18 research outputs found

    A Media Access Control Protocol for Wireless Adhoc Networks with Misbehaviour Avoidance

    Get PDF
    The most common wireless Medium Access Control (MAC) protocol is IEEE 802.11. Currently IEEE 802.11 standard protocol is not resilient for many identified MAC layer attacks, because the protocol is designed without intention for providing security and with the assumption that all the nodes in the wireless network adhere to the protocol. However, nodes may purposefully show misbehaviours at the MAC layer in order to obtain extra bandwidth con-serve resources and degrade or disrupt the network performance. This research proposes a secure MAC protocol for MAC layer which has integrated with a novel misbehaviour detection and avoidance mechanism for Mobile Ad Hoc Networks (MANETs). The proposed secure MAC protocol the sender and receiver work collaboratively together to handshakes prior to deciding the back-off values. Common neighbours of the sender and receiver contributes effectively to misbehaviours detection and avoidance process at MAC layer. In addition the proposed solution introduces a new trust distribution model in the network by assuming none of the wireless nodes need to trust each other. The secure MAC protocol also assumes that misbehaving nodes have significant levels of intelligence to avoid the detectio

    FLSAC: A new scheme to defend against greedy behavior in wireless mesh networks

    Get PDF
    The most commonly used medium access mechanism in wireless mesh networks is based on the CSMA/CA protocol. This protocol schedules properly the access to the medium among all the competing nodes. However, in a hostile environment, such as wireless mesh networks (WMNs), selfish or greedy behaving nodes may prefer to decline the proper use of the protocol rules in order to increase their bandwidth shares at the expense of the well-behaving nodes. In this paper, we focus on such misbehavior and in particular on the adaptive greedy misbehavior of a node in the context of WMN environment. In such environment, wireless nodes compete to gain access to the medium and communicate with a mesh router (MR). In this case, a greedy node may violate the protocol rules in order to earn extra bandwidth share upon its neighbors. In order to avoid its detection, this node may adopt different techniques and switch dynamically between each of them. To counter such misbehavior, we propose to use a fuzzy logicbased detection scheme. This scheme, dubbed FLSAC, is implemented in the MR/gateway to monitor the behavior of the attached wireless nodes and report any deviation from the proper use of the protocol. The simulation results of the proposed FLSAC scheme show robustness and its ability to detect and identify quickly any adaptive cheater. © 2009 John Wiley & Sons, Ltd

    MAC Layer Misbehavior Effectiveness and Collective Aggressive Reaction Approach

    Get PDF
    Abstract-Current wireless MAC protocols are designed to provide an equal share of throughput to all nodes in the network. However, the presence of misbehaving nodes (selfish nodes which deviate from standard protocol behavior in order to get higher bandwidth) poses severe threats to the fairness aspects of MAC protocols. In this paper, we investigate various types of MAC layer misbehaviors, and evaluate their effectiveness in terms of their impact on important performance aspects including throughput, and fairness to other users. We observe that the effects of misbehavior are prominent only when the network traffic is sufficiently large and the extent of misbehavior is reasonably aggressive. In addition, we find that performance gains achieved using misbehavior exhibit diminishing returns with respect to its aggressiveness, for all types of misbehaviors considered. We identify crucial common characteristics among such misbehaviors, and employ our learning to design an effective measure to react towards such misbehaviors. Employing two of the most effective misbehaviors, we study the effect of collective aggressiveness of non-selfish nodes as a possible strategy to react towards selfish misbehavior. Particularly, we demonstrate that a collective aggressive reaction approach is able to ensure fairness in the network, however at the expense of overall network throughput degradation

    Secure Routing and Medium Access Protocols inWireless Multi-hop Networks

    Get PDF
    While the rapid proliferation of mobile devices along with the tremendous growth of various applications using wireless multi-hop networks have significantly facilitate our human life, securing and ensuring high quality services of these networks are still a primary concern. In particular, anomalous protocol operation in wireless multi-hop networks has recently received considerable attention in the research community. These relevant security issues are fundamentally different from those of wireline networks due to the special characteristics of wireless multi-hop networks, such as the limited energy resources and the lack of centralized control. These issues are extremely hard to cope with due to the absence of trust relationships between the nodes. To enhance security in wireless multi-hop networks, this dissertation addresses both MAC and routing layers misbehaviors issues, with main focuses on thwarting black hole attack in proactive routing protocols like OLSR, and greedy behavior in IEEE 802.11 MAC protocol. Our contributions are briefly summarized as follows. As for black hole attack, we analyze two types of attack scenarios: one is launched at routing layer, and the other is cross layer. We then provide comprehensive analysis on the consequences of this attack and propose effective countermeasures. As for MAC layer misbehavior, we particularly study the adaptive greedy behavior in the context of Wireless Mesh Networks (WMNs) and propose FLSAC (Fuzzy Logic based scheme to Struggle against Adaptive Cheaters) to cope with it. A new characterization of the greedy behavior in Mobile Ad Hoc Networks (MANETs) is also introduced. Finally, we design a new backoff scheme to quickly detect the greedy nodes that do not comply with IEEE 802.11 MAC protocol, together with a reaction scheme that encourages the greedy nodes to become honest rather than punishing them

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Secure Routing and Medium Access Protocols inWireless Multi-hop Networks

    Get PDF
    While the rapid proliferation of mobile devices along with the tremendous growth of various applications using wireless multi-hop networks have significantly facilitate our human life, securing and ensuring high quality services of these networks are still a primary concern. In particular, anomalous protocol operation in wireless multi-hop networks has recently received considerable attention in the research community. These relevant security issues are fundamentally different from those of wireline networks due to the special characteristics of wireless multi-hop networks, such as the limited energy resources and the lack of centralized control. These issues are extremely hard to cope with due to the absence of trust relationships between the nodes. To enhance security in wireless multi-hop networks, this dissertation addresses both MAC and routing layers misbehaviors issues, with main focuses on thwarting black hole attack in proactive routing protocols like OLSR, and greedy behavior in IEEE 802.11 MAC protocol. Our contributions are briefly summarized as follows. As for black hole attack, we analyze two types of attack scenarios: one is launched at routing layer, and the other is cross layer. We then provide comprehensive analysis on the consequences of this attack and propose effective countermeasures. As for MAC layer misbehavior, we particularly study the adaptive greedy behavior in the context of Wireless Mesh Networks (WMNs) and propose FLSAC (Fuzzy Logic based scheme to Struggle against Adaptive Cheaters) to cope with it. A new characterization of the greedy behavior in Mobile Ad Hoc Networks (MANETs) is also introduced. Finally, we design a new backoff scheme to quickly detect the greedy nodes that do not comply with IEEE 802.11 MAC protocol, together with a reaction scheme that encourages the greedy nodes to become honest rather than punishing them

    Covert DCF - A DCF-Based Covert Timing Channel In 802.11 Networks

    Get PDF
    Covert channels are becoming more popular as security risks grow in networks. One area that is promising for covert channels is wireless networks, since many use a collision avoidance scheme such as carrier sense multiple access with collision avoidance (CSMA/CA). These schemes often introduce randomness in the network, which provides good cover for a covert timing channel. In this thesis, we use the 802.11 standard as an example to demonstrate a wireless covert channel. In particular, most 802.11 configurations use a distributed coordinated function (DCF) to assist in communications. This DCF uses a random backoff to avoid collisions, which provides the cover for our covert channel. Our timing channel provides great improvements on other recent covert channels in the field of throughput, while maintaining high accuracy. We are able to achieve throughput over 8000 bps using Covert DCF, or by accepting a throughput of 1800 bps we can achieve higher covertness and 99% accuracy as well

    Data analytics methods for attack detection and localization in wireless networks

    Get PDF
    Wireless ad hoc network operates without any fixed infrastructure and centralized administration. It is a group of wirelessly connected nodes having the capability to work as host and router. Due to its features of open communication medium, dynamic changing topology, and cooperative algorithm, security is the primary concern when designing wireless networks. Compared to the traditional wired network, a clean division of layers may be sacrificed for performance in wireless ad hoc networks. As a result, they are vulnerable to various types of attacks at different layers of the protocol stack. In this paper, I present real-time series data analysis solutions to detect various attacks including in- band wormholes attack in the network layer, various MAC layer misbehaviors, and jamming attack in the physical layer. And, I also investigate the problem of node localization in wireless and sensor networks, where a total of n anchor nodes are used to determine the locations of other nodes based on the received signal strengths. A range-based machine learning algorithm is developed to tackle the challenges --Abstract, page iii

    802.11 Fingerprinting to Detect Wireless Stealth Attacks

    Get PDF
    We propose a simple, passive and deployable approach for fingerprinting traffic on the wired side as a solution for three critical stealth attacks in wireless networks. We focus on extracting traces of the 802.11 medium access control (MAC) protocol from the temporal arrival patterns of incoming traffic streams as seen on the wired side, to identify attacker behavior. Attacks addressed include unauthorized access points, selfish behavior at the MAC layer and MAC layer covert timing channels. We employ the Bayesian binning technique as a means of classifying between delay distributions. The scheme requires no change to the 802.11 nodes or protocol, exhibits minimal computational overhead and offers a single point of discovery. We evaluate our model using experiments and simulations
    corecore