30 research outputs found

    Identifying Conspiracy Theories News based on Event Relation Graph

    Full text link
    Conspiracy theories, as a type of misinformation, are narratives that explains an event or situation in an irrational or malicious manner. While most previous work examined conspiracy theory in social media short texts, limited attention was put on such misinformation in long news documents. In this paper, we aim to identify whether a news article contains conspiracy theories. We observe that a conspiracy story can be made up by mixing uncorrelated events together, or by presenting an unusual distribution of relations between events. Achieving a contextualized understanding of events in a story is essential for detecting conspiracy theories. Thus, we propose to incorporate an event relation graph for each article, in which events are nodes, and four common types of event relations, coreference, temporal, causal, and subevent relations, are considered as edges. Then, we integrate the event relation graph into conspiracy theory identification in two ways: an event-aware language model is developed to augment the basic language model with the knowledge of events and event relations via soft labels; further, a heterogeneous graph attention network is designed to derive a graph embedding based on hard labels. Experiments on a large benchmark dataset show that our approach based on event relation graph improves both precision and recall of conspiracy theory identification, and generalizes well for new unseen media sources.Comment: Accepted to EMNLP 2023 Finding

    Learning To Teach Large Language Models Logical Reasoning

    Full text link
    Large language models (LLMs) have gained enormous attention from both academia and industry, due to their exceptional ability in language generation and extremely powerful generalization. However, current LLMs still output unreliable content in practical reasoning tasks due to their inherent issues (e.g., hallucination). To better disentangle this problem, in this paper, we conduct an in-depth investigation to systematically explore the capability of LLMs in logical reasoning. More in detail, we first investigate the deficiency of LLMs in logical reasoning on different tasks, including event relation extraction and deductive reasoning. Our study demonstrates that LLMs are not good reasoners in solving tasks with rigorous reasoning and will produce counterfactual answers, which require us to iteratively refine. Therefore, we comprehensively explore different strategies to endow LLMs with logical reasoning ability, and thus enable them to generate more logically consistent answers across different scenarios. Based on our approach, we also contribute a synthesized dataset (LLM-LR) involving multi-hop reasoning for evaluation and pre-training. Extensive quantitative and qualitative analyses on different tasks also validate the effectiveness and necessity of teaching LLMs with logic and provide insights for solving practical tasks with LLMs in future work

    Weakly-supervised Learning Approaches for Event Knowledge Acquisition and Event Detection

    Get PDF
    Capabilities of detecting events and recognizing temporal, subevent, or causality relations among events can facilitate many applications in natural language understanding. However, supervised learning approaches that previous research mainly uses have two problems. First, due to the limited size of annotated data, supervised systems cannot sufficiently capture diverse contexts to distill universal event knowledge. Second, under certain application circumstances such as event recognition during emergent natural disasters, it is infeasible to spend days or weeks to annotate enough data to train a system. My research aims to use weakly-supervised learning to address these problems and to achieve automatic event knowledge acquisition and event recognition. In this dissertation, I first introduce three weakly-supervised learning approaches that have been shown effective in acquiring event relational knowledge. Firstly, I explore the observation that regular event pairs show a consistent temporal relation despite of their various contexts, and these rich contexts can be used to train a contextual temporal relation classifier to further recognize new temporal relation knowledge. Secondly, inspired by the double temporality characteristic of narrative texts, I propose a weakly supervised approach that identifies 287k narrative paragraphs using narratology principles and then extract rich temporal event knowledge from identified narratives. Lastly, I develop a subevent knowledge acquisition approach by exploiting two observations that 1) subevents are temporally contained by the parent event and 2) the definitions of the parent event can be used to guide the identification of subevents. I collect rich weak supervision to train a contextual BERT classifier and apply the classifier to identify new subevent knowledge. Recognizing texts that describe specific categories of events is also challenging due to language ambiguity and diverse descriptions of events. So I also propose a novel method to rapidly build a fine-grained event recognition system on social media texts for disaster management. My method creates high-quality weak supervision based on clustering-assisted word sense disambiguation and enriches tweet message representations using preceding context tweets and reply tweets in building event recognition classifiers

    Eesti keele üldvaldkonna tekstide laia kattuvusega automaatne sündmusanalüüs

    Get PDF
    Seoses tekstide suuremahulise digitaliseerimisega ning digitaalse tekstiloome järjest laiema levikuga on tohutul hulgal loomuliku keele tekste muutunud ja muutumas masinloetavaks. Masinloetavus omab potentsiaali muuta tekstimassiivid inimeste jaoks lihtsamini hallatavaks, nt lubada rakendusi nagu automaatne sisukokkuvõtete tegemine ja tekstide põhjal küsimustele vastamine, ent paraku ei ulatu praegused automaatanalüüsi võimalused tekstide sisu tegeliku mõistmiseni. Oletatakse, tekstide sisu mõistvale automaatanalüüsile viib meid lähemale sündmusanalüüs – kuna paljud tekstid on narratiivse ülesehitusega, tõlgendatavad kui „sündmuste kirjeldused”, peaks tekstidest sündmuste eraldamine ja formaalsel kujul esitamine pakkuma alust mitmete „teksti mõistmist” nõudvate keeletehnoloogia rakenduste loomisel. Käesolevas väitekirjas uuritakse, kuivõrd saab eestikeelsete tekstide sündmusanalüüsi käsitleda kui avatud sündmuste hulka ja üldvaldkonna tekste hõlmavat automaatse lingvistilise analüüsi ülesannet. Probleemile lähenetakse eesti keele automaatanalüüsi kontekstis uudsest, sündmuste ajasemantikale keskenduvast perspektiivist. Töös kohandatakse eesti keelele TimeML märgendusraamistik ja luuakse raamistikule toetuv automaatne ajaväljendite tuvastaja ning ajasemantilise märgendusega (sündmusviidete, ajaväljendite ning ajaseoste märgendusega) tekstikorpus; analüüsitakse korpuse põhjal inimmärgendajate kooskõla sündmusviidete ja ajaseoste määramisel ning lõpuks uuritakse võimalusi ajasemantika-keskse sündmusanalüüsi laiendamiseks geneeriliseks sündmusanalüüsiks sündmust väljendavate keelendite samaviitelisuse lahendamise näitel. Töö pakub suuniseid tekstide ajasemantika ja sündmusstruktuuri märgenduse edasiarendamiseks tulevikus ning töös loodud keeleressurssid võimaldavad nii konkreetsete lõpp-rakenduste (nt automaatne ajaküsimustele vastamine) katsetamist kui ka automaatsete märgendustööriistade edasiarendamist.  Due to massive scale digitalisation processes and a switch from traditional means of written communication to digital written communication, vast amounts of human language texts are becoming machine-readable. Machine-readability holds a potential for easing human effort on searching and organising large text collections, allowing applications such as automatic text summarisation and question answering. However, current tools for automatic text analysis do not reach for text understanding required for making these applications generic. It is hypothesised that automatic analysis of events in texts leads us closer to the goal, as many texts can be interpreted as stories/narratives that are decomposable into events. This thesis explores event analysis as broad-coverage and general domain automatic language analysis problem in Estonian, and provides an investigation starting from time-oriented event analysis and tending towards generic event analysis. We adapt TimeML framework to Estonian, and create an automatic temporal expression tagger and a news corpus manually annotated for temporal semantics (event mentions, temporal expressions, and temporal relations) for the language; we analyse consistency of human annotation of event mentions and temporal relations, and, finally, provide a preliminary study on event coreference resolution in Estonian news. The current work also makes suggestions on how future research can improve Estonian event and temporal semantic annotation, and the language resources developed in this work will allow future experimentation with end-user applications (such as automatic answering of temporal questions) as well as provide a basis for developing automatic semantic analysis tools

    A history and theory of textual event detection and recognition

    Get PDF

    Low-Resource Event Extraction

    Get PDF
    The last decade has seen the extraordinary evolution of deep learning in natural language processing leading to the rapid deployment of many natural language processing applications. However, the field of event extraction did not witness a parallel success story due to the inherent challenges associated with its scalability. The task itself is much more complex than other NLP tasks due to the dependency among its subtasks. This interlocking system of tasks requires a full adaptation whenever one attempts to scale to another domain or language, which is too expensive to scale to thousands of domains and languages. This dissertation introduces a holistic method for expanding event extraction to other domains and languages within the limited available tools and resources. First, this study focuses on designing neural network architecture that enables the integration of external syntactic and graph features as well as external knowledge bases to enrich the hidden representations of the events. Second, this study presents network architecture and training methods for efficient learning under minimal supervision. Third, we created brand new multilingual corpora for event relation extraction to facilitate the research of event extraction in low-resource languages. We also introduce a language-agnostic method to tackle multilingual event relation extraction. Our extensive experiment shows the effectiveness of these methods which will significantly speed up the advance of the event extraction field. We anticipate that this research will stimulate the growth of the event detection field in unexplored domains and languages, ultimately leading to the expansion of language technologies into a more extensive range of diaspora
    corecore