105 research outputs found

    Electron Microscopy of Nanostructures in Cells

    Get PDF

    A literature review of analytical techniques for materials characterisation of painted textiles - Part 1: categorising painted textiles, sampling and the use of optical tools

    Get PDF
    Many types of painted textile are represented in museum collections. Their flexibility, draping qualities, and heterogeneous, layered nature make painted textiles complex objects to conserve. What do we know about their materials and making? There has been limited research into painted textiles and particularly their analysis. Whilst much valuable information can be gleaned from paintings analysis, there are many distinct differences in materials behaviour between stretched paintings and painted textiles that need to be identified and addressed. This paper, together with Part 2, aims to raise the awareness of textile conservators, in particular, of potential analytical techniques to identify and characterise the materials, thus enhancing understanding and conservation of painted textiles. Part 1 focuses firstly, on the categorisation of different groups of painted textile providing a context for their study and secondly, it reviews sampling and optical techniques that can be used by conservators, highlighting some of the challenges they present

    Time-Dependent Subcellular Distribution and Effects of Carbon Nanotubes in Lungs of Mice

    Get PDF
    BACKGROUND AND METHODS:Pulmonary deposited carbon nanotubes (CNTs) are cleared very slowly from the lung, but there is limited information on how CNTs interact with the lung tissue over time. To address this, three different multiwalled CNTs were intratracheally instilled into female C57BL/6 mice: one short (850 nm) and tangled, and two longer (4 μm and 5.7 μm) and thicker. We assessed the cellular interaction with these CNTs using transmission electron microscopy (TEM) 1, 3 and 28 days after instillation. RESULTS:TEM analysis revealed that the three CNTs followed the same overall progression pattern over time. Initially, CNTs were taken up either by a diffusion mechanism or via endocytosis. Then CNTs were agglomerated in vesicles in macrophages. Lastly, at 28 days post-exposure, evidence suggesting CNT escape from vesicle enclosures were found. The longer and thicker CNTs more often perturbed and escaped vesicular enclosures in macrophages compared to the smaller CNTs. Bronchoalveolar lavage (BAL) showed that the CNT exposure induced both an eosinophil influx and also eosinophilic crystalline pneumonia. CONCLUSION:Two very different types of multiwalled CNTs had very similar pattern of cellular interactions in lung tissue, with the longer and thicker CNTs resulting in more severe effects in terms of eosinophil influx and incidence of eosinophilic crystalline pneumonia (ECP)

    Raman Spectroscopy in Nanomedicine: Current Status and Future Perspectives

    Get PDF
    Raman spectroscopy is a branch of vibration spectroscopy which is capable of probing the chemical composition of materials. Recent advances in Raman microscopy have added significantly to the range of applications which now extend from medical diagnostics to exploring interfaces between biological organisms and nanomaterials. In this review, Raman is introduced in a general context, highlighting some of the areas in which the technique has found success in the past, as well as some of the potential benefits it offers over other analytical modalities. The subset of Raman techniques which specifically probe the nanoscale, namely Surface Enhanced and Tip Enhanced Raman Spectroscopy, will be described and specific applications relevant to nanomedical applications will be reviewed. Progress in the use of traditional label-free Raman applied to investigation of nanoscale interactions will be described, and recent developments in Coherent Anti-Stokes Raman Scattering will be explored, particularly applications to biomedical and nanomedical fields

    Carbon nanotube reinforced polyacrylonitrile and poly(etherketone) fibers

    Get PDF
    The graphitic nature, continuous structure, and high mechanical properties of carbon nanotubes (CNTs) make them good candidate for reinforcing polymer fiber. The different types of CNTs including single-wall carbon nanotubes (SWNTs), few-wall carbon nanotubes (FWNTs), and multi-wall carbon nanotubes (MWNTs), and carbon nanofibers (CNFs) differ in terms of their diameter and number of graphitic walls. The desire has been to increase the concentration of CNTs as much as possible to make next generation multi-functional materials. The work in this thesis is mainly focused on MWNT and CNF reinforced polyacrylonitrile (PAN) composite fibers, and SWNT, FWNT, and MWNT reinforced poly(etherketone) (PEK) composite fibers. To the best of our knowledge, this is the first study to report the spinning of 20% MWNT or 30% CNF reinforced polymer fiber spun using conventional fiber spinning. Also, this is the first study to report the PEK/CNT composite fibers. The fibers were characterized for their thermal, tensile, mechanical, and dynamic mechanical properties. The fiber structure and morphology was studied using WAXD and SEM. The effect of two-stage heat drawing, sonication time for CNF dispersion, fiber drying temperature, and molecular weight of PAN was also studied. Other challenges associated with processing high concentrations of solutions for making composite fibers have been identified and reported. The effect of CNT diameter and concentration on fiber spinnability and electrical conductivity of composite fiber have also been studied. This work suggests that CNT diameter controls the maximum possible concentration of CNTs in a composite fiber. The results show that by properly choosing the type of CNT, length of CNTs, dispersion of CNTs, fiber spinning method, fiber draw ratio, and type of polymer, one can get electrically conducting fibers with wide range of conductivities for different applications. The PEK based control and composite fibers possess high thermal stability with almost no weight loss up to 500 degree C and negligible thermal shrinkage up to 200 degree C. The PEK based fibers showed high toughness which surpassed many of the high-performance fibers like Kevlar(R) and Zylon(R). The 10% FWNT containing fiber is unique in terms of high electrical conductivity and high toughness. The CNT based fibers may be used as structural material, fire-barrier/protection textile, electrode for electrochemical capacitor or fuel cells, and as a template for directional growth of tissues.Ph.D.Committee Chair: Kumar, Satish; Committee Member: Bucknall, David; Committee Member: Griffin, Anselm; Committee Member: Shofner, Meisha; Committee Member: Yushin, Gle

    A micromechanical approach to the behaviour of single wood fibers and wood fracture at cellular level

    Get PDF
    Mechanical and fracture behaviors of wood are defined by the morphology and mechanical properties of wood fibers and their bonding medium. Parallel orientation of wood fibers makes them the most influential microstructural elements from the mechanical point of view. On the other hand, in wood fracture, the difference between the properties of fiber and bonding medium (which make weak cleavage plates) plays a more important role. Experiments show that the mechanical behavior of a single wood fiber under axial tension is complex, although the cause of this complexity has still not been clearly understood. In this thesis, in order to explain the mechanism underlying the mechanical behavior of wood fibers and the fracture of wood specimens at fiber level, a micromechanical approach has been used. Confocal laser scanning microscopy was used to investigate the pattern of the distribution of microfibrils in different wood fibers. It was shown that the microfibril angle within a single fiber is non-uniform and this non-uniformity in radial walls of earlywood fibers, which contain the bordered pits, is higher than tangential walls of earlywood fibers and also higher than in latewood fibers. Tensile and cyclic tensile tests on single spruce fibers were carried out and their non-linear and force-history dependent behaviors under axial tension were shown. It was found that the fiber behavior is affected by the range of microfibril angle non-uniformities and other defects. After a certain force limit, wood fiber undergoes irreversible strains and the elastic limit of the fiber increases in the tensile loading. To explain these results, a model based on the assumption of helical and non-uniform distribution of cellulose microfibrils in the fiber and damage of the hemicellulose and lignin matrix after yielding, was proposed. The model indicated that multi-damage and evolution of microfibrils in the damages segments are the main governing mechanisms of the tensile behavior of wood fiber. Difficulties of considering the porous and heterogeneous microstructure of wood in a continuum-based fracture model, led us to develop a mixed lattice-continuum model. The three-dimensional geometry of lattice, composed of different beam elements which represent the bonding medium and alternation of earlywood and latewood fibers, enabled us to detect the propagation of cracks in both cross sections and longitudinal sections at the fiber level. Model showed that in Mode I fracture, parallel to the fibers, the location of the developed crack and the resulting stress-strain curves have a good agreement with the experimental evidence

    The mechanical behaviour of polyethylene pipe systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The design of polyethylene (PE) pipelines for applications in the gas, water and chemical process industries has been based on data mainly obtained from stress rupture testing pipes only. In practice, installations are composed of both extruded pipe and injection moulded fittings which are joined by a fusion welding technique and are very often subjected to internal pressures of a fluctuating nature. Several makes of PE pipe systems were therefore obtained and work was undertaken to fully characterise mechanical performance in terms of internal pressure loadings. Butt-welded test specimens comprising pipe lengths and fittings were subjected to both static and fluctuating conditions at 80°C, at pressures resulting in brittle fractures (below the knee on stress rupture curves) and at frequencies not exceeding 7.5 cpm (0.125 Hz). Resulting fracture surfaces were examined to identify sources of crack initiation and mechanisms of failure. Mechanical behaviour of the PE pipe samples was found to be markedly influenced by the grade of plastics compound, the pipe system dimensions, mould designs and methods of processing. Fatigue loading was the most aggressive test method and significant reductions in lifetimes were observed in fittings or joints between pipes and fittings with only modest increases in the frequency of pressurisation. It was also demonstrated that improved stress rupture behaviour did not necessarily lead to better fatigue performance. For the square-wave loading profiles used, an idea of the relevant failure mechanisms in any given system was obtained by comparing experimental Nf values with those predicted from cumulative damage principles based on Nf=τSR/τmax. In all types of system, failure was initiated at a defect residual from processing or jointing. Over 95% of all small diameter pipe fractures originated from inclusions at or close to the inside wall. They were geometrically and elementally analysed and suggestions made as to their possible origin and means of elimination. For one PE a reasonable correlation was obtained, between lifetime under stress rupture or fatigue and the inclusion size as measured in the fracture plane.Science and Engineering Research Counci
    corecore