66,914 research outputs found

    Privacy-Preserving Electronic Ticket Scheme with Attribute-based Credentials

    Get PDF
    Electronic tickets (e-tickets) are electronic versions of paper tickets, which enable users to access intended services and improve services' efficiency. However, privacy may be a concern of e-ticket users. In this paper, a privacy-preserving electronic ticket scheme with attribute-based credentials is proposed to protect users' privacy and facilitate ticketing based on a user's attributes. Our proposed scheme makes the following contributions: (1) users can buy different tickets from ticket sellers without releasing their exact attributes; (2) two tickets of the same user cannot be linked; (3) a ticket cannot be transferred to another user; (4) a ticket cannot be double spent; (5) the security of the proposed scheme is formally proven and reduced to well known (q-strong Diffie-Hellman) complexity assumption; (6) the scheme has been implemented and its performance empirically evaluated. To the best of our knowledge, our privacy-preserving attribute-based e-ticket scheme is the first one providing these five features. Application areas of our scheme include event or transport tickets where users must convince ticket sellers that their attributes (e.g. age, profession, location) satisfy the ticket price policies to buy discounted tickets. More generally, our scheme can be used in any system where access to services is only dependent on a user's attributes (or entitlements) but not their identities.Comment: 18pages, 6 figures, 2 table

    Fine-To-Coarse Global Registration of RGB-D Scans

    Full text link
    RGB-D scanning of indoor environments is important for many applications, including real estate, interior design, and virtual reality. However, it is still challenging to register RGB-D images from a hand-held camera over a long video sequence into a globally consistent 3D model. Current methods often can lose tracking or drift and thus fail to reconstruct salient structures in large environments (e.g., parallel walls in different rooms). To address this problem, we propose a "fine-to-coarse" global registration algorithm that leverages robust registrations at finer scales to seed detection and enforcement of new correspondence and structural constraints at coarser scales. To test global registration algorithms, we provide a benchmark with 10,401 manually-clicked point correspondences in 25 scenes from the SUN3D dataset. During experiments with this benchmark, we find that our fine-to-coarse algorithm registers long RGB-D sequences better than previous methods

    A formal methodology for integral security design and verification of network protocols

    Full text link
    We propose a methodology for verifying security properties of network protocols at design level. It can be separated in two main parts: context and requirements analysis and informal verification; and formal representation and procedural verification. It is an iterative process where the early steps are simpler than the last ones. Therefore, the effort required for detecting flaws is proportional to the complexity of the associated attack. Thus, we avoid wasting valuable resources for simple flaws that can be detected early in the verification process. In order to illustrate the advantages provided by our methodology, we also analyze three real protocols

    Quality of fixed dose artemether/lumefantrine products in Jimma Zone, Ethiopia

    Get PDF
    Background: Malaria caused by Plasmodium vivax and Plasmodium falciparum is among the major public health problems in most endemic areas of the world. Artemisinin-based combination therapy (ACT) has been recommended as a first-line treatment for uncomplicated Plasmodium falciparum malaria almost in all endemic regions. Since ineffectively regulated medicines in resource limited settings could favour infiltration of poor quality anti-malarial medicines into pharmaceutical supply chain and jeopardize a positive treatment outcome, regular monitoring of the quality of anti-malarial medicines is critical. Thus, the aim of this study was to assess the quality of fixed dose combination (FDC) artemether (ART)/lumefantrine (LUM) tablets available in Jimma zone, Ethiopia. Methods: This study was conducted in Jimma zone, Ethiopia. A total of 74 samples of FDC ART/LUM (20mg ART/120mg LUM) tablets were collected from 27 public facilities. All samples were subjected to visual inspection and the relevant information was recorded. The samples were transported to Jimma University Laboratory of Drug Quality (JuLaDQ) and stored at ambient temperature (20 degrees C to 25 degrees C) until analysis. The Pharmacopoeial conform/non-conform methods and the risk-based Derringer's desirability function approach were employed to assess the pharmaceutical quality of the investigated products. Results: The visual inspection results revealed that there were no signs of falsified in the investigated products. Identification test results of samples indicated that all samples contained the stated active pharmaceutical ingredients (APIs). The results of uniformity of mass indicated that all samples complied with International Pharmacopoeial specification limits. The assay results, expressed as percent label claim (%lc) of ART (89.8 to 108.8%, meanSD=99.1 +/- 3.9%) and LUM (90.0 to 111.9%, mean +/- SD=98.2 +/- 3.8%) revealed that, all samples complied with International Pharmacopoeia acceptance specification limits (i.e. 90-110%lc), except one generic product (IPCA Laboratories Ltd., India) which contains excessive LUM (111.9 +/- 1.7%lc). The risk priority number (RPN) results revealed that assay (RPN=392) is relatively the most critical quality attribute followed by identity (RPN=280) and mass uniformity (40). Quality evaluation based on psycho-physical Harrington's scale revealed that more than 96% of samples were within the acceptable ranges (D >= 0.7-1.0). Conclusions: Both Pharmacopoeial and risk-based desirability function approaches to quality evaluation applied to the investigated products revealed that above 96% FDC ART/LUM tablets circulating in public settings of Jimma zone are of good quality

    Retrieval and Registration of Long-Range Overlapping Frames for Scalable Mosaicking of In Vivo Fetoscopy

    Get PDF
    Purpose: The standard clinical treatment of Twin-to-Twin Transfusion Syndrome consists in the photo-coagulation of undesired anastomoses located on the placenta which are responsible to a blood transfer between the two twins. While being the standard of care procedure, fetoscopy suffers from a limited field-of-view of the placenta resulting in missed anastomoses. To facilitate the task of the clinician, building a global map of the placenta providing a larger overview of the vascular network is highly desired. Methods: To overcome the challenging visual conditions inherent to in vivo sequences (low contrast, obstructions or presence of artifacts, among others), we propose the following contributions: (i) robust pairwise registration is achieved by aligning the orientation of the image gradients, and (ii) difficulties regarding long-range consistency (e.g. due to the presence of outliers) is tackled via a bag-of-word strategy, which identifies overlapping frames of the sequence to be registered regardless of their respective location in time. Results: In addition to visual difficulties, in vivo sequences are characterised by the intrinsic absence of gold standard. We present mosaics motivating qualitatively our methodological choices and demonstrating their promising aspect. We also demonstrate semi-quantitatively, via visual inspection of registration results, the efficacy of our registration approach in comparison to two standard baselines. Conclusion: This paper proposes the first approach for the construction of mosaics of placenta in in vivo fetoscopy sequences. Robustness to visual challenges during registration and long-range temporal consistency are proposed, offering first positive results on in vivo data for which standard mosaicking techniques are not applicable.Comment: Accepted for publication in International Journal of Computer Assisted Radiology and Surgery (IJCARS

    Robust Photogeometric Localization over Time for Map-Centric Loop Closure

    Full text link
    Map-centric SLAM is emerging as an alternative of conventional graph-based SLAM for its accuracy and efficiency in long-term mapping problems. However, in map-centric SLAM, the process of loop closure differs from that of conventional SLAM and the result of incorrect loop closure is more destructive and is not reversible. In this paper, we present a tightly coupled photogeometric metric localization for the loop closure problem in map-centric SLAM. In particular, our method combines complementary constraints from LiDAR and camera sensors, and validates loop closure candidates with sequential observations. The proposed method provides a visual evidence-based outlier rejection where failures caused by either place recognition or localization outliers can be effectively removed. We demonstrate the proposed method is not only more accurate than the conventional global ICP methods but is also robust to incorrect initial pose guesses.Comment: To Appear in IEEE ROBOTICS AND AUTOMATION LETTERS, ACCEPTED JANUARY 201
    corecore