derived synchronizations is small,

and they incur negligible overhead (§4.5.2).

Algorithm 1 shows how we specialize the control flow of a program. We first explain the helper

function SpecializeControlFlowThread, which takes the original program P , a schedule S, and

a thread t, and outputs a subprogram P ′t specialized according to t’s synchronizations in S. For

every two consecutive synchronizations of t, this function does a forward and a backward depth-first

search to find the segment between the two synchronizations. It then clones the segment, copying

and renaming functions as necessary, and appends the segment clone to P ′t .

Function DFS traverses the CFG from statement l1 to l2 and saves the visited portion of the CFG

to output parameter Gout. It backtracks whenever it meets a synchronization. During the traversal,

it maintains the current call stack in cs so that it can compute where to return (lret). When it

reaches l2, it saves the call stack to output parameter csout, which SpecializeControlFlowThread

will pass to BackwardDFS (in the same iteration) and DFS (in the next iteration). If there are

multiple paths from l1 to l2, DFS may reach l2 multiple times in one traversal, but each time the

call stack must always be identical because call-stack ambiguity is resolved.

The results of DFS may include statements and CFG edges that cannot reach si+1.label. BackwardDFS

prunes these statements and edges by traversing G, not the full CFG, backward from si+1.label to

si.label. It is similar to DFS except it is backward and need not output a call stack, so we omit it

from Algorithm 1.

We now explain the main function of this algorithm, SpecializeControlFlow. It first invokes

SpecializeControlFlowThread to compute a specialized program based on the synchronizations

of each thread. It then replaces the thread function in each pthread create callsite with the cloned

thread function. It finally merges all the specialized programs together.
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Algorithm 1: Control-Flow Specialization

Input : the original program P and a schedule S

Output: the specialized program

SpecializeControlFlow(P , S)

foreach thread t in S do

P ′t ← SpecializeControlFlowThread(P , S, t)

foreach P ′t do

foreach statement l in P ′t do

if l is a pthread create then

ct ← child thread created by l

set thread function of l to P ′ct

return ∪tP ′t
SpecializeControlFlowThread(P , S, t)

P ′t ← ∅ // the specialized subprogram for thread t

cs ← ∅ // the call stack of the current synchronization

St ← the sub-schedule of S for thread t

for (si, si+1) in St do

G ← ({si.label}, ∅) // segment between si & si+1

// G and the second cs below are output parameters.

DFS(cs, si.label, si+1.label, cs, G)

BackwardDFS(cs, si+1.label, si.label, G)

P ′t ← P ′t ∪ Clone(G)

return P ′t

DFS(cs, l1, l2, csout, Gout) // l1 and l2 may be the same

if l1 is a derived synchronization then

l ← entry of l1’s callee function // all possible callees of a function pointer

TryDFS(cs + l1, l1, l, l2, csout, Gout)

else if l1 is a return statement then

lret ← the top of cs

l ← lret’s intra-procedural successor

TryDFS(cs - lret, l1, l, l2, csout, Gout)

else

foreach intra-procedural successor l of l1 do

TryDFS(cs, l1, l, l2, csout, Gout)

TryDFS(cs, l1, l, l2, csout, Gout)

Gout.E ← Gout.E ∪ {(l1, l)}
if l = l2 then

csout ← cs

if l /∈ Gout.L then

Gout.L ← Gout.L ∪ {l}
if l is not a synchronization then

DFS(cs, l, l2, csout, Gout)
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Figure 4.6: The specialized CFG of Fig-

ure 4.5a with schedule 〈t, s1〉〈t, s2〉〈t, s3〉.

The dashed arrows and shapes represent re-

moved branches and code.

Figure 4.7: Example illustrating the need to

traverse CFG edges.

Discussion. We note three subtleties of Algorithm 1. First, it automatically handles the ambiguity

in Figure 4.5a. Suppose the schedule is 〈t, s1〉〈t, s2〉〈t, s3〉. We do not know the loop bound because

one path in the loop body calls s2 and the other does not. However, our algorithm can still

specialize the CFG into Figure 4.6. Since control-flow specialization removes dead code according

to a schedule, we use dashed arrows and shapes to denote removed branches and code. This feature

is critical in some cases. For example, if s2 is pthread create, this feature clones the thread

functions, providing thread-sensitivity.

Second, DFS traverses into the body of a function only when the call to this function is a derived

synchronization, i.e., this function may transitively do synchronization. Thus, the Gout it computes

includes only CFG portions from such functions, and is not a full segment. The effect is that only

these CFG portions are cloned, possibly multiple times, and each clone is unique to a segment in

the resultant program; other functions are copied verbatim to the resultant program. By doing so,

we capture the information from the schedule without exploding the size of a specialized program.

Lastly, to compute a segment, we cannot simply compute only the statements in the segment

and copy all edges from the original CFG. To illustrate, consider Figure 4.7. Suppose the schedule

is s1s2s3. The segment between s1 and s2 should include statements s1, s2, and l, but exclude the

CFG edge from s2 to l.
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Instruction type LLVM instruction STP constraint Note

binary a = b op c a = b op c “op” is a binary oper-

ator

integer comparison a = icmp pred, b, c a = (b pred c) “pred” is an integer

comparison predicate

such as < and 6=

pointer arithmetic a = gep b, i1, . . ., ik a = b + i1× sizeof(*b)

+ the offset of ik-th

field of ik−1-th field of

. . . of i2-th field of b

“gep” calculates the

location of a spe-

cific field in an ar-

ray/structure

select instruction a = select b, v1, v2 b = 0→ a = v1

b = 1→ a = v2

If b = 0, a = v1; oth-

erwise a = v2

Φ instruction a = Φ(v1, . . ., vk) a = v1 or . . . or a =

vk

a may have any in-

coming value

call and return a = func(b1, . . . , bk)

func(f1, . . . , fk)

{return r;}

b1 = f1, . . . , bk = fk

a = r

Capture the equali-

ties between the ac-

tual and formal pa-

rameters/return val-

ues

Table 4.1: Collecting constraints from LLVM instructions on virtual registers.
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4.2.2 Specializing Data Flow

Given a control-flow-specialized program, we specialize its data flow using a series of constraint-

based analyses leveraging the STP [Ganesh and Dill, 2007] integer constraint solver. We collect

constraints on two types of program constructs: the LLVM virtual registers and memory locations.

LLVM virtual registers are already in static-single-assignment (SSA) form, so collecting constraints

on them is relatively straightforward. Table 4.1 lists how we collect constraints for some LLVM

instructions; the remaining instructions are similar and omitted for space. We handle loops by

exploiting LLVM’s loop structure: most of the loops in our evaluated programs are canonicalized

by LLVM so that we can easily collect range constraints on the loop indices.

Our algorithm to collect constraints on memory locations mimics classic def-use analysis. We

treat an LLVM load instruction as a “use” and an LLVM load or store instruction as a “def”.

Treating loads as defs shortens the def-use chains and reduces analysis time. Our algorithm collects

two forms of constraints on memory locations: (1) the value loaded by an LLVM load instruction

is the same as the value stored by a store instruction and (2) the value loaded by a load is the same

as the value loaded by another load.

Collecting precise def-use constraints on memory locations is challenging for multithreaded

programs. Fortunately, schedule specialization enables two key refinements over classic def-use

analysis so that our algorithm can collect more precise constraints. First, we compute def-use

chains spanning across threads because multiple threads may indeed access the same shared memory

location. Without schedule specialization, it would be hopeless to track precise inter-thread def-use

chains because the defs and uses may pair up in numerous ways depending on the schedules.

Second, we compute must-def-use, instead of may-def-use, results. Our insight is that by fixing

the schedule, we often fix the def-use chains of key shared data, such as the global id in Figure 4.1.

It is thus most cost-effective to focus on these must-def-use chains because (1) they essentially

capture the information (and hence the precision; see results in §4.5.1) from the schedule and

(2) there are typically much fewer must-def-use constraints than may-def-use constraints, so the

constraint-solving cost is low.

To practically implement these refinements, we compute def-use chains only on the instructions

unique to each segment. In addition, we look for defs of a use only from its inter-thread dominators

which always execute before the use once the schedule is enforced. These dominators are dominators
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on the CFG augmented with edges representing the total order of synchronizations in a schedule.

We explain our algorithm as well as these refinements in the next few paragraphs.

Algorithm 2 shows the pseudo code to collect def-use constraints for memory locations given

a schedule. It operates on a control-flow specialized program with each synchronization in the

schedule mapped to a unique instruction. At the top level, the algorithm is similar to classic def-

use analysis. Given a use, it computes all defs and adds an equality constraints between the use

and each def. It references several symbols defined on the instructions and segments (§4.2.1) in this

program:

• value(l): the value loaded if l is a load instruction, or the value stored if l is a store;

• loc(l): the memory location accessed by instruction l;

• segment(l): the unique (explained in the next paragraph) segment containing instruction l, or

None;

• thread(G): the thread containing segment G;

• begin(G): the synchronization at the beginning of segment G;

• end(G): the synchronization at the end of segment G;

• reach(l1, l2): the set of instructions on all simple paths from l1 to l2 in the CFG. A simple path

has no repeated instructions.

Each segment has some unique instructions cloned by Algorithm 1; segment(l) returns the

containing segment for these instructions, or None otherwise. We define a partial order over these

instructions as follows: l1 happens-before l2, or l1 ≺ l2, if (1) both l1 and l2 are synchronizations,

and l1 comes earlier than l2 in the schedule; (2) segment(l1) = segment(l2), and l1 comes earlier

in the segment; or (3) ∃l3, s.t. l1 ≺ l3 and l3 ≺ l2. We say G1 ≺ G2 if end(G1) ≺ begin(G2). Two

instructions (segments) are concurrent if there is no happens-before between them.

CaptureConstraints takes a use u, calls PotentialDefs to get a set of potential defs, and, for

each live def not killed, adds an equality constraint between the value used and the live def.

PotentialDefs illustrates how we implement the refinements enabled by schedule specializa-

tion. It processes a use u only if segment(u) is not None, i.e., u is unique to a segment. It searches

for defs only in the instructions unique to each segment. To account for shared data access, it

searches each thread td for a def of u. If td is the thread containing u, we search backwards from u

for the latest dominator in CFG that accesses the same location. Otherwise, we search backwards
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Algorithm 2: Capture Constraints on Memory Locations

CaptureConstraints(u)

foreach d ∈ PotentialDefs(u) do

if not MayBeKilled(d, u) then

AddConstraint(“value(u) = value(d)”)

PotentialDefs(u)

defs ← ∅
Gu ← segment(u)

p ← loc(u)

if Gu 6= None then

foreach thread td do

if thread(Gu) = td then

defs ← defs ∪ LatestDef(u, p)

else

Gd ← latest segment of td s.t. Gd ≺ Gu

defs ← defs ∪ LatestDef(end(Gd), p)

return defs

LatestDef(l, p) // returns the latest intra-thread definition

d ← l

repeat
d ← ImmediateDominator(d);

until d = None or MustAlias(p, loc(d))

if d 6= None then return {d}
else return ∅

MayBeKilled(d, u)

Gd ← segment(d)

Gu ← segment(u)

if Gd = Gu then

return MayStore(reach(d, u), u)

foreach segment G s.t. begin(G) ≺ end(Gu) and begin(Gd) ≺ end(G) and G 6= Gd and

G 6= Gu do

if MayStore(G, u) then return true

return MayStore(reach(d, end(Gd)), u) or MayStore(reach(begin(Gu), u), u)

MayStore(L, u)

foreach store l ∈ L do

if MayAlias(loc(l), loc(u)) then return true

return false
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from the latest synchronization s in td that happens-before u, and locate the latest dominator of s

in CFG that accesses the same location. This dominator of s is essentially an inter-thread domi-

nator of u. The result of PotentialDefs contains at most one def from each thread. In addition,

it contains at most one store and possibly many loads (because we treat loads as defs).

Function MayBeKilled checks whether def d is killed by any instruction that may store to

loc(u) and execute after d and before u. It considers all instructions, not just the unique ones,

for soundness. If d and u are in the same segment, MayBeKilled simply checks the instructions

between d and u in the CFG. Otherwise, it checks instructions in any segment that may (1) begin

no later than the end of u’s segment Gu and (2) end no earlier than the begin of d’s segment Gd.

Note that these segments include not only the ones concurrent to Gu or Gd, but also any segment

G s.t. Gd ≺ G ≺ Gu.

The above algorithm to collect constraints on memory locations needs alias analysis to determine

whether two pointers must or may alias. We answer these queries again using STP. The question

“whether v1 and v2 may alias” is rephrased as “whether v1 = v2 is satisfiable,” and “whether v1

and v2 must alias” is rephrased as “whether v1 = v2 is provable.” Since constraint solving may

take time, we also ported bddbddb [Whaley and Lam, 2004], a faster but less precise alias analysis

to our framework, by writing an LLVM front end to collect program facts into the format bddbddb

expects. We always query bddbddb first before STP.

Once constraints are captured, we perform a series of analyses based on these constraints.

One analysis infers which LLVM virtual register in the specialized program has constant values

(recall that these registers are in SSA form). It first queries STP for an assignment of value vj

to each variable aj . For each aj , it then adds aj = vj to the current constraints, and checks

whether STP can prove the new constraints. If so, it replaces aj with vj , such as replacing variable

p in Figure 4.1 with constant 2. Once variables are replaced with constants, we perform stock

LLVM analyses and transformations, such as constant folding, control flow simplification, and loop

unrolling, which automatically gain precision when performed on a specialized program. These

analyses may further simplify a program, so we iteratively run data-flow specialization and these

stock analyses until the specialized program converges.
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4.2.3 Soundness of Specialization Algorithms

As mentioned in §2.2.2, our specialization framework should guarantee that run(PS) ⊇ runS(P ) so

that static analysis results on PS hold for all traces in runS(P ). In this subsection, we prove that

both control-flow and data-flow specialization preserve all traces in runS(P ), i.e., every execution

of P that is compatible with S is a valid execution in both control-flow and data-flow specialized

programs.

4.2.3.1 Soundness of Control-Flow Specialization

To prove the soundness of control-flow specialization, we show that our control-flow specialization

algorithm maps each trace in the original program to a trace in the control-flow specialized program,

and that this new trace satisfies both order constraints and control-flow integrity.

Our algorithm maps each dynamic statement instance to a unique instance in the new trace.

Given an instance i between two synchronizations sj and sj+1, the corresponding new instance is

constructed as follows:

• Function SpecializeControlFlow creates a dedicated thread function for each thread in the

original trace, and links it off the pthread create that spawns the thread function. Therefore,

i.thread is naturally mapped to the thread that invokes the cloned thread function.

• Since the original trace satisfies control-flow integrity and i.label is on at least one path from sj

to sj+1, the segment between sj and sj+1 contains i.label. Therefore, SpecializeControFlowThread

clones all the statements in the segment including i.label, and maps i.label to an instance in

the specialized program.

To construct the new trace, we concatenate the new instances in the same order as their originals,

ensuring that the new trace still satisfies the order constraints (§2.1). We denote the cloned instance

of i by clone(i). Because we preserve the order between instances, for each instance pair ij and ik

where j < k, clone(ij) still appears before clone(ik) in the new trace.

The new trace satisfies control-flow integrity because our algorithm clones all the control-flow

edges in each segment. Given two consecutive instances i1 and i2 from the same thread, edge

(i1.label, i2.label) is guaranteed to be a CFG edge per control-flow integrity. Therefore, when

cloning the segment that contains i1 and i2, function SpecializeControlFlowThread clones edge
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(i1.label, i2.label) to (clone(i1).label, clone(i2).label). The existence of these cloned edges guaran-

tees that the new trace follows a CFG path in the specialized program.

4.2.3.2 Soundness of Data-Flow Specialization

As described in §4.2.2, our data-flow specialization consists of a schedule-aware data flow analysis

and a set of stock transformations to further simplify the specialized program. To prove the

soundness of data-flow specialization, we need to show that (1) the results of our schedule-aware

data flow analysis are sound with respect to the analyzed schedule, and (2) the simplification

preserves all executions that are compatible with the analyzed schedule.

Our schedule-aware data flow analysis constructs a def-use chain from d to u only when it

can prove the value loaded/stored by d is definitely loaded by u in all executions of the control-

flow specialized program that are compatible with the schedule. This property is guaranteed by

function PotentialDefs and MayBeKilled. Given use u, PotentialDefs treats memory access d

as a potential def only if d ≺ u and loc(d) and loc(u) must alias. Function MayBeKilled further

screens the potential defs by checking whether another statement that may overwrite the same

memory location can be executed between d and u.

When performing stock transformations to further simplify a program, we need to guarantee

that the simplification preserves all executions that are compatible with the analyzed schedule. To

meet this requirement, we cannot run arbitrary optimization passes in this step. For instance, dead

store elimination may lose important traces for the purpose of data race detection. Dead store

elimination typically assumes data race freedom. If the value stored by an instruction is not later

used by that thread, dead store elimination may eliminate that store even though this store may

race with a concurrent memory access. As a result, our race detector may falsely conclude that the

program is free of data races.

By default, we only run a selective set of transformations that do not remove memory accesses

that may be executed, such as constant folding, control flow simplification, and loop unrolling.

Running these transformations is sound for the purposes of our three applications (§4.4): alias

analysis, race detection, and path slicing. Users may customize the transformations they want to

run. For instance, they can refine stock compiler optimizations to remove the assumption of data

race freedom, and use them to simplify the program for detecting data races. Also, if users want
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to use schedule specialization for better optimization, they may assume data race freedom and run

more aggressive transformations, such as SROA (Scalar Replacement of Aggregates) and dead code

elimination.

4.3 Implementation

We implement our framework within LLVM [LLVM, 2013]. The specialization algorithms described

in the previous section are implemented as an LLVM pass that specializes the LLVM bitcode

representation of an original program into a new bitcode program. These passes are of 11,754

lines of C/C++ code, with 2,586 lines for control-flow specialization and 9,168 lines for data-flow

specialization. The remainder of this section discusses several implementation issues.

4.3.1 Constructing Call Graph

For clarity, Algorithm 1 assumes a simple call graph where each function call has a unique callee and

unique return address. However, the programs we analyze do use function pointers and exceptions,

invalidating this assumption. To resolve a call to a function pointer, we query our alias analysis

and call TryDFS on each possible callee. To handle exceptions, we pair up the LLVM instruction

that unwinds the stack (UnwindInst) with the call instruction that sets an exception handler

(InvokeInst).

4.3.2 Optimizing Constraint Solving

Data-flow specialization (§4.2.2) frequently queries STP, and these queries can be quite expensive.

We thus create four optimizations to speed up constraint solving. First, when identifying which

variables are constants, we avoid querying STP for each variable. Specifically, when we query

STP to prove that a variable is constant, we remember the value assignment STP returns even if

STP cannot prove the query. If a variable has two different values in these assignments, then this

variable cannot be constant, so we do not need to query STP whether this variable is constant.

This optimization alone speeds up our framework by over 10 times.

Second, we cache extensively. Recall that data-flow specialization runs Algorithm 2 and other

analyses iteratively. Within each iteration, we cache all alias results to avoid redundantly querying
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STP. Across iterations, we cache “must” and “must-not” alias results and the def-use results because

each iteration only adds more constraints and does not invalidate these precise results.

Third, we use a union-find algorithm to speed up equality constraints solving. The def-use

constraints we collect are all equality constraints. When the number of STP variables involved in

these constraints increases, the STP queries tend to run slower. To reduce the number of STP

variables, we put program variables that must be equal in one equivalent class represented by a

union-find data structure, and assign only one STP variable to each class.

Lastly, we parallelize constraint solving. The STP queries issued by our framework are mostly

independent. Specifically, each run of Algorithm 2 on a use is completely independent of another.

In addition, checking whether one variable is constant is often independent of checking another.

We have built a parallel version of STP that speeds up our framework by roughly 3x when running

on a quad-core machine.

4.3.3 Manual Annotations

Our framework supports three types of annotations to increase precision and reduce analysis time.

First, users can provide a blacklist of synchronization statements to customize which synchroniza-

tions go into the schedules (§2.2.3.3). Second, users can write regular assertions to enable our

framework to collect more precise constraints. For instance, they can write “assert(lower bound

<= index && index <= upper bound)” to inform our framework the range constraints on index.

Third, users can provide function summaries to reduce analysis time. Some functions in the eval-

uated programs are quite complex and contain many load and store instructions, causing our

framework to collect a large set of constraints. However, these functions often have simple shared

memory access patterns which users can easily summarize to speed up constraint solving. These

summaries can be quite coarse-grained, such as “function foo writes an unconstrained value to vari-

able x.” Users write summaries by writing fake functions, which our framework analyzes instead

of the original functions. By supporting annotations in forms of assertions and fake functions, we

avoid the need to support an annotation language.

Of the 17 programs evaluated, we annotated only 4 programs. We blacklisted the lock operations

in the custom memory allocator in cholesky. We annotated two loops in raytrace with assertions

because they are not in LLVM-canonical form. (Currently our framework handles only canonical
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loops.) We summarized five functions: image segment and image extract helper in ferret,

TraverseBVH with StandardMesh and

TraverseBVH with DirectMesh in raytrace, and LogLikelihood in bodytrack. These summaries

range from 8 to 18 lines.

4.4 Applications

To demonstrate the precision of our framework, we build three powerful analyses. The first is a

precise schedule-aware alias analyzer, built on top of our def-use analysis (§4.2.2). We chose to build

an alias analyzer because alias analysis is crucial to many program analyses and optimizations. Our

analyzer provides a standard MayAlias(p, q) query interface, making it effortless to switch existing

analyses to our our alias analyzer. Under the hood, MayAlias first queries a coarse-grained, existing

alias analysis; if this coarse-grained analysis returns true, MayAlias then queries our def-use analysis

for precise answers. The existing alias analysis we used is the C version2 of bddbddb ported to

LLVM.

The second tool is a precise static race detector that detects races that may occur only when a

schedule is enforced. The detection logic appears identical to classic static race detectors (such as

Chord [Naik et al., 2006] and RacerX [Engler and Ashcraft, 2003]) based on the lockset algorithm:

two memory accesses are a race if (1) they may alias, (2) at least one of the accesses is a store,

and (3) they are concurrent. There are two key differences. First, ours uses schedule-aware alias

analysis. Second, ours detects concurrent accesses with respect to a total synchronization order

(§4.2.2), more stringent than the execution order constraints dictated by the synchronizations.

These two differences enable our detector to emit no or extremely few false positives (§4.5.1).

Multiple races flagged on a specialized program may map to the same race in the original program

because control-flow specialization clones statements. Our race detector emits only one report in

this case.

The third tool is a thread-sensitive path slicer. Intuitively, given a program path, path slic-

ing removes from the path the statements irrelevant to reach a given target statement [Jhala and

2The alias analysis we use makes several assumptions about the C programs it analyzes for soundness; these

assumptions are described in [Avots et al., 2005].
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Majumdar, 2005]. The algorithm for doing so tracks control- and data-dependencies between state-

ments, and removes statements that the target does not control- or data-depend upon. As previous

work describes, path slicing can be applied to many problems, such as post-mortem analysis [Jhala

and Majumdar, 2005], counter-example generation [Jhala and Majumdar, 2005], and malicious-

input filtering [Costa et al., 2007]. Our path slicer improves upon existing path slicing work [Jhala

and Majumdar, 2005] by tracking dependencies across threads. Dependencies may arise across

threads due to data or control flow. For example, if thread t0 stores to pointer p, and t1 then loads

from q which may alias p, then the load in t1 data-depends on the store in t0. Similarly, if different

branches of a branch statement in t0 may cause t1 to load different values from a shared variable,

then the load in t1 control-depends on the branch statement in t0. Our path slicer correctly tracks

these dependencies by leveraging our precise alias analyzer. Another feature of our path slicer is

that it can slice toward multiple targets.

4.5 Evaluation

We evaluated our schedule specialization framework on a diverse set of 17 programs, including

PBZip2 1.1.5, a parallel compression utility; aget 0.4.1, a parallel wget-like utility; parallel imple-

mentations of 15 computation-intensive algorithms, 8 in SPLASH2 and 7 in PARSEC. We excluded

4 programs from SPLASH2 and 6 from PARSEC because we cannot compile them down to LLVM

bitcode code, they use OpenMP [Board, 2008] instead of Pthreads [The Open Group and the IEEE,

2008], data-flow specialization runs out of time on them, the compiled code does not run correctly

in 64-bit environment, or our current prototype cannot handle them due to an implementation bug.

All of the programs were widely used in previous studies [Zhang et al., 2011; Zhang et al., 2010;

Park et al., 2009a; Lu et al., 2008; Gao et al., 2011].

We generated schedules for the programs evaluated using the following workloads: for SPLASH2

programs, we used the default arguments except that we ran them with four threads. These

programs finish within 100 ms. For PBZip2, we compressed a 10 MB randomly generated text file.

For aget, we downloaded a file of 1 MB from the internet. The machine is a 2.8GHz Intel 12-core

machine with 64 GB memory running 64-bit Linux 2.6.38. Running a program on one workload

and one setting may still generate multiple schedules. For the precision evaluation, we pick the one
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that appears most frequently. Unless otherwise specified, we ran all programs using four threads.

We compiled all programs using Clang and LLVM 2.9 with the default optimization level (often

-O2 or -O3) of each program.

In the remainder of this section, we first focus on two evaluation questions: (1) how much more

precise the analyses become with schedule specialization (§4.5.1); and (2) what the overhead of

our framework is (§4.5.2). We then present the bugs we detected with the precision provided by

schedule specialization (§4.5.3).

4.5.1 Precision

We measured how our framework can improve the precision on the three analyses we built, the

alias analyzer, the race detector, and the path slicer (§4.4). Our methodology is to apply these

analyses on an original program, the control-flow specialized program, and the data-flow specialized

program, and then compare the results.

Alias analysis precision. We quantified alias analysis precision by measuring alias percentage,

the percentage of alias queries that return “may”, instead of “must” and “must-not”, responses

because the latter two responses are precise. We selected the two pointers in each query from

different threads to stress-test our alias analyzer because these pointers may appear to point to

the same global array or the “same” thread-private heap or stack location, but are actually not

aliases because most programs we evaluated access distinct memory locations in different threads.

The total number of such queries can be large for programs that do many memory accesses, so

we sampled some percentage of the queries to bound the total query time. The sampling ratio

for aget, PBZip2 and fft is 1
50 ; for water-spatial, 1

5000 ; and for barnes, water-nsquared, and

ocean, 1
50000 . For all other programs, we processed all queries.

Figure 4.8 shows the alias precision results. For 12 programs (aget, PBZip2, fft, lu-contig,

radix, blackscholes, swaptions, streamcluster, canneal, bodytrack, ferret, and raytrace),

control-flow and data-flow specialization combined greatly improved precision. For instance, they

reduced the alias percentage down to below 0.1% for aget. For 7 (PBZip2, fft, swaptions,

streamcluster, canneal, bodytrack, and raytrace) of these 12 programs, control-flow specializa-

tion improved the alias analysis precision significantly. For instance, it reduced the alias percentage

of PBZip2 from 28.04% to 8.30%, a 70.4% reduction. The reason is that these programs allocate a
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Figure 4.8: Precision of the schedule-aware alias analysis. Y axis represents the percentage of alias

queries that return “may” responses. Lower bars mean more precise results. Each cluster in the

figure corresponds to the results from one program. The three columns in a cluster represent the

alias percentage when applying our analysis on the original program, the control-flow specialized

program, and the data-flow specialized program.
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Figure 4.9: Path slicing ratio on the original program, after control-flow specialization, and after

data-flow specialization.

fair amount of thread-private heap or stack data. Since the control-flow specialization clones thread

functions and thus automatically provides thread sensitivity, our alias analyzer distinguishes ac-

cesses from different threads, achieving high precision. Although control-flow specialization alone

did not significantly improve precision for the other 6 programs (aget, PBZip2, lu-contig, radix,

blackscholes, and ferret) of the 12 programs, it created opportunities for data-flow special-

ization to improve precision. For the remaining 5 programs (cholesky, barnes, water-spatial,

water-nsquared, and ocean), the reduction was not significant. This small reduction could be

caused by the imprecision in our analyzer (e.g., it is not path-sensitive), or real bugs in the original

programs (§4.5.3). The mean reduction over all programs is 61.9%.

Race detection precision. We report the precision of our race detector here, and describe the

detected bugs in §4.5.3. To evaluate its precision, we compared the number of false positives it

emitted to a baseline race detector we built. This baseline detector uses the same definition of

concurrent accesses (§4.4), except that it queries our bddbddb port instead of our alias analysis

because our precise alias results can only be computed assuming a given schedule will be enforced.

Since the total number of concurrent memory access pairs may be large, we used sampling for some
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benchmarks. The sampling ratio was 1
50 for PBZip2, fft, barnes, water-spatial, and ocean; and

1
5000 for water-nsquared. For all other programs, we checked all concurrent access pairs.

We counted the number of false positives for our detector, denoted by FPours, by inspecting its

reports. Since the number of reports for barnes, water-spatial, water-nsquared, and ocean is

large, we inspected a random selection of 20 reports, and found that they were all false positives.

We thus conservatively treated all reports from these programs as false positives. We counted the

number of false positives for the baseline detector, denoted by FPbaseline, by computing Rbaseline−

Rours +FPours where R is the number of reports. This formula works because our detector is more

precise than the baseline detector, and a report flagged only by the baseline detector must be a

false positive.

Table 4.2 shows the false positive comparison results for all 17 programs. For 10 of them,

the precision of framework enabled our detector to reduce the number of false positives to 0.

The reduction for cholesky and radix is also large. For lu-contig, barnes, water-nsquared,

water-spatial, and ocean, our race detector reported slightly fewer races than the baseline; some

of these results are expected based on our alias precision results. The mean reduction over all

programs is 69.0%.

Table 4.2 also shows the number of true but benign races detected. (We present the harmful

races in §4.5.3.) Our detector found 1 race on variable bwritten in aget and 32 races on variable

AllDone, NumBlocks, and OutputBuffer in PBZip2. Without the precision of our framework, users

may have to inspect hundreds of reports before finding the true races.

Path slicer precision. To quantify the precision of our path slicer, we measured slicing ra-

tio, the percentage of statements that remain in an execution trace. Figure 4.9 compares the

precision of path slicing on the original programs and the specialized programs.3 Control-flow

specialization largely reduced the slicing ratio for PBZip2, aget, swaptions, water-spatial, and

water-nsquared. For instance, it reduced the slicing ratio for PBZip2 from 43.84% to 4.40%,

a 89.97% reduction. Data-flow specialization further reduced the ratio for PBZip2, swaptions,

blackscholes, streamcluster, fft, lu-contig and radix. For instance, it reduced the slicing

ratio for fft from 64.25% to 8.95%, a 86.08% reduction. The ratio reduction for cholesky, barnes,

and ocean was relatively small because our alias analysis sometimes reports may-alias for pointers

3We obtained the slicing results from an earlier prototype of our framework.
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Program FPours FPbaseline Races

aget 0 72 1

PBZip2 0 125 32

fft 0 96 0

lu-contig 18 18 0

cholesky 7 31 0

radix 14 53 0

barnes ∗ 369 370 n/a

water-spatial ∗ 1799 2447 n/a

water-nsquared ∗ 333 354 n/a

ocean ∗ 292 331 n/a

blackscholes 0 3 0

swaptions 0 165 0

streamcluster 0 4 0

canneal 0 21 0

bodytrack 0 4 0

ferret 0 6 0

raytrace 0 215 0

Table 4.2: Precision of the race detector. FPours and FPbaseline show the number of false positives

for our detector and the baseline, respectively. Races show the true races detected. The four

starred programs have a larger number of reports, so we conservatively treated most reports as

false positives.
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Figure 4.10: True vs. derived synchronizations in schedules.

accessed in different threads, causing more instructions than necessary to be included in the slices.

The mean reduction over all programs is 48.7%.

4.5.2 Overhead

Table 4.3 shows the time specializing the control and data flow for each program. Control-flow

specialization is much faster than data-flow specialization because it does not require expensive

constraint-based analysis. Data-flow specialization typically finishes within minutes or hours. This

time is correlated with the size of the schedule, the number of constraints collected, and the number

of constraint-solving queries.

We also measured the number of derived synchronizations, i.e., the calls to functions may

transitively do synchronizations to resolve call-stack ambiguity (§4.2.1). If this number is large,

the overhead to record schedules and specialize programs may increase. Figure 4.10 shows that,

for every program evaluated, the majority of the synchronizations in the schedule are still true

synchronizations. Therefore, including derived synchronizations in the schedules does not incur

significant overhead.
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Program LOC Sched Cons Use CF (s) DF (s)

aget 866 219 2667 720 1.4 1551.7

PBZip2 9869 158 1382 480 3.1 973.1

fft 877 98 1122 277 1.5 113.8

lu-contig 904 48 824 229 1.4 65.0

cholesky 3962 42 1550 1302 2.3 1967.9

radix 919 112 1016 330 1.5 42.5

barnes 2234 5555 1605 19280 5.4 1968.1

water-spatial 1958 1037 14572 5008 2.8 313.4

water-nsquared 1620 4768 48023 14530 4.1 468.8

ocean 2958 5709 66253 18580 6.8 1795.0

blackscholes 1264 51 482 130 1.2 38.3

swaptions 1094 15 215 105 1.3 9.7

streamcluster 1765 90 840 216 1.5 834.6

canneal 2794 31 535 311 5.4 96.9

bodytrack 7696 381 998 240 1.7 20.9

ferret 10765 153 439 118 1.0 35.3

raytrace 13226 87 13468 417 1.4 5397.8

Table 4.3: Specialization time. LOC shows the lines of code in each program. The LOC of PBZip2

includes the bzip2 compression library. We show the time spent in specializing control flow (CF)

and data flow (DF). Since specialization time are affected by the schedule, constraints, and queries,

we also show the schedule length (Sched), the number of constraints (Cons), and the number of

uses in the def-use analysis (Use).
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Program Position Bug Effect

aget Download.c:

87-95

rbuf may not have the byte sequence

\r\n\r\n. aget needs an extra bound

check.

race, program crash,

or large data corrup-

tion

aget Download.c:

98-99

The bound check should be

td->offset + dr - i > foffset,

not dr - i > foffset. The size

passed to pwrite should be foffset

- td->offset, not foffset - i.

race, or program

crash

aget Download.c:

99,101,113,115

aget should check the return value of

pwrite.

race, program crash,

or small data corrup-

tion

aget Download.c:111 aget should check the return value of

recv.

race, program crash,

or small data corrup-

tion

radix radix.C:148 radix should check variable radix

against its upper bound 4096.

race, program crash.

radix radix.C:159 radix should check num keys against

its upper bound 262144.

race, or program

crash

fft fft.C:162 fft should check log2 line size

against its upper bound 4.

program crash (be-

fore a race may oc-

cur)

Table 4.4: Bugs found.
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4.5.3 Bugs Found

The precision of our framework helped detect 7 previously unknown bugs in the evaluated pro-

grams. This result is particularly interesting considering that the evaluated programs have been well

checked in previous work [Zhang et al., 2011; Zhang et al., 2010; Park et al., 2009a; Lu et al., 2008;

Gao et al., 2011].

These bugs were typically detected as follows. Our analyses flagged two memory accesses from

different threads as potential aliases or races, even though they should not be. We initially thought

these “false positives” were due to the imprecision of our analyses and inspected them. Specifically,

we queried STP for a solution to make the two pointers accessed identical.

Surprisingly, many of these “false positives” turned out to be real bugs. A common cause is

that an input variable is used as an array index without being checked against the upper or lower

bounds of the array or the partition of the array assigned to a thread. Such off-bound accesses may

indeed cause different threads to race, and our analyses thus flagged them. We detected 7 such

bugs in aget, radix, and fft, which are shown in Table 4.4. These bugs may cause races, program

crashes, or, worse, file data corruption. We manually verified these effects by running the buggy

benchmarks on the bug-inducing inputs generated by STP. (The results presented in the previous

two subsections are from the patched programs because we do not want these bugs to pollute our

evaluation.)

4.6 Related Work

Slicing. Slicing techniques can remove irrelevant statements or instructions. Program slicing [Weiser,

1979] does so on programs, dynamic slicing [Agrawal and Horgan, 1990; Zhang and Gupta, 2004] on

dynamic execution traces, and path slicing [Jhala and Majumdar, 2005] on (potentially infeasible)

paths. Precondition slicing [Costa et al., 2007] is similar to path slicing with improved precision

by incorporating dynamic information into the analysis.

Our technique to specialize a program toward a schedule differs from these slicing techniques

because it takes as input both a program and a schedule, and outputs a specialized program that

can actually run. Moreover, our technique does not merely remove statements; instead, it may

transform a program by cloning statements when specializing the control flow of the program,
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replacing variables with constants when specializing the data flow, etc.

Program specialization. Program specialization can specialize a program according to various

goals [Reps and Turnidge, 1996; Nirkhe and Pugh, 1992; Jørgensen, 1992; Consel and Danvy, 1993;

Glück and Jørgensen, 1995]. For instance, it can specialize according to common inputs [Consel

and Danvy, 1993; Nirkhe and Pugh, 1992]. The specialized programs can then be better optimized.

Unlike previous work, our framework specializes a program toward a set of schedules, thus allowing

stock analyses and optimizations to run on the specialized programs. To the best of our knowledge,

we are the first to specialize a program toward schedules.

Concolic testing. The idea of schedule specialization is loosely analogous to concolic testing [Sen

et al., 2005; Larson and Austin, 2003; Godefroid et al., 2005]. Concolic testing systematically

explores possible paths of a program. It first runs a program on a concrete input, and computes

a conjunction of symbolic constraints along the path of this execution as the “precondition” of

this path; it then negates this precondition and computes another concrete input that leads the

program to a different path. Schedule specialization is similar in that we collect schedules from

“concrete” runs and compute the preconditions of these schedules. However, the goals of these

two ideas are opposite: concolic testing aims to explore as many paths as possible, and schedule

specialization aims to limit the number of possible schedules. Also, given schedules are typically

much more coarse-grained than program paths, preconditions of program paths would be much

more stronger than the preconditions of schedules, causing low reuse-rates.

Data race detection. Data race detectors are broadly classified into two classes: static and

dynamic. Dynamic data race detectors are in general classified into three types: happens-before

based, lockset-based, and hybrid. These three types generally follow the definition of data races

described in §2.1, but differ from each other in the way they compute whether two statement

instances are concurrent. Happens-before-based data race detectors [Dinning and Schonberg, 1990;

Ronsse and De Bosschere, 1999; Schonberg, 1989] determine whether two statement instances

are concurrent based on Lamport’s happens-before relation [Lamport, 1978]. Lockset-based data

race detectors [Savage et al., 1997; von Praun and Gross, 2003] treat two statement instances

not protected by the same mutex as concurrent. The lockset-based approach can detect more

data races than the happens-before approach, but may report false positives. Hybrid data race

detectors [O’Callahan and Choi, 2003; Yu et al., 2005] combine these two approaches and overcome
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the disadvantages of either.

Static data race detectors use either model checking [Henzinger et al., 2004; Qadeer and Wu,

2004] or static versions of the lockset algorithm [Loginov et al., 2001; Engler and Ashcraft, 2003;

Naik et al., 2006]. Model-checking-based race detectors try to simulate each program path and

detect data races along each path. Therefore, it is relatively precise but has only been applied to

small programs due to path explosion. Static data race detectors based on the lockset algorithm

reduce the analysis time by abstraction. It conceptually simulates the lockset algorithm on ab-

stract threads, instructions, and locks. Therefore, these detectors suffer from imprecision, and can

generate many false positives.

The data race detector we have built based on schedule specialization (§4.4) differs from both

dynamic and static data race detection. Our approach covers more executions than dynamic data

race detection, because we consider not just one execution but all executions that are compatible

with a certain schedule. Compared to static data race detection, we analyze a program with respect

to a schedule instead of all possible schedules. One key challenge for static race detectors is how to

compute whether two statements can run concurrently. By focusing on the synchronization order

that the target schedule specifies, we can easily identify statements that run concurrently.

4.7 Summary

This chapter presented our specialization framework. It specializes a program into a simpler pro-

gram based on a schedule, so that the resultant program can be analyzed with stock analyses.

It provides a precise schedule-aware def-use analysis, enabling many powerful applications. Our

results show that our framework can drastically improve the precision of alias analysis, path slicing,

and race detection.

In our future work, we plan to leverage the precision provided by our framework to build pre-

cise error detectors, post-mortem analyzers, verifiers, and optimizers for multithreaded programs.

For example, we can apply the idea of schedule specialization to precisely detect commutativity

races [Dimitrov et al., 2014]. In addition, we believe a similar specialization approach can improve

analysis precision for sequential programs, too. In general, static analysis over all possible execu-

tions may be imprecise. To improve precision, we may perform static analysis over only a small
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set of executions (e.g., the most common executions) and, if necessary, resort to dynamic analyses

for the other executions. We believe this direction will face many interesting precision, soundness,

and overhead tradeoffs, which we will investigate.
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Chapter 5

Bypassing Races in Live Applications

with Execution Filters

Deployed multithreaded applications contain many races because these applications are difficult to

write, test, and debug. These races include data races, atomicity violations, and order violations [Lu

et al., 2008]. They can cause application crashes and data corruptions. Worse, the number of

“deployed races” may drastically increase due to the rise of multicore and the immaturity of race

detectors.

Many static and dynamic race detectors (e.g., [Musuvathi et al., 2008; Savage et al., 1997;

Yu et al., 2005; Lu et al., 2007; Lu et al., 2006; Erickson et al., 2010; Veeraraghavan et al., 2011;

Wester et al., 2013]) have been proposed to detect races. However, none of them is guaranteed

to detect all races with a reasonable precision. Static race detectors tend to report many false

positives and bury true errors in false reports. Dynamic race detectors only cover a very limited

number of executions and can have many false negatives.

Schedule specialization advances the state of the art of race detection by balancing the tradeoff

between soundness and precision. However, it still cannot detect all races for two reasons. First,

the soundness of our static analysis results is conditioned on that one of the analyzed schedules

is enforced. Although schedule specialization analyzes highly reusable schedules, a finite set of

schedules may not cover all inputs for complicated real-world programs. If an input cannot be pro-

cessed by any of the analyzed schedules, it may still trigger races even if our static detection claims
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the program is race-free for the schedules it observed. Second, although schedule specialization

can dramatically reduce false reports from a static race detector, the detector may still emit more

false positives than dynamic race detectors because schedule specialization does not leverage full

dynamic information. As a result, users may filter out some error reports which may correspond

to true errors [Voung et al., 2007; Engler and Ashcraft, 2003].

A conventional solution to fixing deployed races is software update, but this method requires

application restarts, and is at odds with high availability demand. Live update systems [Arnold and

Kaashoek, 2009; Chen et al., 2006; Altekar et al., 2005; Makris and Ryu, 2007; Neamtiu et al., 2006;

Neamtiu and Hicks, 2009; Subramanian et al., 2009] can avoid restarts by adapting conventional

patches into hot patches and applying them to live systems, but the reliance on conventional patches

has two problems.

First, due to the complexity of multithreaded applications, race-fix patches can be unsafe and

introduce new errors [Lu et al., 2008]. Safety is crucial to encourage user adoption, yet automatically

ensuring safety is difficult because conventional patches are created from general, difficult-to-analyze

languages. Thus, previous work [Neamtiu et al., 2006; Neamtiu and Hicks, 2009] had to resort to

extensive programmer annotations.

Second, creating a releasable patch from a correct diagnosis can still take time. This delay leaves

buggy applications unprotected, compromising reliability and potentially security. This delay can

be quite large: we analyzed the Bugzilla records of nine real races and found that this delay can

be days, months, or even years. Table 5.1 shows the detailed results.

Many factors contribute to this delay. At a minimum level, a conventional patch has to go

through code review, testing, and other mandatory software development steps before being re-

leased, and these steps are all time-consuming. Moreover, though a race may be fixed in many

ways (e.g., lock-free flags, fine-grained locks, and coarse-grained locks), developers are often forced

to strive for an efficient option. For instance, two of the bugs we analyzed caused long discussions

of more than 30 messages, yet both can be fixed by adding a single critical section. Performance

pressure is perhaps why many races were not fixed by adding locks [Lu et al., 2008].

This chapter presents Loom, a “live-workaround” system designed to quickly protect appli-

cations against races until correct conventional patches are available and the applications can be

restarted. It reflects our belief that the true power of live update is its ability to provide immediate
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Race ID Report Diagnosis Fix Release Delay (days)

Apache-25520 12/15/03 12/18/03 01/17/04 03/19/04 30

Apache-21287 07/02/03 N/A 12/18/03 03/19/04 169

Apache-46215 11/14/08 N/A N/A N/A N/A

MySQL-169 03/19/03 N/A 03/24/03 06/20/03 5

MySQL-644 06/12/03 N/A N/A 05/30/04 353

MySQL-791 07/04/03 07/04/03 07/14/03 07/22/03 10

Mozilla-73761 03/28/01 03/28/01 04/09/01 05/07/01 12

Mozilla-201134 04/07/03 04/07/03 04/16/03 01/08/04 9

Mozilla-133773 03/27/02 03/27/02 12/01/09 01/21/10 2816

Table 5.1: Long delays in race fixing. We studied the delays in the fix process of nine real races; some of

the races were extensively studied [Lu et al., 2006; Park et al., 2009a; Lu et al., 2008; Park et al., 2009b;

Altekar and Stoica, 2009]. We identify each race by “Application−〈Bugzilla #〉.” Column Report indicates

when the race was reported, Diagnosis when a developer confirmed the root cause of the race, Fix when the

final fix was posted, and Release when the version of application containing the fix was publicly released.

We collected all dates by examining the Bugzilla record of each race. An N/A means that we could not

derive the date. Column Delay indicates the days between diagnosis and fix, which range from a few days

to a month to a few years. For all but two races, the bug reports from the application users contained correct

and precise diagnoses. Mozilla-201134 and Mozilla-133773 caused long discussions of more than 30 messages,

though both can be fixed by adding a critical region.
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workarounds. To use Loom, developers first compile their application with Loom. At runtime, to

workaround a race, an application developer writes an execution filter that synchronizes the appli-

cation source to filter out racy thread interleavings. This filter is kept separate from the source.

Application users can then download the filter and, for immediate protection, install it to their

application without a restart.

Loom decouples execution filters from application source to achieve safety and flexibility. Exe-

cution filters are safe because Loom’s execution filter language allows only well formed synchroniza-

tion constraints. For instance, “code regions r1 and r2 are mutually exclusive.” This declarative

language is simpler to analyze than a general programing language such as C because Loom need

not reverse-engineer developer intents (e.g., what goes into a critical region) from scattered opera-

tions (e.g., lock() and unlock()).

As temporary workarounds, execution filters are more flexible than conventional patches. One

main benefit is that developers can make better performance and reliability tradeoffs during race

fixing. For instance, to make two code regions r1 and r2 mutually exclusive when they access the

same memory object, developers can use critical regions larger than necessary; they can make r1

and r2 always mutually exclusive even when accessing different objects; or in extreme cases, they

can run r1 and r2 in single-threaded mode. This flexibility enables quick workarounds; it can benefit

even the applications that do not need live update.

We believe the execution filter idea and the Loom system as described are worthwhile contribu-

tions. To the best of our knowledge, Loom is the first live-workaround system designed for races.

Our additional technical contributions include the techniques we created to address the following

two challenges.

A key safety challenge Loom faces is that even if an execution filter is safe by construction,

installing it to a live application can still introduce errors because the application state may be

inconsistent with the filter. For instance, if a thread is running inside a code region that an

execution filter is trying to protect, a “double-unlock” error could occur. Thus, Loom must (1)

check for inconsistent states and (2) install the filter only in consistent ones. Moreover, Loom

must make the two steps atomic, despite the concurrently running application threads and multiple

points of updates. This problem cannot be solved by a common safety heuristic called function

quiescence [Gilmore and Walton, 1997; k42, ; Baumann et al., 2005; Neamtiu et al., 2006]. We
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thus create a new algorithm termed evacuation to solve this problem by proactively quiescing an

arbitrary set of code regions given at runtime. We believe this algorithm can also benefit other live

update systems.

A key performance challenge Loom faces is to maintain negligible performance overhead during

an application’s normal operations to encourage adoption. The main runtime overhead comes from

the engine used to live-update an application binary. Although Loom can use general-purpose

binary instrumentation tools such as Pin, the overhead of these tools (up to 199% [Luk et al.,

2005] and 1065.39% in our experiments) makes them less suitable as options for Loom. We thus

use a fast hybrid instrumentation engine. It statically transforms an application to include a “hot

backup”, which can then be updated arbitrarily by execution filters at runtime. Besides helping

reducing Loom’s runtime overhead, this instrumentation framework also reduces the overhead of

scheduling memory accesses in Peregrine (§3.3.2).

We implemented Loom on Linux. It runs in user space and requires no modifications to the

applications or the OS, simplifying deployment. It does not rely on non-portable OS features

(e.g., SIGSTOP to pause applications, which is not supported properly on Windows). Loom’s static

transformation is a plugin to the LLVM compiler [LLVM, 2013], requiring no changes to the compiler

either.

We evaluated Loom on nine real races from a diverse set of six applications: two server appli-

cations, MySQL and Apache; one desktop application PBZip2 (a parallel compression tool); and

implementations of three scientific algorithms in SPLASH2 [SPLASH2, 2007]. Our results show

that

1. Loom is effective. It can flexibly and safely fix all races we have studied. It does not degrade

application availability when installing execution filters. Its evacuation algorithm can install a

fix within a second even under heavy workload, whereas a live update approach using function

quiescence cannot install the fix in an hour, the time limit of our experiment.

2. Loom is fast. Loom has negligible performance overhead and in some cases even speeds up

the applications. The one exception is MySQL. Running MySQL with Loom alone increases

response time by 4.11% and degrades throughput by 3.76%.

3. Loom is scalable. Experiments on a 48-core machine show that Loom scales well as the number

of application threads increases.
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Figure 5.1: Loom overview. Its components are shaded.

4. Loom is easy to use. Execution filters are concise, safe, and flexible (able to fix all races studied,

often in more than one way).

This chapter is organized as follows. We first give an overview of Loom (§5.1). We then

describe Loom’s execution filter language (§5.2), the evacuation algorithm (§5.3), and the hybrid

instrumentation engine (§5.4). We then present our experimental results (§5.5). We finally discuss

related work (§5.6) and conclude (§5.7).

5.1 Overview

Figure 5.1 presents an overview of Loom. To use Loom for live update, developers first statically

transform their applications with Loom’s compiler plugin. This plugin injects a copy of Loom’s

update engine into the application binary; it also collects the application’s control flow graphs

(CFG) and symbol information on behalf of the live update engine.

Loom’s compiler plugin runs within the LLVM compiler [LLVM, 2013]. We choose LLVM

for its compatibility with GCC and its easy-to-analyze intermediate representation (IR). However,

Loom’s algorithms are general and can be ported to other compilers such as GCC. Indeed, for

clarity we will present all our algorithms at the source level (instead of the LLVM IR level).
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To fix a race, application developers write an execution filter in Loom’s filter language and

distribute the filter to application users. A user can then install the filter to immediately protect

their application by running

% loomctl add <pid> <filter-file>

Here loomctl is a user-space program called the Loom controller that interacts with users and

initiates live update sessions, pid denotes the process ID of a buggy application instance, and

filter-file is a file containing the execution filter. Under the hood, this controller compiles

the execution filter down to a safe update plan using the CFGs and symbol information collected

by the compiler plugin. This update plan includes three parts: (1) synchronization operations to

enforce the constraints described in the filter and where, in the application, to add the operations;

(2) safety preconditions that must hold for installing the filter; and (3) sanity checking code to

detect potential errors in the filter itself. The controller sends the update plan to the update

engine running as a thread inside the application’s address space, which then monitors the runtime

states of the application and carries out the update plan only when all the safety preconditions are

satisfied.

If Loom detects a problem with a filter through one of its sanity checks, it can automatically

remove the problematic filter. It again waits for all the safety preconditions to hold before removing

the filter.

Users can also remove a filter manually, if for example, the race that the filter intends to fix

turns out to be benign. They do so by running

% loomctl ls <pid>

% loomctl remove <pid> <filter-id>

The first command “loomctl ls” returns a list of installed filter IDs within process pid. The

second command “loomctl remove” removes filter filter-id from process pid.

Users can replace an installed filter with a new filter, if for example the new filter fixes the same

race but has less performance overhead. Users do so by running

% loomctl replace <pid> <old-id> <new-file>

where old-id is the ID of the installed filter, and new-file is a file containing the new filter. Loom

ensures that the removal of the old filter and the installation of the new filter are atomic, so that

the application is always protected from the given race.
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5.1.1 Usage Scenarios

Loom enables users to explicitly describe their synchronization intents and orchestrate thread inter-

leavings of live applications accordingly. Using this mechanism, we envision a variety of strategies

users can use to fix races.

Live update. At the most basic level, users can translate some conventional patches into execution

filters, and use Loom to install them to live applications.

Temporary workaround. Before a permanent fix (i.e.a correct source patch) is out, users can

create an execution filter as a crude, temporary fix to a race, to provide immediate protection to

highly critical applications.

Preventive fix. When a potential race is reported (e.g., by automated race detection tools or

users of the application), users can immediately install a filter to prevent the race suspect. Later,

when developers deem this report false or benign, users can simply remove the filter.

Cooperative fix. Users can share filters with each other. This strategy enjoys the same benefits as

other cooperative protection schemes [Costa et al., 2005; Perkins et al., 2009; Sidiroglou et al., 2009;

Jula et al., 2008]. One advantage of Loom over some of these systems is that it automatically

verifies filter safety, thus potentially reducing the need to trust other users.

Site-specific fix. Different sites have different workloads. An execution filter too expensive for

one site may be fine for another. The flexibility of execution filters allows each site to choose what

specific filters to install.

Fix without live update. For applications that do not need live update, users can still use Loom

to create quick workarounds, improving reliability.

Besides fixing races, Loom can be used for the opposite: demonstrating a race by forcing a

racy thread interleaving. Compared to previous race diagnosis tools that handle a fixed set of race

patterns [Park et al., 2009a; Sen, 2008; Park and Sen, 2008; Joshi et al., 2009], Loom’s advantage

is to allow developers to construct potentially complex “concurrency” testcases.

Although Loom can also avoid deadlocks by avoiding deadlock-inducing thread interleavings,

it is less suitable for this purpose than existing tools (e.g., Dimmunix [Jula et al., 2008]). To

avoid races, Loom’s update engine can add synchronizations to arbitrary program locations. This

engine is overkill for avoiding deadlocks: intercepting lock operations (e.g., via LD PRELOAD) is often
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enough.

5.1.2 Limitations

Loom is explicitly designed to work around (broadly defined) races because they are some of the

most difficult bugs to fix and this focus simplifies Loom’s execution filter language and safety

analysis. Loom is not intended for other classes of errors. Nonetheless, we believe the idea of

high-level and easy-to-verify fixes can be generalized to many other classes of errors.

Loom does not attempt to fix occurred races. That is, if a race has caused bad effects (e.g.,

corrupted data), Loom does not attempt to reverse the effects (e.g., recover the data). It is

conceivable to allow developers to provide a general function that Loom runs to recover occurred

races before installing a filter. Although this feature is simple to implement, it makes safety analysis

infeasible. We thus rejected this feature.

Safety in Loom terms means that an execution filter and its installation/removal processes

introduce no new correctness errors to the application. However, similar to other safe error recov-

ery [Qin et al., 2007] or avoidance [Jula et al., 2008; Wang et al., 2008] tools, Loom runs with

the application and perturbs timing, thus it may expose some existing application races because it

makes some thread interleavings more likely to occur. Moreover, execution filters synchronize code,

and may introduce deadlocks and performance problems. Loom can recover from filter-introduced

deadlocks (§5.2.3) using timeouts, but currently does not deal with performance problems.

At an implementation level, Loom currently supports a fixed set of synchronization constraint

types. Although adding new types of constraints is easy, we have found the existing constraint types

sufficient to fix all races evaluated. Another issue is that Loom uses debugging symbol information

in its analysis, which can be inaccurate due to compiler optimization. This inaccuracy has not

been a problem for the races in our evaluation because Loom keeps an unoptimized version of each

basic block for live update (§5.4).

5.2 Execution Filter Language

Loom’s execution filter language allows developers to explicitly declare their synchronization in-

tents on code. This declarative approach has several benefits. First, it frees developers from the
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low-level details of synchronization, increasing race fixing productivity. Second, it also simplifies

Loom’s safety analysis because Loom does not have to reverse-engineer developer intents (e.g.,

what goes into a critical section) from low-level synchronization operations (e.g., scattered lock()

and unlock()), which can be difficult and error-prone. Lastly, Loom can easily insert error-

checking code for safety when it compiles a filter down to low-level synchronization operations.

5.2.1 Example Races and Execution Filters

In this section, we present two real races and the execution filters to fix them to demonstrate

Loom’s execution filter language and its flexibility.

The first race is in MySQL (Bugzilla # 791), which causes the MySQL on-disk transaction log

to miss records. Figure 5.2 shows the race. The code on the left (function new file()) rotates

MySQL’s transaction log file by closing the current log file and opening a new one; it is called when

the transaction log has to be flushed. The code on the right is used by MySQL to append a record

to the transaction log. It uses double-checked locking and writes to the log only when the log is

open. The race occurs if the racy is open() (T2, line 3) catches a closed log when thread T1 is

between the close() (T1, line 5) and the open() (T1, line 6).

Although a straightforward fix to the race exists, performance demands likely forced developers

to give up the fix and choose a more complex one instead. The straightforward fix should just

remove the racy check (T2, line 3). Unfortunately, this fix creates unnecessary overhead if MySQL

is configured to skip logging for speed; this overhead can increase MySQL’s response time by more

than 10% as observed in our experiments. The concern to this overhead likely forced MySQL

developers to use a more involved fix, which adds a new flag field to MySQL’s transaction log and

modifies the close() function to distinguish a regular close() call and one for reopening the log.

In contrast, Loom allows developers to create temporary workarounds with flexible performance

and reliability tradeoffs. These temporary fixes can protect the application until developers create

a correct and efficient fix at the source level. Figure 5.3 shows several execution filters that can

fix this race. Execution filter 1 in the figure is the most conservative fix: it makes the code region

between T1, line 5 and T1, line 6 atomic against all code regions, so that when a thread executes this

region, all other threads must pause. We call such a synchronization constraint unilateral exclusion
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1: // log.cc. thread T1

2: void MYSQL LOG::new file(){

3: lock(&LOCK log);

4: . . .

5: close(); // log is closed

6: open(. . .);

7: . . .

8: unlock(&LOCK log);

9: }

1: // sql insert.cc. thread T2

2: // [race] may return false

3: if (mysql bin log.is open()){

4: lock(&LOCK log);

5: if (mysql bin log.is open()){

6: . . . // write to log

7: }

8: unlock(&LOCK log);

9: }

Figure 5.2: A real MySQL race, slightly modified for clarity.

// Execution filter 1: unilateral exclusion

{log.cc:5, log.cc:6} <> *

// Execution filter 2: mutual exclusion of code

{log.cc:5, log.cc:6} <> MYSQL LOG::is open

// Execution filter 3: mutual exclusion of code and data

{log.cc:5 (this), log.cc:6 (this)} <> MYSQL LOG::is open(this)

Figure 5.3: Execution filters for the MySQL race in Figure 5.2.
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// pbzip2.cpp. thread T1

1: main() {

2: for(i=0;i<numCPU;i++)

3: pthread create(. . .,

4: decompress, fifo);

5: queueDelete(fifo);

6: }

// pbzip2.cpp. thread T2

7 : void *decompress(void *q){

8 : queue *fifo = (queue *)q;

9 : . . .

10: pthread mutex lock(fifo−>mut);

11: . . .

12: }

Figure 5.4: A real PBZip2 race, simplified for clarity.

pbzip2.cpp:10 {numCPU} > pbzip2.cpp:5

Figure 5.5: Execution filter for the PBZip2 race in Figure 5.4.

in contrast to mutual exclusion that requires participating threads agree on the same lock.1 Here

operator “<>” expresses mutual exclusion constraints, its first operand “{log.cc:5, log.cc:6}”

specifies a code region to protect, and its second operand “*” represents all code regions. This

“expensive” fix incurs only 0.48% overhead (§5.5.1) because the log rotation code rarely executes.

Execution filter 2 reduces overhead by refining the “*” operand to a specific code region, function

MYSQL LOG::is open(). This filter makes the two code regions mutually exclusive, regardless of

what memory locations they access. Execution filter 3 further improves performance by specifying

the memory location accessed by each code region.

The second race causes PBZip2 to crash due to a use-after-free error. Figure 5.4 shows the

race. The crash occurs when fifo is dereferenced (line 10) after it is freed (line 5). The reason

is that the main() thread does not wait for the decompress() threads to finish. To fix this race,

developers can use the filter in Figure 5.5, which constrains line 10 to run for numCPU times before

line 5.
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Constructs Syntax

Event (short as e)
file : line

file : line (expr)

e{n}, n is # of occurrence

Region (short as r)
{e1, ..., ei; ei+1, ..., en}

func (args)

Execution Order e1 > e2 > ... > en

Mutual Exclusion r1 <> r2 <> ... <> rn

Unilateral Exclusion r <> ∗

Table 5.2: Execution filter language summary.

5.2.2 Syntax and Semantics

Table 5.2 summarizes the main syntax and semantics of Loom’s execution filter language. This

language allows developers to express synchronization constraints on events and regions. An event

in the simplest form is “file : line,” which represents a dynamic instance of a static program

statement, identified by file name and line number. An event can have an additional “(expr)”

component and an “{n}” component, where expr and n refer to valid expressions with no function

calls or dereferences. The expr expression distinguishes different dynamic instances of program

statements and Loom synchronizes the events only with matching expr values. The n expression

specifies the number of occurrences of an event and is used in execution order constraints. A region

represents a dynamic instance of a static code region, identified by a set of entry and exit events

or an application function. A region representing a function call can have an additional “(args)”

component to distinguish different calls to the same function.

Loom currently supports three types of synchronization constraints (the bottom three rows

in Table 5.2). Although adding new constraint types is easy (e.g., synchronization barriers that

enforce all threads to reach a rendezvous point before continuing), we have found existing ones

enough to fix all races evaluated. An execution order constraint as shown in the table makes event

e1 happen before e2, e2 before e3, and so forth. A mutual exclusion constraint as shown makes

every pair of code regions ri and rj mutually exclusive with each other. A unilateral exclusion

1Note that unilateral exclusion differs (subtly) from single-threaded execution: unilateral exclusion allows no

context switches.



CHAPTER 5. BYPASSING RACES IN LIVE APPLICATIONS WITH EXECUTION
FILTERS 94

constraint conceptually makes the execution of a code region single-threaded.

5.2.3 Language Implementation

Loom implements the execution filter language using locks and semaphores. Given an execution

order constraint ei > ei+1, Loom inserts a semaphore up() operation at ei and a down() operation

at ei+1. Loom implements a mutual exclusion constraint by inserting lock() at region entries

and unlock() at region exits. Loom implements a unilateral exclusion constraint reusing the

evacuation mechanism (§5.3), which can pause threads at safe locations and resume them later.

Loom creates the needed locks and semaphores on demand. The first time a lock or semaphore

is referenced by one of the inserted synchronization operations, Loom creates this synchronization

object based on the ID of the filter, the ID of the constraint, and the value of expr if present.

It initializes a lock to an unlocked state and a semaphore to 0. It then inserts this object into

a hash table for future references. To limit the size of this table, Loom garbage-collects these

synchronization objects. Freeing a synchronization object is safe as long as it is unlocked (for locks)

or has a counter of 0 (for semaphores). If this object is referenced later, Loom simply re-creates

it. The default size of this table is 256 and Loom never needed to garbage-collect synchronization

objects in our experiments.

The up() and down() operations Loom inserts behave slightly differently than standard semaphore

operations when n, the number of occurrences, is specified. Given e1{n1} > e2{n2}, up() concep-

tually increases the semaphore counter by 1
n1

and down() decreases it by 1
n2

. Our implementation

uses integers instead of floats. Loom stores the value of n the first time the corresponding event

runs and ignores future changes of n.

Loom computes the values of expr and n using debugging symbol information. We currently

allow expr and n in an event to be the following expressions: a (constant or primitive variable), a+b,

&a, &a[i], &a->f, or any recursive combinations of these expressions. For safety, we do not allow

function calls or dereferences. These expressions are sufficient for writing the execution filters in

our evaluation. The performance overhead of including debugging symbol information is negligible,

because hybrid instrumentation only generates debugging information on the hot backup (§5.4).

We implemented this feature using the DWARF library and the parse exp 1() function in

GDB. Specifically, we use parse exp 1() to parse the expr or n component into an expression
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Figure 5.6: Unsafe program states for installing filters.

tree, then compile this tree into low level instructions by querying the DWARF library. Note this

compilation step is done inside the Loom controller, so that the live update engine does not have

to pay this overhead.

Loom implements three mechanisms for safety. First, by keying synchronization objects based

on filter and constraint IDs, it uses a disjoint set of synchronization objects for different execution

filters and constraints, avoiding interference among them. Second, Loom inserts additional checking

code when it generates the update plan. For example, given a code region c in a mutual exclusion

constraint, Loom checks for errors such as c’s unlock() releasing a lock not acquired by c’s lock().

Lastly, Loom checks for filter-induced deadlocks to guard against buggy filters. If a buggy filter

introduces a deadlock, one of its synchronization operations must be involved in the wait cycle.

Loom detects such deadlocks using timeouts, and automatically removes the offending filter.

5.3 Avoiding Unsafe Application States

Figure 5.6 shows three unsafe scenarios Loom must handle. For a mutual exclusion constraint that

turns code regions into critical sections, Loom must ensure that no thread is executing within the

code regions when installing the filter to avoid “double-unlock” errors. Similarly, for an execution

order constraint e1 > e2, Loom must ensure either of the following two conditions when installing

the filter: (1) both e1 and e2 have occurred or (2) neither has occurred; otherwise the up() Loom
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1: // database worker thread

2: void handle client(int fd) {
3: for(;;) {
4: struct client req req;

5: int ret = recv(fd, &req, . . .);

6: if(ret <= 0) break;

7: open table(req.table id);

8: . . . // do real work

9: close table(req.table id);

10: }
11: }
12: void open table(int table id) {
13: // fix: acquire table lock

14: . . . // actual code to open table

15: }
16: void close table(int table id) {
17: . . . // actual code to close table

18: // fix: release table lock

19: }

Figure 5.7: A contrived race.

inserts at e1 may get skipped or wake up a wrong thread.

Note that a näıve approach is to simply ignore an unlock() if the corresponding lock is already

unlocked, but this approach does not work with execution order constraints. Moreover, it mixes

unsafe program states with buggy filters, and may reject correct filters simply because it tries to

install the filters at unsafe program states.

A common safety heuristic called function quiescence [Gilmore and Walton, 1997; Baumann et

al., 2005; Neamtiu et al., 2006] cannot address this unsafe state problem. This technique updates

a function only when no stack frame of this function is active in any call stack of the application.

Unfortunately, though this technique can ensure safety for many live updates, it is insufficient for

execution filters because their synchronization constraints may affect multiple functions.

We demonstrate this point using a race example. Figure 5.7 shows the worker thread code of

a contrived database. Function handle client() is the main thread function. It takes a client

socket as input and repeatedly processes requests from the socket. For each request, function

handle client() opens the corresponding database table by calling open table(), serves the

request, and closes the table by calling close table(). The race in Figure 5.7 occurs when multiple

clients concurrently access the same table.
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To fix this race, an execution filter can add a lock acquisition at line 13 in open table() and

a lock release at line 18 in close table(). To safely install this filter, however, the quiescence of

open table() and close table() is not enough, because a thread may still be running at line 8

and cause a double-unlock error. An alternative fix is to add the lock acquisition and release in

function handle client(), but this function hardly quiesces because of the busy loop (line 3-10)

and the blocking call recv().

Loom solves the unsafe state program using an algorithm termed evacuation that can proac-

tively quiesce arbitrary code regions. From a high level, this algorithm takes a filter and computes

a set of unsafe program locations that may interfere with the filter. It does so conservatively to

avoid marking an unsafe location as safe. Then, it “evacuates” threads out of the unsafe locations

and blocks them at safe program locations. After that, it installs the filter and resumes the threads.

5.3.1 Computing Unsafe Program Locations

The first step of our evacuation algorithm is to compute the unsafe program locations for the given

execution filter. Loom uses slightly different methods to compute the unsafe program locations

for mutual exclusion and for execution order constraints. To compute unsafe program locations for

mutual exclusion constraints, Loom performs a static reachability analysis on the interprocedural

control flow graph (ICFG) G of an application. An ICFG connects each function’s control flow

graphs by following function calls and returns. Figure 5.8a shows the ICFG for the code in Fig-

ure 5.7. We say statement s1 reaches s2 on G or reachable(G, s1, s2) if there is a path from s1 to

s2 on ICFG G. For example, the statement at line 13 reaches the statement at line 8 in Figure 5.7.

Given an execution filter f with mutual exclusion constraint r1 <> r2 <> ... <> rn, the set of

unsafe program locations unsafe(f) includes any statement s potentially inside one of the regions.

Specifically, unsafe(f) is the set of statements s such that reachable(G\ri.entries, s, ri.exits) for

i ∈ [1, n], where ri.entries are the entry statements to region ri and ri.exits are the exit statements.

Loom computes unsafe program locations for an execution order constraint by first deriving

code regions from the constraint, then reusing the method for mutual exclusion to compute unsafe

program locations. Specifically, given a filter f with an execution order constraint e1 > e2 > ... > en,

Loom first computes the set TF of all thread functions (including the main function) that may

execute any ei. It then identifies the entry sj of each thread function tfj ∈ TF . It finally computes
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(a) ICFG of the code in Figure 5.7. (b) After update-checks

inserted.

(c) After basic blocks cloned.

Figure 5.8: Static transformations that Loom does for safe and fast live update. Subfig-

ure 5.8a shows the ICFG of the code in Figure 5.7; 5.8b shows the resulting CFG of function

handle client() after the instrumentation to control application threads (§5.3); 5.8c shows the

final CFG of function handle client() after basic block cloning (§5.4).
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Figure 5.9: Evacuation. Curved lines represent application threads, solid triangles (in black) rep-

resents the threads’ program counters (PC), and solid stripes (in red) represents an unsafe code

region.

unsafe(f) as the set of statements between sj and ei, denoted by {sj ; ei}.

We compute the set {sj ; ei} using a backward reachability analysis. Given the ICFG G of the

program, the set {sj}, and the set {ei}, our backward reachability analysis first computes GT , the

inversion of G; it then includes sj , ei, and every statements that ei can reach on GT in the set

{sj ; ei}. We only do backward search from ei, without doing forward search from sj , because the

set sj of thread entries dominates all statements that these threads may execute.

Our algorithm to compute unsafe locations for execution order filters is safe because it waits until

all existing threads to execute beyond ei. That is, no existing thread will ever run any statements

in {sj ; ei}. (Threads created after the filter is installed can still run statements in {sj ; ei}.)

However, this algorithm is conservative because it may compute a larger-than-necessary set of

unsafe locations. That is, to avoid the two unsafe scenarios for order constraints (“up skipped”

and “wakeup wrong thread” in Figure 5.6), it may be unnecessary to require the program counters

of every threads to be outside the set. Being conservative may cause a delay when installing

a filter. Fortunately, for server applications, which need live-update most, such scenarios rarely

occur because most order violations and their fixes only involve with worker threads that run for a

short period of time.

Server applications sometimes use thread pools, creating problems for our algorithm. Specifi-
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cally, during initialization these servers create a fixed set of threads, which loop forever until the

application exits to process request. If the loop body contains an event of an execution order filter,

the entire loop body will be marked unsafe, and Loom would have to wait until the application

exits to install the filter. Fortunately, we can annotate the request processing function as the

conceptual thread function, so that our algorithm does not compute a overly large set of unsafe

program locations. In our experiments, we did not (and need not) annotate any request processing

function.

5.3.2 Controlling Application Threads

Loom needs to control application threads to pause and resume them. It does so using a read-write

lock called the update lock. To live update an application, Loom grabs this lock in write mode,

performs the update, and releases this lock. To control application threads, Loom’s compiler plugin

instruments the application so that the application threads hold this lock in read mode in normal

operation and check for an update once in a while by releasing and re-grabbing this lock.

Loom carefully places update-checks inside an application to reduce the overhead and ensure a

timely update. Figure 5.8b shows the placement of these update-checks. Loom needs no update-

checks inside straight-line code with no blocking calls because such code can complete quickly.

Loom places one update-check for each cycle in the control flow graph, including loops and recursive

function call chains, so that an application thread cycling in one of these cycles can check for an

update at least once each iteration. Currently Loom instruments the backedge of a loop and an

arbitrary function entry in a recursive function cycle. Loom does not instrument every function

entry because doing so is costly.

Loom also instruments an application to release the update lock before a blocking call and re-

grab it after the call, so that an application thread blocking on the call does not delay an update.

For the example in Figure 5.7, Loom can perform the update despite some threads blocking in

recv(). Loom instruments only the “leaf-level” blocking calls. That is, if foo() calls bar() and

bar() is blocking, Loom instruments the calls to bar(), but not the calls to foo(). Currently

Loom conservatively considers calls to external functions (i.e., functions without source), except

Math library functions, as blocking to save user annotation effort.
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// inserted at CFG cycle

void cycle check(stmt id) {

if(wait[stmt id]) {

read unlock(&update);

while(wait[stmt id]);

read lock(&update);

}

}

// inserted before blocking call

void before blocking(callsite id) {

atomic inc(&counter[callsite id]);

read unlock(&update);

}

// inserted after blocking call

void after blocking(callsite id) {

read lock(&update);

atomic dec(&counter[callsite id]);

}

Figure 5.10: Instrumentation to pause application threads.

5.3.3 Pausing at Safe Program Locations

Besides the update lock, Loom uses additional synchronization variables to ensure that application

threads pause at safe locations. Loom assigns a wait flag for each backedge of a loop and the

chosen function entry of a recursive call cycle. To enable/disable pausing at a safe/unsafe location,

Loom sets/clears the corresponding flag. The instrumentation code for each CFG cycle (left of

Figure 5.10) checks for an update only when the corresponding wait flag is set. These wait flags

allow application threads at unsafe program locations to run until they reach safe program locations,

effectively evacuating the unsafe program locations.

Note that the statement “if(wait[stmt id])” in Figure 5.10 greatly improves Loom’s perfor-

mance. With this statement, application threads need not always release and re-grab the update

lock which can be costly, and hardware cache and branch prediction can effectively hide the over-

head of checking these flags. This technique speeds up Loom significantly (§5.5) because wait flags

are almost always 0 with read accesses.

Loom cannot use the wait-flag technique to skip a blocking function call because doing so

changes the application semantics. Instead, Loom assigns a counter to each blocking callsite to

track how many threads are at the callsites (right of Figure 5.10). Loom uses a counter instead of

a binary flag because multiple threads may be doing the same call.

Now that Loom’s instrumentation is in place, Figure 5.11 shows Loom’s evacuation method

which runs within Loom’s live update engine. This method first sets the wait flags for safe
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volatile int wait[NBACKEDGE] = {0};
volatile int counter[NCALLSITE] = {0};
rwlock t update;

void evacuate() {
for each B in safe backedges

wait[B] = 1; // turn on wait flags

retry:

write lock(&update); // pause app threads

for each C in unsafe callsites

if(counter[C]) { // threads paused at unsafe callsites

write unlock(&update);

goto retry;

}
. . . // update

for each B in safe backedges

wait[B] = 0; // turn off wait flags

write unlock(&update); // resume app threads

}

Figure 5.11: Pseudo code of the evacuation algorithm.

backedges. It then grabs the update lock in write mode, which pauses all application threads.

It then examines the counters of unsafe callsites and if any counter is positive, it releases the up-

date lock and retries, so that the thread blocked at unsafe callsites can wake up and advance to

safe locations. Next, it updates the application (§5.4), clears the wait flags, and releases the update

lock.

Our evacuation algorithm may cause the program to deadlock if (1) the execution filter itself

cause the program to deadlock, or (2) the static analysis used to compute unsafe program locations

is too conservative and includes more statements than necessary. In an extreme case, if Loom

treats all program locations as unsafe, it can never evacuate any thread outside the unsafe region.

Due to these limitations, we set an upper-bound (100 in our experiments) on the number of retries

in our evacuation algorithm. If the number of retries reaches this limit, we hand over the control

to the user of Loom, who can revoke this execution filter and investigate the issue further. In our

experiments, we did not encounter any of this case.
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5.3.4 Correctness Discussion

In program analysis terms, our reachability analysis (§5.3.1) is interprocedural and flow-sensitive.

We use a crude pointer analysis to discover thread functions, thread join sites, and function pointer

targets. We could have refined our analysis to improve precision, but we find it sufficient to compute

unsafe locations for all evaluated races because (1) our analysis is sound and never marks an unsafe

location safe and (2) execution filters are quite small and slight imprecision does not matter. In the

worst case, if our analysis turns out too imprecise for some filters, the flexibility of Loom allows

developers to easily adjust their filters to pass the safety analysis.

Our reachability analysis gives correct results despite compiler reordering. In order to pause ap-

plication threads at safe locations, our reachability analysis returns only the set of unsafe backedges

and external callsites. These locations are instrumented by Loom; this instrumentation acts as

barriers and prevents compilers from reordering instructions across them.

The synchronization between the instrumentation in Figure 5.10 and the evacuation algorithm

in Figure 5.11 is correct under two conditions: (1) read and write to wait flags are atomic and

(2) the operations to the update lock contain correct memory barriers that prevent hardware

reordering. Currently we implement wait flags using aligned integers; our update lock operations

use atomic operations similar to the Linux kernel’s rw spinlock. Thus, our evacuation algorithm

works correctly on X86 and AMD64 which do not reorder instructions across atomic instructions.

We expect our algorithm to work on other commodity hardware that also provides this guarantee.

To cope with more relaxed hardware (e.g., Alpha), we can augment these operations with full

barriers.

5.4 Hybrid Instrumentation

Most previous live update systems update binaries by compiling updated functions and redirecting

old functions to the new function binaries using a table or jump instructions. This approach requires

source patches to generate the updates, thus it has the limitations of unsafe updating and untime-

liness. Moreover, this approach pays the overhead of position independent code (PIC) because

application functions must be compiled as PIC for live update. It also suffers the aforementioned
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void slot(int stmt id) {

op list = operations[stmt id];

foreach op in op list

do op;

}

Figure 5.12: Slot function.

function quiescence problem.2

Another alternative is to use general-purpose binary instrumentation tools such as vx32 [Ford

and Cox, 2008], Pin [Luk et al., 2005] and DynamoRIO [Bruening, 2004], but they tend to incur

significant runtime overhead just to run their frameworks alone. For example, Pin has been reported

to incur 199% overhead [Luk et al., 2005], and we observed 10 times slowdown on Apache with a

CPU-bound workload (§5.5).

Loom’s hybrid instrumentation framework reduces runtime overhead by combining static and

dynamic instrumentation. This framework statically transforms an application’s binary to antic-

ipate dynamic updates. The static transformation pre-pads, before each program location, a slot

function which interprets the updates to this program location at runtime. Figure 5.12 shows the

pseudo code of this function. It iterates though a list of synchronization operations assigned to

the current statement and performs each. To update a program location at runtime, Loom simply

modifies the corresponding operation list.

Inserting the slot function at every statement incurs high runtime overhead and hinders compiler

optimization. Loom solves this problem using a basic block cloning idea [Liblit et al., 2003]. Loom

keeps two versions of each basic block in the application binary, an originally compiled version that

is optimized, and a hot backup that is unoptimized and padded for live update. To update a basic

block at runtime, Loom simply updates the backup and switches the execution to the backup by

flipping a switch flag.

Loom instruments only function entries and loop backedges to check the switch flags because

doing so for each basic block is expensive. Similar to the wait flags in (§5.3), the switch flags are

2The function quiescence problem can be addressed by transforming loop bodies into functions [Neamtiu et al.,

2006; Neamtiu and Hicks, 2009] but only if the CFGs are reducible [Hecht and Ullman, 1974].



CHAPTER 5. BYPASSING RACES IN LIVE APPLICATIONS WITH EXECUTION
FILTERS 105

Race ID Description

MySQL-791 Calls to close() and open() to flush log file are not atomic. Figure 5.2 shows the code.

MySQL-169 Table update and log write in mysql delete() are not atomic.

MySQL-644 Calls to prepare() and optimize() in mysql select() are not atomic.

Apache-21287 Reference count decrement and checking are not atomic.

Apache-25520 Threads write to same log buffer concurrently, resulting in corrupted logs or crashes.

PBZip2 Variable fifo is used in one thread after being freed by another. Figure 5.4 shows the code.

SPLASH2-fft Variable finishtime and initdonetime are read before assigned the correct values.

SPLASH2-lu Variable rf is read before assigned the correct value.

SPLASH2-barnes Variable tracktime is read before assigned the correct value.

Table 5.3: All races used in evaluation. We identify races in MySQL and Apache as “〈application name〉−

〈Bugzilla #〉”, the only race in PBZip2 “PBZip2”, and races in SPLASH2 “SPLASH2 −

〈benchmark name〉”.

almost always 0, so that hardware cache and branch predication can effectively hide the overhead

of checking them. This technique makes live-update-ready applications run as fast as the original

application during normal operations (§5.5). Figure 5.8c shows the final results after all Loom

transformations.

Note that the accesses to switch flags are correctly protected by the update lock. An application

checks the switch flag when holding the update lock in read mode, and the update engine sets the

switch flag when holding the update lock in write mode.

5.5 Evaluation

We implemented Loom in Linux. It consists of 4,852 lines of C++ code, with 1,888 lines for the

LLVM compiler plugin, 2,349 lines for the live-update engine, and 615 lines for the controller.

We evaluated Loom on nine real races from a diverse set of applications, ranging from two

server applications MySQL [mys, 2014] and Apache [Apache, 2012], to one desktop application

PBZip2 [PBZIP2, 2011], to three scientific applications fft, lu, and barnes in SPLASH2 [SPLASH2,

2007].3 Table 5.3 lists all nine races. Our race selection criteria is simple: (1) they are extensively

3We include applications that do not need live update for two reasons. First, Loom can provide quick workarounds
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used in previous studies [Lu et al., 2006; Park et al., 2009a; Park et al., 2009b] and (2) the applica-

tion can be compiled by LLVM and the race can be reproduced on our main evaluation machine,

a 2.66 GHz Intel quad-core machine with 4 GB memory running 32-bit Linux 2.6.24.

We used the following workloads in our experiments. For MySQL, we used SysBench [sys, 2004]

(advanced transaction workload), which randomly selects, updates, deletes, and inserts database

records. For Apache, we used ApacheBench [apa, 2014], which repeatedly downloads a webpage.

Both benchmarks are multithreaded and used by the server developers. We made both SysBench

and ApacheBench CPU bound by fitting the database or web contents within memory; we also ran

both the client and the server on the same machine, to avoid masking Loom’s overhead with the

network overhead. Unless otherwise specified, we ran 16 worker threads for MySQL and Apache

because they performed best with 8-16 threads. We ran four worker threads for PBZip2 and

SPLASH2 applications because they are CPU-intensive and our evaluation machine has four cores.

We measured throughput (TPUT) and response time (RESP) for server applications and overall

execution time for other applications. We report Loom’s relative overhead, the smaller the better.

We compiled the applications down to x86 instructions using llvm-gcc -O2 and LLVM’s bitcode

compiler llc. For all the performance numbers reported, we repeated the experiment 50 times and

take the average.

We focus our evaluation on five dimensions:

1. Overhead. Does Loom incur low overhead?

2. Scalability. Does Loom scale well as the number of application threads increases?

3. Reliability. Can Loom be used to fix the races listed in Table 5.3? What are the performance

and reliability tradeoffs of execution filters?

4. Availability. Does Loom severely degrade application availability when execution filters are

installed?

5. Timeliness. Can Loom install fixes in a timely way?

5.5.1 Overhead

Figure 5.13 shows the performance overhead of Loom during the normal operations of the appli-

cations. The base line of the comparison is the run time of the original program compiled using

for these applications as well. Second, we use them to measure Loom’s overhead and scalability.
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Figure 5.14: Effects of Loom’s optimizations. Label unopt represents the versions with no optimiza-

tions; cloning represents the version with basic block cloning (§5.4); wait-flag represents the version with

statement “if(wait[stmt id])” added (§5.3.2); and inlining indicates the version with all Loom instru-

mentation inlined into the applications.

llvm-gcc -O2. We also show the overhead of bare Pin for reference. Loom incurs little overhead

for Apache and SPLASH2 benchmarks. It increases MySQL’s response time by 4.11% and degrades

its throughput by 3.76%. In contrast, Pin incurs higher overhead for all applications evaluated,

especially for Apache and MySQL.

We also evaluated how the optimizations we do reduce Loom’s overhead. Figure 5.14 shows the

effects of these optimizations. Both cloning and wait-flag are very effective at reducing overhead.

Cloning reduces Loom’s response-time overhead on Apache from 100% to 17%. It also reduces

Loom’s overhead on fft from 15 times to 8 times. Wait-flag actually makes Apache run faster

than the original version. Inlining does not help the servers much, but it does help for SPLASH2

applications.

5.5.2 Scalability

Loom synchronizes with application threads via a read-write lock. Thus, one concern is, can Loom

scale well as the number of application threads increases? To evaluate Loom’s scalability, we ran

Apache and MySQL with Loom on a 48-core machine with four 1.9 GHz 12-core AMD CPUs and

64 GB memory running 64-bit Linux 2.6.24. In each experiment, we pinned the benchmark to one

CPU and the server to the other three to avoid unnecessary CPU contention between them.

Figure 5.15 shows Loom’s relative overhead vs. the number of application threads for Apache

and MySQL. Loom scales well with the number of threads. Its relative overhead varies only slightly.
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Figure 5.15: Loom’s relative overhead vs. the number of application threads.

Even with 32 server threads, the overhead for Apache is less than 3%, and the overhead for MySQL

is less than 12%.

Our initial MySQL overhead was around 16%. We analyzed the execution counts of the Loom-

inserted functions and immediately identified two update-check sites (cycle check() calls) that

executed exceedingly many times. These update-check sites are in MySQL functions ptr compare 1

and

Field varstring::val str. The first function compares two strings, and the second copies one

string to another. Each function has a loop with a few statements and no function calls. Such

tight loops cause higher overhead for Loom, but rarely need to be updated. We thus disabled the

update-check sites in these two functions, which reduced the overhead of MySQL down to 12%.

This optimization can be easily automated using static or dynamic analysis, which we leave for

future work.

5.5.3 Reliability

Loom can be used to fix all races evaluated. (We verified this result by manually inspecting the

application binary.) Table 5.4 shows the statistics for the execution filters that fix atomicity errors.

Table 5.5 shows the statistics for the execution filters that fix order errors.

In all cases, we can fix the race using multiple execution filters, demonstrating the flexibility of

Loom. (The filters for MySQL-791 are shown in Figure 5.3.) We only show the statistics of one

execution filter of each constraint type; other filters of the same type are similar. Our results show

that the filters are fairly small, 3.79 events on average and no more than 16 events, demonstrating
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Race ID
Mutual Unilateral

Events TPUT RESP Events TPUT RESP

MySQL-169 2 0.14% 0.15% 1 3.28% 3.37%

MySQL-644 4 0.22% 0.20% 4 32.58% 48.34%

MySQL-791 4 0.23% 0.32% 2 0.33% 0.48%

Apache-21287 16 -0.02% -0.03% 2 54.03% 118.16%

Apache-25520 1 0.52% 0.55% 1 86.04% 637.03%

Table 5.4: Execution filter stats for atomicity errors. Column Events counts the number of events

in each filter.

Race ID Events Overhead

PBZip2 6 1.26%

SPLASH2-fft 6 0.08%

SPLASH2-lu 2 1.68%

SPLASH2-barnes 2 1.99%

Table 5.5: Execution filter stats for order errors.

the ease of use of Loom. Most filters incur only a small overhead on top of Loom. Unilateral filters

tend to be slightly smaller than mutual exclusion filters, but they can be expensive sometimes. They

incur little overhead for two of the MySQL bugs because the code regions protected by the filters

rarely run.

These different reliability and performance overheads present an interesting tradeoff to devel-

opers. For example, users can choose to install a unilateral filter for immediate protection, then

atomically replace it with a faster mutual exclusion filter. Moreover, a user can choose an “expen-

sive” filter as long as their workload is compatible with the filter.

5.5.4 Availability

We show that Loom can improve server availability by comparing Loom to the restart-based soft-

ware update approach. We restarted a server by running its startup script under /etc/init.d. We

chose two races, MySQL-791 and Apache-25520, and measured how software updates (conventional

or with Loom) might degrade performance. Note this comparison favors conventional updates be-
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Figure 5.16: Throughput degradation for fixing races with Loom vs. with conventional software

update.

cause we only compare the installation of the fix, but Loom also makes it quick to develop fixes.

Figure 5.16 shows the comparison result. Using the restart approach, Apache is unavailable for 4

seconds, and MySQL is unavailable for 2 seconds. Moreover, the restarts also cause Apache and

MySQL to lose their internal cache, leading to a ramp-up period after the restart. In contrast,

installing an filter using Loom (at second 5) does not degrade throughput for MySQL and only

degrades throughput slightly for Apache.

5.5.5 Timeliness

The more timely Loom installs a filter, the quicker the application is protected from the correspond-

ing race. This timeliness is critical for server applications because malicious clients may exploit

a known race and launch attacks. In this subsection, we compare how timely Loom’s evacuation

algorithm installs an aggressive filter vs. an approach that passively waits for function quiescence.

We chose Apache-25520 as the benchmark race. We wrote a simple mutual exclusion filter that

fixes the race by making function ap buffered log writer a critical region. We then measured the

latency from the moment Loom receives a filter to the moment the filter is installed. We simulated

a function quiescence approach by running Loom without making any wait flag false, so that a

thread can pause wherever we insert update-checks. We used the same SysBench and ApacheBench

workload. Our results show that Loom can install the filter within 368 ms. It spends majority of

the time waiting for threads to evacuate. In contrast, an approach based on function quiescence

fails to install the filter in an hour, our experiment’s time limit.
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5.6 Related Work

Live update Loom differs from previous live update systems [Neamtiu et al., 2006; Neamtiu and

Hicks, 2009; Arnold and Kaashoek, 2009; Chen et al., 2006; Subramanian et al., 2009; Altekar

et al., 2005; Makris and Ryu, 2007] in that it is explicitly designed for developers to quickly

develop temporary workarounds to races. Moreover, it can automatically ensure the safety of

the workarounds. In contrast, previous work focuses only on live update after a source patch is

available, thus it does not address the automatic-safety and flexibility problems Loom addresses.

The live update system closest to Loom is STUMP [Neamtiu and Hicks, 2009], which can live-

update multithreaded applications written in C. Its prior version Ginseng [Neamtiu et al., 2006]

works with single-threaded C applications. Both STUMP and Ginseng have been shown to be able

to apply arbitrary source patches and update applications across major releases. Unlike Loom,

both STUMP and Ginseng require source modifications and rely on extensive user annotations for

safety because the safety of arbitrary live updates has been proven undecidable [Gupta et al., 1996].

A number of live update systems can update kernels without reboots [Arnold and Kaashoek,

2009; Chen et al., 2006; Makris and Ryu, 2007]. The most recent one, Ksplice [Arnold and

Kaashoek, 2009], constructs live updates from object code, and does not require developer ef-

forts to adapt existing source patches. Unlike Loom, Ksplice uses function quiescence for safety,

and is thus prone to the unsafe state problem discussed in §5.3. Another kernel live update system,

DynAMOS [Makris and Ryu, 2007], requires users to manually construct multiple versions of a

function to update non-quiescent functions. This technique is different from basic block cloning

(§5.4): the former is manual and for safety, whereas the later is automatic and for speed.

Error workaround and recovery We compare Loom to recent error workaround and recovery

tools. ClearView [Perkins et al., 2009], ASSURE [Sidiroglou et al., 2009], and Failure-oblivious

computing can increase application availability by letting them continue despite errors. Compared

to Loom, these systems are unsafe, and do not directly deal with races. Rx [Qin et al., 2007] can

safely recover from runtime faults using application checkpoints and environment modifications, but

it does not fix errors because the same error can re-appear. Vigilante [Costa et al., 2005] enables

hosts to collaboratively contain worms using self-verifiable alerts. By automatically ensuring filter

safety, Loom shares similar benefits.

Two recent systems, Dimmunix [Jula et al., 2008] and Gadara [Wang et al., 2008], can fix dead-
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locks in legacy multithreaded programs. Dimmunix extracts signatures from occurred deadlocks

(or starvations) and dynamically avoids them in future executions. Gadara uses control theory to

statically transform a program into a deadlock-free program. Both systems have been shown to

work on real, large applications. They may possibly be adapted to fix races, albeit at a coarser

granularity because these systems control only lock operations.

Kivati [Chew and Lie, 2010] automatically detects and prevents atomicity violations for pro-

duction systems. It reduces performance overhead by cleverly using hardware watch points, but

the limited number of watch points on commodity hardware means that Kivati cannot prevent all

atomicity violations. Nor does Kivati prevent execution order violations. Loom can be used to

workaround these errors missed by Kivati.

Program instrumentation frameworks Previous work [Engler et al., 2000; Necula et al., 2002;

LLVM, 2013] can instrument programs with low runtime overhead, but instrumentation has to be

done at compile time. Translation-based dynamic instrumentation frameworks [Luk et al., 2005;

Bruening, 2004; Ford and Cox, 2008] can update programs at runtime but incur high overhead. In

particular, vx32 [Ford and Cox, 2008] is a novel user-level sandbox that reduces overhead using

segmentation hardware; it can be used as an efficient dynamic binary translator. Jump-based

instrumentation frameworks [Hunt and Brubacher, 1998; Schulz et al., 2005] have low overhead

but automatically ensuring safety for them can be difficult due to low-level issues such as position-

dependent code, short instructions, and locations of basic blocks.

One advantage of these instrumentation frameworks over ours is that our framework requires

CFGs and symbol information to be distributed to user machines, thus it risks leaking proprietary

code information. However, this risk is not a concern for open-source software. Moreover, our

framework only mildly increases this risk because CFGs can often be reconstructed from binaries,

and companies such as Microsoft already share symbol information [mic, 2014].

The advantage of our framework is that it combines static and dynamic instrumentation, thus

allowing arbitrary dynamic updates issued by execution filters with negligible runtime overhead.

Our framework borrows basic block cloning from previous work by [Liblit et al., 2003], but their

framework is static only. This idea has also been used in other systems (e.g., LIFT [Qin et al.,

2006]).

Other related work Our work was inspired by many observations made by [Lu et al., 2008].
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Aspect-oriented programming (AOP) allows developers to “weave” in synchronizations into code [Kicza-

les et al., 1997; Lohmann et al., 2009]. Loom’s execution filter language shares some similarity to

AOP, and can be made more expressive by incorporating more aspects. However, to the best of our

knowledge, no existing AOP systems were designed to support race fixing at runtime. We view the

large body of race detection and diagnosis work (e.g., [Musuvathi et al., 2008; Park et al., 2009a;

Savage et al., 1997; Yu et al., 2005; Sen, 2008; Lu et al., 2007; Lu et al., 2006]) as complimentary

to our work and Loom can be used to fix errors detected and isolated by these tools.

5.7 Summary

This chapter presented Loom, a live-workaround system designed to quickly and safely fix appli-

cation races at runtime. Its flexible language allows developers to write concise execution filters to

declare their synchronization intents on code. Its evacuation algorithm automatically ensures the

safety of execution filters and their installation/removal processes. It uses hybrid instrumentation

to reduce its performance overhead during the normal operations of applications. We evaluated

Loom on nine real races from a diverse set of applications. Our results show that Loom is fast,

scalable, and easy to use. It can safely fix all evaluated races in a timely manner, thereby increasing

application availability.

Loom demonstrates that live-workaround systems can increase application availability with

little performance overhead. In our future work, we plan to extend this idea to other classes of

errors (e.g., security vulnerabilities).
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Chapter 6

Conclusions

This thesis presented a novel approach called schedule specialization. It statically analyzes a multi-

threaded program with respect to a small set of schedules and enforces them at runtime. Using this

idea, we dramatically improved the precision of static analysis on multithreaded programs while

maintaining the soundness of our static analysis results.

We built three systems to realize this vision. The first system is a specialization framework that

precisely analyzes a program with respect to a small set of schedules. It specializes a program with

respect to a schedule so stock analyses can automatically gain precision from these schedules. This

ability of automatically benefiting stock analyses allows us to build three highly precise schedule-

aware analyses.

The second system is our Peregrine system that enforces analyzed schedules at runtime for

soundness. It computes preconditions of recorded schedules so one schedule can be reused to

process multiple inputs. It uses the idea of hybrid schedule to deterministically and efficiently

enforces schedules with the presence of data races.

The third system is Loom, a live-update engine designed to quickly and safely bypass application

races at runtime. It provides a last-resort protection for multithreaded programs against races that

slip detection. Its flexible language allows developers to declare their synchronization intents on

code; its evacuation algorithm guarantee the safety of execution filters; its hybrid instrumentation

framework significantly reduces the runtime overhead of Loom.

Future work. There are two major lines of future work. Along the line of schedule specialization,
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we believe the general idea of restricting the behavior of a program to make it easier to analyze

can be applied beyond schedules. We can restrict other factors of programs’ execution environment

to benefit other static analyses. Along the line of Loom, we plan to extend Loom’s interface

and implementation to fix more types of errors (such as deadlocks and memory errors) in live

applications. Also, we plan to generalize the hybrid instrumentation framework to support more

complicated instrumentation, and build more applications on it.
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