7 research outputs found

    Translational Systems Pharmacology-Based Predictive Assessment of Drug-Induced Cardiomyopathy

    Get PDF
    Drug-induced cardiomyopathy contributes to drug attrition. We compared two pipelines of predictive modeling: (1) applying elastic net (EN) to differentially expressed genes (DEGs) of drugs; (2) applying integer linear programming (ILP) to construct each drug’s signaling pathway starting from its targets to downstream proteins, to transcription factors, and to its DEGs in human cardiomyocytes, and then subjecting the genes/proteins in the drugs’ signaling networks to EN regression. We classified 31 drugs with availability of DEGs into 13 toxic and 18 nontoxic drugs based on a clinical cardiomyopathy incidence cutoff of 0.1%. The ILP-augmented modeling increased prediction accuracy from 79% to 88% (sensitivity: 88%; specificity: 89%) under leave-one-out cross validation. The ILP-constructed signaling networks of drugs were better predictors than DEGs. Per literature, the microRNAs that reportedly regulate expression of our six top predictors are of diagnostic value for natural heart failure or doxorubicin-induced cardiomyopathy. This translational predictive modeling might uncover potential biomarkers

    Translational systems pharmacology‐based predictive assessment of drug‐induced cardiomyopathy

    Get PDF
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142916/1/psp412272.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142916/2/psp412272_am.pd

    Reconstruction of the temporal signaling network in Salmonella-infected human cells

    Get PDF
    Salmonella enterica is a bacterial pathogen that usually infects its host through food sources. Translocation of the pathogen proteins into the host cells leads to changes in the signaling mechanism either by activating or inhibiting the host proteins. Using high-throughput ‘omic’ technologies, changes in the signaling components can be quantified at different levels; however, experimental hits are usually incomplete to represent the whole signaling system as some driver proteins stay hidden within the experimental data. Given that the bacterial infection modifies the response network of the host, more coherent view of the underlying biological processes and the signaling networks can be obtained by using a network modeling approach based on the reverse engineering principles in which a confident region from the protein interactome is found by inferring hits from the omic experiments. In this work, we have used a published temporal phosphoproteomic dataset of Salmonella-infected human cells and reconstructed the temporal signaling network of the human host by integrating the interactome and the phosphoproteomic datasets. We have combined two well-established network modeling frameworks, the Prize-collecting Steiner Forest (PCSF) approach and the Integer Linear Programming (ILP) based edge inference approach. The resulting network conserves the information on temporality, direction of interactions, while revealing hidden entities in the signaling, such as the SNARE binding, mTOR signaling, immune response, cytoskeleton organization, and apoptosis pathways. Targets of the Salmonella effectors in the host cells such as CDC42, RHOA, 14-3-3ή, Syntaxin family, Oxysterol-binding proteins were included in the reconstructed signaling network although they were not present in the initial phosphoproteomic data. We believe that integrated approaches have a high potential for the identification of clinical targets in infectious diseases, especially in the Salmonella infections

    Detecting and Removing Inconsistencies between Experimental Data and Signaling Network Topologies Using Integer Linear Programming on Interaction Graphs

    Get PDF
    <div><p>Cross-referencing experimental data with our current knowledge of signaling network topologies is one central goal of mathematical modeling of cellular signal transduction networks. We present a new methodology for data-driven interrogation and training of signaling networks. While most published methods for signaling network inference operate on Bayesian, Boolean, or ODE models, our approach uses integer linear programming (ILP) on interaction graphs to encode constraints on the qualitative behavior of the nodes. These constraints are posed by the network topology and their formulation as ILP allows us to predict the possible qualitative changes (up, down, no effect) of the activation levels of the nodes for a given stimulus. We provide four basic operations to detect and remove inconsistencies between measurements and predicted behavior: (i) find a topology-consistent explanation for responses of signaling nodes measured in a stimulus-response experiment (if none exists, find the closest explanation); (ii) determine a minimal set of nodes that need to be corrected to make an inconsistent scenario consistent; (iii) determine the optimal subgraph of the given network topology which can best reflect measurements from a set of experimental scenarios; (iv) find possibly missing edges that would improve the consistency of the graph with respect to a set of experimental scenarios the most. We demonstrate the applicability of the proposed approach by interrogating a manually curated interaction graph model of EGFR/ErbB signaling against a library of high-throughput phosphoproteomic data measured in primary hepatocytes. Our methods detect interactions that are likely to be inactive in hepatocytes and provide suggestions for new interactions that, if included, would significantly improve the goodness of fit. Our framework is highly flexible and the underlying model requires only easily accessible biological knowledge. All related algorithms were implemented in a freely available toolbox <i>SigNetTrainer</i> making it an appealing approach for various applications.</p></div

    Computational Integrative Models for Cellular Conversion: Application to Cellular Reprogramming and Disease Modeling

    Get PDF
    The groundbreaking identification of only four transcription factors that are able to induce pluripotency in any somatic cell upon perturbation stimulated the discovery of copious amounts of instructive factors triggering different cellular conversions. Such conversions are highly significant to regenerative medicine with its ultimate goal of replacing or regenerating damaged and lost cells. Precise directed conversion of damaged cells into healthy cells offers the tantalizing prospect of promoting regeneration in situ. In the advent of high-throughput sequencing technologies, the distinct transcriptional and accessible chromatin landscapes of several cell types have been characterized. This characterization provided clear evidences for the existence of cell type specific gene regulatory networks determined by their distinct epigenetic landscapes that control cellular phenotypes. Further, these networks are known to dynamically change during the ectopic expression of genes initiating cellular conversions and stabilize again to represent the desired phenotype. Over the years, several computational approaches have been developed to leverage the large amounts of high-throughput datasets for a systematic prediction of instructive factors that can potentially induce desired cellular conversions. To date, the most promising approaches rely on the reconstruction of gene regulatory networks for a panel of well-studied cell types relying predominantly on transcriptional data alone. Though useful, these methods are not designed for newly identified cell types as their frameworks are restricted only to the panel of cell types originally incorporated. More importantly, these approaches rely majorly on gene expression data and cannot account for the cell type specific regulations modulated by the interplay of the transcriptional and epigenetic landscape. In this thesis, a computational method for reconstructing cell type specific gene regulatory networks is proposed that aims at addressing the aforementioned limitations of current approaches. This method integrates transcriptomics, chromatin accessibility assays and available prior knowledge about gene regulatory interactions for predicting instructive factors that can potentially induce desired cellular conversions. Its application to the prioritization of drugs for reverting pathologic phenotypes and the identification of instructive factors for inducing the cellular conversion of adipocytes into osteoblasts underlines the potential to assist in the discovery of novel therapeutic interventions

    Computational Integrative Models for Cellular Conversion: Application to Cellular Reprogramming and Disease Modeling

    Get PDF
    The groundbreaking identification of only four transcription factors that are able to induce pluripotency in any somatic cell upon perturbation stimulated the discovery of copious amounts of instructive factors triggering different cellular conversions. Such conversions are highly significant to regenerative medicine with its ultimate goal of replacing or regenerating damaged and lost cells. Precise directed conversion of damaged cells into healthy cells offers the tantalizing prospect of promoting regeneration in situ. In the advent of high-throughput sequencing technologies, the distinct transcriptional and accessible chromatin landscapes of several cell types have been characterized. This characterization provided clear evidences for the existence of cell type specific gene regulatory networks determined by their distinct epigenetic landscapes that control cellular phenotypes. Further, these networks are known to dynamically change during the ectopic expression of genes initiating cellular conversions and stabilize again to represent the desired phenotype. Over the years, several computational approaches have been developed to leverage the large amounts of high-throughput datasets for a systematic prediction of instructive factors that can potentially induce desired cellular conversions. To date, the most promising approaches rely on the reconstruction of gene regulatory networks for a panel of well-studied cell types relying predominantly on transcriptional data alone. Though useful, these methods are not designed for newly identified cell types as their frameworks are restricted only to the panel of cell types originally incorporated. More importantly, these approaches rely majorly on gene expression data and cannot account for the cell type specific regulations modulated by the interplay of the transcriptional and epigenetic landscape. In this thesis, a computational method for reconstructing cell type specific gene regulatory networks is proposed that aims at addressing the aforementioned limitations of current approaches. This method integrates transcriptomics, chromatin accessibility assays and available prior knowledge about gene regulatory interactions for predicting instructive factors that can potentially induce desired cellular conversions. Its application to the prioritization of drugs for reverting pathologic phenotypes and the identification of instructive factors for inducing the cellular conversion of adipocytes into osteoblasts underlines the potential to assist in the discovery of novel therapeutic interventions
    corecore