68,353 research outputs found

    Daily Stress Recognition from Mobile Phone Data, Weather Conditions and Individual Traits

    Full text link
    Research has proven that stress reduces quality of life and causes many diseases. For this reason, several researchers devised stress detection systems based on physiological parameters. However, these systems require that obtrusive sensors are continuously carried by the user. In our paper, we propose an alternative approach providing evidence that daily stress can be reliably recognized based on behavioral metrics, derived from the user's mobile phone activity and from additional indicators, such as the weather conditions (data pertaining to transitory properties of the environment) and the personality traits (data concerning permanent dispositions of individuals). Our multifactorial statistical model, which is person-independent, obtains the accuracy score of 72.28% for a 2-class daily stress recognition problem. The model is efficient to implement for most of multimedia applications due to highly reduced low-dimensional feature space (32d). Moreover, we identify and discuss the indicators which have strong predictive power.Comment: ACM Multimedia 2014, November 3-7, 2014, Orlando, Florida, US

    Communicability Graph and Community Structures in Complex Networks

    Get PDF
    We use the concept of the network communicability (Phys. Rev. E 77 (2008) 036111) to define communities in a complex network. The communities are defined as the cliques of a communicability graph, which has the same set of nodes as the complex network and links determined by the communicability function. Then, the problem of finding the network communities is transformed to an all-clique problem of the communicability graph. We discuss the efficiency of this algorithm of community detection. In addition, we extend here the concept of the communicability to account for the strength of the interactions between the nodes by using the concept of inverse temperature of the network. Finally, we develop an algorithm to manage the different degrees of overlapping between the communities in a complex network. We then analyze the USA airport network, for which we successfully detect two big communities of the eastern airports and of the western/central airports as well as two bridging central communities. In striking contrast, a well-known algorithm groups all but two of the continental airports into one community.Comment: 36 pages, 5 figures, to appear in Applied Mathematics and Computatio

    Stress induced polarization of immune-neuroendocrine phenotypes in Gallus gallus

    Get PDF
    Immune-neuroendocrine phenotypes (INPs) stand for population subgroups differing in immune-neuroendocrine interactions. While mammalian INPs have been characterized thoroughly in rats and humans, avian INPs were only recently described in Coturnix coturnix (quail). To assess the scope of this biological phenomenon, herein we characterized INPs in Gallus gallus (a domestic hen strain submitted to a very long history of strong selective breeding pressure) and evaluated whether a social chronic stress challenge modulates the individuals’ interplay affecting the INP subsets and distribution. Evaluating plasmatic basal corticosterone, interferon-Îł and interleukin-4 concentrations, innate/acquired leukocyte ratio, PHA-P skin-swelling and induced antibody responses, two opposite INP profiles were found: LEWIS-like (15% of the population) and FISCHER-like (16%) hens. After chronic stress, an increment of about 12% in each polarized INP frequency was found at expenses of a reduction in the number of birds with intermediate responses. Results show that polarized INPs are also a phenomenon occurring in hens. The observed inter-individual variation suggest that, even after a considerable selection process, the population is still well prepared to deal with a variety of immune-neuroendocrine challenges. Stress promoted disruptive effects, leading to a more balanced INPs distribution, which represents a new substrate for challenging situations.Fil: Nazar, Franco Nicolas. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas; ArgentinaFil: Estevez, Inma. Centro de InvestigaciĂłn. Neiker - Tecnalia; EspañaFil: Correa, Silvia Graciela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Centro de Investigaciones en BioquĂ­mica ClĂ­nica e InmunologĂ­a; ArgentinaFil: Marin, Raul Hector. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas; Argentin

    Communities in Networks

    Full text link
    We survey some of the concepts, methods, and applications of community detection, which has become an increasingly important area of network science. To help ease newcomers into the field, we provide a guide to available methodology and open problems, and discuss why scientists from diverse backgrounds are interested in these problems. As a running theme, we emphasize the connections of community detection to problems in statistical physics and computational optimization.Comment: survey/review article on community structure in networks; published version is available at http://people.maths.ox.ac.uk/~porterm/papers/comnotices.pd

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Detecting change points in the large-scale structure of evolving networks

    Full text link
    Interactions among people or objects are often dynamic in nature and can be represented as a sequence of networks, each providing a snapshot of the interactions over a brief period of time. An important task in analyzing such evolving networks is change-point detection, in which we both identify the times at which the large-scale pattern of interactions changes fundamentally and quantify how large and what kind of change occurred. Here, we formalize for the first time the network change-point detection problem within an online probabilistic learning framework and introduce a method that can reliably solve it. This method combines a generalized hierarchical random graph model with a Bayesian hypothesis test to quantitatively determine if, when, and precisely how a change point has occurred. We analyze the detectability of our method using synthetic data with known change points of different types and magnitudes, and show that this method is more accurate than several previously used alternatives. Applied to two high-resolution evolving social networks, this method identifies a sequence of change points that align with known external "shocks" to these networks
    • 

    corecore