10 research outputs found

    Preprint: Using RF-DNA Fingerprints To Classify OFDM Transmitters Under Rayleigh Fading Conditions

    Full text link
    The Internet of Things (IoT) is a collection of Internet connected devices capable of interacting with the physical world and computer systems. It is estimated that the IoT will consist of approximately fifty billion devices by the year 2020. In addition to the sheer numbers, the need for IoT security is exacerbated by the fact that many of the edge devices employ weak to no encryption of the communication link. It has been estimated that almost 70% of IoT devices use no form of encryption. Previous research has suggested the use of Specific Emitter Identification (SEI), a physical layer technique, as a means of augmenting bit-level security mechanism such as encryption. The work presented here integrates a Nelder-Mead based approach for estimating the Rayleigh fading channel coefficients prior to the SEI approach known as RF-DNA fingerprinting. The performance of this estimator is assessed for degrading signal-to-noise ratio and compared with least square and minimum mean squared error channel estimators. Additionally, this work presents classification results using RF-DNA fingerprints that were extracted from received signals that have undergone Rayleigh fading channel correction using Minimum Mean Squared Error (MMSE) equalization. This work also performs radio discrimination using RF-DNA fingerprints generated from the normalized magnitude-squared and phase response of Gabor coefficients as well as two classifiers. Discrimination of four 802.11a Wi-Fi radios achieves an average percent correct classification of 90% or better for signal-to-noise ratios of 18 and 21 dB or greater using a Rayleigh fading channel comprised of two and five paths, respectively.Comment: 13 pages, 14 total figures/images, Currently under review by the IEEE Transactions on Information Forensics and Securit

    New Approach in Detection MAC Spoofing in a WiFi LAN

    Get PDF
    Medium Access Control (MAC) spoofing attacks relate to an attacker altering the manufacturer assigned MAC address to any other value. MAC spoofing attacks in Wireless Fidelity (WiFi) network are simple because of the ease of access to the tools of the MAC fraud on the Internet like MAC Makeup, and in addition to that the MAC address can be changed manually without software. MAC spoofing attacks are considered one of the most intensive attacks in the WiFi network; as result for that, many MAC spoofing detection systems were built, each of which comes with its strength and weak points. This paper logically identifies and recognizes the weak points and masquerading paths that penetrate the up-to-date existing detection systems. Then the most effective features of the existing detection systems are extracted, modified and combined together to develop more powerful detection system called Sequence Number with Rate and Signal Strength detection method (SN-R-SS). SN-R-SS consists from three phases. First phase is Window Sequence Numbers; to detect suspicious spoofed frames in the network. Second phase is Transmission Rate Analysis; to reduce the amount of the suspicious spoofed frames that are generated from the first phase. Finally, the third phase is Received Signal Strength; this phase is decisive phase because it decides whether the suspicious spoofed frames are spoofed or not. Commview for WiFi network monitor and analyzer is used to capturing frames from the radio channals. Matlab software has been used to implement various computational and mathematical relations in SN-R-SS. This detection method does not work in a real time because it needs a lot of computation.

    The Mason Test: A Defense Against Sybil Attacks in Wireless Networks Without Trusted Authorities

    Full text link
    Wireless networks are vulnerable to Sybil attacks, in which a malicious node poses as many identities in order to gain disproportionate influence. Many defenses based on spatial variability of wireless channels exist, but depend either on detailed, multi-tap channel estimation - something not exposed on commodity 802.11 devices - or valid RSSI observations from multiple trusted sources, e.g., corporate access points - something not directly available in ad hoc and delay-tolerant networks with potentially malicious neighbors. We extend these techniques to be practical for wireless ad hoc networks of commodity 802.11 devices. Specifically, we propose two efficient methods for separating the valid RSSI observations of behaving nodes from those falsified by malicious participants. Further, we note that prior signalprint methods are easily defeated by mobile attackers and develop an appropriate challenge-response defense. Finally, we present the Mason test, the first implementation of these techniques for ad hoc and delay-tolerant networks of commodity 802.11 devices. We illustrate its performance in several real-world scenarios

    Wireless local area network management frame denial- of-service attack detection and mitigation schemes

    Get PDF
    Wireless Local Area Networks (WLAN) are increasingly deployed and in widespread use worldwide due to its convenience and low cost. However, due to the broadcasting and the shared nature of the wireless medium, WLANs are vulnerable to a myriad of attacks. Although there have been concerted efforts to improve the security of wireless networks over the past years, some attacks remain inevitable. Attackers are capable of sending fake de-authentication or disassociation frames to terminate the session of active users; thereby leading to denial of service, stolen passwords, or leakage of sensitive information amongst many other cybercrimes. The detection of such attacks is crucial in today's critical applications. Many security mechanisms have been proposed to effectively detect these issues, however, they have been found to suffer limitations which have resulted in several potential areas of research. This thesis aims to address the detection of resource exhaustion and masquerading DoS attacks problems, and to construct several schemes that are capable of distinguishing between benign and fake management frames through the identification of normal behavior of the wireless stations before sending any authentication and de-authentication frames. Thus, this thesis proposed three schemes for the detection of resource exhaustion and masquerading DoS attacks. The first scheme was a resource exhaustion DoS attacks detection scheme, while the second was a de- authentication and disassociation detection scheme. The third scheme was to improve the detection rate of the de-authentication and disassociation detection scheme using feature derived from an unsupervised method for an increased detection rate. The effectiveness of the performance of the proposed schemes was measured in terms of detection accuracy under sophisticated attack scenarios. Similarly, the efficiency of the proposed schemes was measured in terms of preserving the resources of the access point such as memory consumptions and processing time. The validation and analysis were done through experimentation, and the results showed that the schemes have the ability to protect wireless infrastructure networks against denial of service attacks

    Detecting Spoofing and Anomalous Traffic in Wireless Networks via Forge-Resistant Relationships

    No full text

    Supporting Large Scale Communication Systems on Infrastructureless Networks Composed of Commodity Mobile Devices: Practicality, Scalability, and Security.

    Full text link
    Infrastructureless Delay Tolerant Networks (DTNs) composed of commodity mobile devices have the potential to support communication applications resistant to blocking and censorship, as well as certain types of surveillance. In this thesis we study the utility, practicality, robustness, and security of these networks. We collected two sets of wireless connectivity traces of commodity mobile devices with different granularity and scales. The first dataset is collected through active installation of measurement software on volunteer users' own smartphones, involving 111 users of a DTN microblogging application that we developed. The second dataset is collected through passive observation of WiFi association events on a university campus, involving 119,055 mobile devices. Simulation results show consistent message delivery performances of the two datasets. Using an epidemic flooding protocol, the large network achieves an average delivery rate of 0.71 in 24 hours and a median delivery delay of 10.9 hours. We show that this performance is appropriate for sharing information that is not time sensitive, e.g., blogs and photos. We also show that using an energy efficient variant of the epidemic flooding protocol, even the large network can support text messages while only consuming 13.7% of a typical smartphone battery in 14 hours. We found that the network delivery rate and delay are robust to denial-of-service and censorship attacks. Attacks that randomly remove 90% of the network participants only reduce delivery rates by less than 10%. Even when subjected to targeted attacks, the network suffered a less than 10% decrease in delivery rate when 40% of its participants were removed. Although structurally robust, the openness of the proposed network introduces numerous security concerns. The Sybil attack, in which a malicious node poses as many identities in order to gain disproportionate influence, is especially dangerous as it breaks the assumption underlying majority voting. Many defenses based on spatial variability of wireless channels exist, and we extend them to be practical for ad hoc networks of commodity 802.11 devices without mutual trust. We present the Mason test, which uses two efficient methods for separating valid channel measurement results of behaving nodes from those falsified by malicious participants.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120779/1/liuyue_1.pd

    Near-Real Time, Semi-Automated Threat Assessment of Information Environments

    Get PDF
    Threat assessment is a crucial process for monitoring and defending against potential threats in an organization’s information environment and business operations. Ensuring the security of information infrastructure requires effective information security practices. However, existing models and methodologies often fall short of addressing the dynamic and evolving nature of cyberattacks. Moreover, critical threat intelligence extracted from the threat agents lacks the ability to capture essential attributes such as motivation, opportunity, and capability (M, O, C). This contribution to knowledge clarification introduces a semi-automatic threat assessment model that can handle situational awareness data or live acquired data stream from networks, incorporating information security techniques, protocols, and real-time monitoring of specific network types. Additionally, it focuses on analysing and implementing network traffic within a specific real-time information environment. To develop the semi-automatic threat assessment model, the study identifies unique attributes of threat agents by analysing Packet Capture Application Programming Interface (PCAP) files and data stream collected between 2012 and 2019. The study utilizes both hypothetical and real-world examples of threat agents to evaluate the three key factors: motivation, opportunity, and capability. This evaluation serves as a basis for designing threat profiles, critical threat intelligence, and assessing the complexity of process. These aspects are currently overlooked in existing threat agent taxonomies, models, and methodologies. By addressing the limitations of traditional threat assessment approaches, this research contributes to advancing the field of cybersecurity. The proposed semi-automatic threat assessment model offers improved awareness and timely detection of threats, providing organizations with a more robust defence against evolving cyberattacks. This research enhances the understanding of threat agents’ attributes and assists in developing proactive strategies to mitigate the risks associated with cybersecurity in the modern information environment

    Performance analysis of wireless intrusion detection systems

    Get PDF
    Wireless intrusion detection system (WIDS) has become a matter of increasing concern in recent years as a crucial element in wireless network security. WIDS monitors 802.11 traffic to identify the intrusive activities, and then alerts the complementary prevention part to combat the attacks. Selecting a reliable WIDS system necessitates inevitably taking into account a credible evaluation of WIDSs performance. WIDS effectiveness is considered the basic factor in evaluating the WIDS performance, thus it receives great attention in this thesis. Most previous experimental evaluations of intrusion detection systems (IDSs) were concerned with the wired IDSs, with an apparent lack of evaluating the wireless IDSs (WIDSs). In this thesis, we try to manipulate three main critiques of most pervious evaluations; lack of comprehensive evaluation methodology, holistic attack classification, and expressive evaluation metrics. In this thesis, we introduce a comprehensive evaluation methodology that covers all the essential dimensions for a credible evaluation of WIDSs performance. The main pivotal dimensions in our methodology are characterizing and generating the evaluation dataset, defining reliable and expressive evaluation metrics, and overcoming the evaluation limitations. Basically, evaluation dataset consists of two main parts; normal traffic (as a background) and malicious traffic. The background traffic, which comprises normal and benign activities in the absence of attacks, was generated in our experimental evaluation tests as real controlled traffic. The second and important part of the dataset is the malicious traffic which is composed of intrusive activities. Comprehensive and credible evaluation of WIDSs necessitates taking into account all possible attacks. While this is operationally impossible, it is necessary to select representative attack test cases that are extracted mainly from a comprehensive classification of wireless attacks. Dealing with this challenge, we have developed a holistic taxonomy of wireless security attacks from the perspective of the WIDS evaluator. The second pivotal dimension in our methodology is defining reliable evaluation metrics. We introduce a new evaluation metric EID (intrusion detection effectiveness) that manipulates the drawbacks of the previously proposed metrics, especially the common drawback of their main notion that leads to measuring a relative effectiveness. The notion of our developed metric EID helps in measuring the actual effectiveness. We also introduce another metric RR (attack recognition rate) to evaluate the ability of WIDS to recognize the attack type. The third important dimension in our methodology is overcoming the evaluation limitations. The great challenge that we have faced in the experimental evaluation of WIDSs is the uncontrolled traffic over the open wireless medium. This uncontrolled traffic affects the accuracy of the measurements. We overcame this problem by constructing an RF shielded testbed to take all the measurements under our control without any interfering from any adjacent stations. Finally, we followed our methodology and conducted experimental evaluation tests of two popular WIDSs (Kismet and AirSnare), and demonstrated the utility of our proposed solutions

    Analyse de performance des systèmes de détection d’intrusion sans-fil

    Get PDF
    La sécurité des réseaux sans fil fait l’objet d’une attention considérable ces dernières années. Toutefois, les communications sans fil sont confrontées à plusieurs types de menaces et d’attaques. Par conséquent, d’importants efforts, visant à sécuriser davantage les réseaux sans fil, ont dû être fournis pour en vue de lutter contre les attaques sans fil. Seulement, croire qu’une prévention intégrale des attaques peut s’effectuer au niveau de la première ligne de défense d’un système (pare-feux, chiffrement, …) n’est malheureusement qu’illusion. Ainsi, l’accent est de plus en plus porté sur la détection des attaques sans fil au travers d’une seconde ligne de défense, matérialisée par les systèmes de détection d’intrusions sans fil (WIDS). Les WIDS inspectent le trafic sans fil, respectant la norme 802.11, ainsi que les activités du système dans le but de détecter des activités malicieuses. Une alerte est ensuite envoyée aux briques chargées de la prévention pour contrer l’attaque. Sélectionner un WIDS fiable dépend principalement de l’évaluation méticuleuse de ses performances. L’efficacité du WIDS est considérée comme le facteur fondamental lors de l’évaluation de ses performances, nous lui accordons donc un grand intérêt dans ces travaux de thèse. La majeure partie des études expérimentales visant l’évaluation des systèmes de détection d’intrusions (IDS) s’intéressait aux IDS filaires, reflétant ainsi une carence claire en matière d’évaluation des IDS sans fil (WIDS). Au cours de cette thèse, nous avons mis l’accent sur trois principales critiques visant la plupart des précédentes évaluations : le manque de méthodologie d’évaluation globale, de classification d’attaque et de métriques d’évaluation fiables. Au cours de cette thèse, nous sommes parvenus à développer une méthodologie complète d’évaluation couvrant toutes les dimensions nécessaires pour une évaluation crédible des performances des WIDSs. Les axes principaux de notre méthodologie sont la caractérisation et la génération des données d’évaluation, la définition de métriques d’évaluation fiables tout en évitant les limitations de l’évaluation. Fondamentalement, les données d’évaluation sont constituées de deux principales composantes à savoir: un trafic normal et un trafic malveillant. Le trafic normal que nous avons généré au cours de nos tests d’évaluation était un trafic réel que nous contrôlions. La deuxième composante des données, qui se trouve être la plus importante, est le trafic malveillant consistant en des activités intrusives. Une évaluation complète et crédible des WIDSs impose la prise en compte de tous les scénarios et types d’attaques éventuels. Cela étant impossible à réaliser, il est nécessaire de sélectionner certains cas d’attaque représentatifs, principalement extraits d’une classification complète des attaques sans fil. Pour relever ce défi, nous avons développé une taxinomie globale des attaques visant la sécurité des réseaux sans fil, d’un point de vue de l’évaluateur des WIDS. Le deuxième axe de notre méthodologie est la définition de métriques fiables d’évaluation. Nous avons introduit une nouvelle métrique d’évaluation, EID (Efficacité de la détection d’intrusion), visant à pallier les limitations des précédentes métriques proposées. Nous avons démontré l’utilité de la métrique EID par rapport aux autres métriques proposées précédemment et comment elle parvenait à mesurer l’efficacité réelle tandis que les précédentes métriques ne mesuraient qu’une efficacité relative. L’EID peut tout aussi bien être utilisé pour l’évaluation de l’efficacité des IDS filaires et sans fil. Nous avons aussi introduit une autre métrique notée RR (Taux de Reconnaissance), pour mesurer l’attribut de reconnaissance d’attaque. Un important problème se pose lorsque des tests d’évaluation des WIDS sont menés, il s’agit des données de trafics incontrôlés sur le support ouvert de transmission. Ce trafic incontrôlé affecte sérieusement la pertinence des mesures. Pour outrepasser ce problème, nous avons construit un banc d’essai RF blindé, ce qui nous a permis de prendre des mesures nettes sans aucune interférence avec quelconque source de trafic incontrôlé. Pour finir, nous avons appliqué notre méthodologie et effectué des évaluations expérimentales relatives à deux WIDSs populaires (Kismet et AirSnare); nous avons démontré à l’issue de ces évaluations pratiques et l’utilité de nos solutions proposées. ABSTRACT : Wireless intrusion detection system (WIDS) has become a matter of increasing concern in recent years as a crucial element in wireless network security. WIDS monitors 802.11 traffic to identify the intrusive activities, and then alerts the complementary prevention part to combat the attacks. Selecting a reliable WIDS system necessitates inevitably taking into account a credible evaluation of WIDSs performance. WIDS effectiveness is considered the basic factor in evaluating the WIDS performance, thus it receives great attention in this thesis. Most previous experimental evaluations of intrusion detection systems (IDSs) were concerned with the wired IDSs, with an apparent lack of evaluating the wireless IDSs (WIDSs). In this thesis, we try to manipulate three main critiques of most pervious evaluations; lack of comprehensive evaluation methodology, holistic attack classification, and expressive evaluation metrics. In this thesis, we introduce a comprehensive evaluation methodology that covers all the essential dimensions for a credible evaluation of WIDSs performance. The main pivotal dimensions in our methodology are characterizing and generating the evaluation dataset, defining reliable and expressive evaluation metrics, and overcoming the evaluation limitations. Basically, evaluation dataset consists of two main parts; normal traffic (as a background) and malicious traffic. The background traffic, which comprises normal and benign activities in the absence of attacks, was generated in our experimental evaluation tests as real controlled traffic. The second and important part of the dataset is the malicious traffic which is composed of intrusive activities. Comprehensive and credible evaluation of WIDSs necessitates taking into account all possible attacks. While this is operationally impossible, it is necessary to select representative attack test cases that are extracted mainly from a comprehensive classification of wireless attacks. Dealing with this challenge, we have developed a holistic taxonomy of wireless security attacks from the perspective of the WIDS evaluator. The second pivotal dimension in our methodology is defining reliable evaluation metrics. We introduce a new evaluation metric EID (intrusion detection effectiveness) that manipulates the drawbacks of the previously proposed metrics, especially the common drawback of their main notion that leads to measuring a relative effectiveness. The notion of our developed metric EID helps in measuring the actual effectiveness. We also introduce another metric RR (attack recognition rate) to evaluate the ability of WIDS to recognize the attack type. The third important dimension in our methodology is overcoming the evaluation limitations. The great challenge that we have faced in the experimental evaluation of WIDSs is the uncontrolled traffic over the open wireless medium. This uncontrolled traffic affects the accuracy of the measurements. We overcame this problem by constructing an RF shielded testbed to take all the measurements under our control without any interfering from any adjacent stations. Finally, we followed our methodology and conducted experimental evaluation tests of two popular WIDSs (Kismet and AirSnare), and demonstrated the utility of our proposed solutions

    Non-Hierarchical Networks for Censorship-Resistant Personal Communication.

    Full text link
    The Internet promises widespread access to the world’s collective information and fast communication among people, but common government censorship and spying undermines this potential. This censorship is facilitated by the Internet’s hierarchical structure. Most traffic flows through routers owned by a small number of ISPs, who can be secretly coerced into aiding such efforts. Traditional crypographic defenses are confusing to common users. This thesis advocates direct removal of the underlying heirarchical infrastructure instead, replacing it with non-hierarchical networks. These networks lack such chokepoints, instead requiring would-be censors to control a substantial fraction of the participating devices—an expensive proposition. We take four steps towards the development of practical non-hierarchical networks. (1) We first describe Whisper, a non-hierarchical mobile ad hoc network (MANET) architecture for personal communication among friends and family that resists censorship and surveillance. At its core are two novel techniques, an efficient routing scheme based on the predictability of human locations anda variant of onion-routing suitable for decentralized MANETs. (2) We describe the design and implementation of Shout, a MANET architecture for censorship-resistant, Twitter-like public microblogging. (3) We describe the Mason test, amethod used to detect Sybil attacks in ad hoc networks in which trusted authorities are not available. (4) We characterize and model the aggregate behavior of Twitter users to enable simulation-based study of systems like Shout. We use our characterization of the retweet graph to analyze a novel spammer detection technique for Shout.PhDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107314/1/drbild_1.pd
    corecore