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Abstract: 

Raman spectroscopy is a branch of vibration spectroscopy which is capable of probing the chemical 

composition of materials. Recent advances in Raman microscopy have added significantly to the range 

of applications which now extend from medical diagnostics to exploring interfaces between biological 

organisms and nanomaterials. In this review, Raman is introduced in a general context, highlighting 

some of the areas in which the technique has found success in the past, as well as some of the potential 

benefits it offers over other analytical modalities. The subset of Raman techniques which specifically 



probe the nanoscale, namely Surface Enhanced and Tip Enhanced Raman Spectroscopy, will be 

described and specific applications relevant to nanomedical applications will be reviewed. Progress in 

the use of traditional label-free Raman applied to investigation of nanoscale interactions will be 

described, and recent developments in Coherent Anti-Stokes Raman Scattering will be explored, 

particularly applications to biomedical and nanomedical fields. 
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Introduction 

 

Nanomedicine can be defined as the medical applications of nanotechnology[1], ranging from the use of 

nanomaterials in regenerative medicine, drug delivery strategies, medical diagnostics and therapeutics 

and including potential negative impacts of nanomaterials to human health, commonly encompassed 

under the term Nanotoxicology. In the context of this review article, nanomedicine is viewed from the 

perspective of how Raman spectroscopy (and its variants) can be used in the assessment of the 

beneficial as well as the potential negative impacts of Nanomaterials on human health. Nanomaterials 

have already found uses in a wide range of applications, including anti-microbial paint coatings[2], 

textile finishing[3], and novel applications in the electronics industry[4]. Notably, biomedical 

applications are rapidly emerging, ranging from nanoparticle coated stents for angioplasty[5], contrast 

agents for diagnostic imaging[6,7] and also potential drug and gene delivery vehicles[8–10]. These 

applications are largely dependent on the particular characteristics which nanomaterials and 

nanoparticles possess.  These include properties such as increased surface to mass ratio which in turn 

results in an increase in surface reactivity, while novel optical properties associated with some classes of 

nanoparticles are important for applications in theranostic imaging and subsequent monitoring of drug 

delivery. However, whilst these technologies show promise, it is important to be able to visualise how 

the materials behave in situ, and particularly in the biological context, to be able to characterise their 

interactions and toxicological effects, be they in-vitro or in-vivo. While it has been highlighted that 

comprehensive characterisation of the physico-chemical properties of nanoparticles is imperative, 

changes to these properties, such as aggregation state and effective surface chemistry, can play a critical 

role in their modes of interaction and action [11]. Equally, to understand the modes of action and 

optimise efficacies, monitoring and understanding changes to the biological environment is critical, not 

only on a cellular level but also when considering the systemic responses. 



Considering the system as a whole, one must be able to track a particle or material from initial 

exposure or administration through to the site of action and on to assimilation, degradation or 

excretion. At each step in this process, one must be able to access and visualise the efficacy by which the 

particles can overcome certain barriers to successful administration. These can vary from the route of 

exposure, assessing whether the particle causes toxicity, particle retention (e.g. via the enhanced 

permeability and retention (EPR) effect), or removal for circulation via uptake by the reticuloendothelial 

system (RES), accumulation of the nanoparticles over time, non-specific interactions, the efficacy with 

which the particle reaches its desired location etc.. 

Ideally, what is required is a method which can successfully characterise these processes, firstly 

in fundamental in vitro cytological and ex-vivo histological studies and ultimately in more realistic in-vivo 

applications. This method should be capable of identifying the particle or material of interest while 

simultaneously being able to access the surrounding environment while measuring the efficacy of the 

probe or nanocarrier and/or the physiological response of the organism.   

There exists a large range of analytical methods which can be used in the classification and 

characterisation of nanomaterials. These include scanning and transmission electron microscopy (SEM 

and TEM), atomic force microscopy (AFM), other label free optical methods such as differential 

interference contrast (DIC) and dark field microscopy and fluorescent microscopy methods based on 

intrinsic nanoparticle or external label fluorescence, to name but a few. However, these methods are 

not without certain drawbacks which limit to some extent their applicability and effectiveness. 

Firstly, both AFM and SEM can be considered as primarily surface sensitive techniques, while, 

when TEM is coupled with serial sectioning and ultra-microtomy, it has been used for 3D reconstructions 

and tomography[12,13]. However, these processes are time consuming, costly and laborious. In 

addition, EM requires a particle to have contrasting electron density compared to its environment to 



allow for a particle to be visualised, which renders it ineffective for many “softer” polymeric 

nanoparticles.  EM does not allow live cells to be imaged and, as it requires extensive sample processing, 

it provides only a limited scope for rapid or routine investigation of nanomaterials in-vitro. What EM and 

AFM do provide is the capability of imaging beyond the optical diffraction limit.  More recently 

developed optical based methods, so-called super resolution microscopy, have become available that 

allow for imaging beyond this limit [14–16]. However, their use has been limited in the field of 

nanomedical sciences as of yet.  

In contrast, standard fluorescent based microscopy has been used extensively in nanoparticle 

studies[16–19]. Confocal Laser Scanning (fluorescence) Microscopy (CLSM) has become a standard in 

the toolbox of techniques for in vitro cytommetry [21]. Although the technique is limited in resolution to 

hundreds of nanometers, it can potentially detect fluorescence emission from, and therefore the 

location of, individual nanoparticles. Penetration depths in vivo can be extended through two photon 

excitation techniques and/or NIR fluorophores [22,23]. In the visible region, a range of fluorescent 

assays and labels are commercially available to probe a range of physiological processes in vitro, such as 

lyso and mitotracker used for labelling lysosomes and mitochondria [101] Intrinsically fluorescent 

nanoparticles such as inorganic semiconductor quantum dots have been developed for similar 

applications [102] and surface functionalisation of these types of materials has contributed to 

understanding the dependence of uptake and intracellular trafficking on surface chemistry [24]. Many 

similar studies have been performed with fluorescently labelled nanoparticles [25,26] which are 

commercially available in a range of sizes and surface functionalities. However, not all nanoparticles can 

be easily fluorescently labelled. Furthermore, it is not clear that the transport mechanisms of smaller 

nanoparticles, fluorescently labelled with anionic moieties, are the same as their unlabelled 

counterparts [27]. Critically, there have been reports that labelled nanoparticles can release the dye into 

the surrounding biological environment, and so the distribution of fluorescence within the cell does not 



necessarily represent the presence or subcellular distribution of the nanoparticles[28–30]. Other label 

free optical microscopy techniques are also limited by the type of particle which can be visualised i.e. 

only metal based particles are effective for dark field and DIC microscopy [31].    

Raman spectroscopy has been proposed as a method for monitoring nanomaterials in biological 

systems, as it potentially provides a label free, non-invasive probe of the nanoparticle itself, the local 

environment and the physiology of the organism [32] . Over the past decade, Raman spectroscopy has 

been applied to a range of biomedical areas, including cancer diagnostics[33], toxicity studies[34], 

atherosclerosis[35] and investigation of skin[36,37].  Importantly, what Raman provides is not just a 

method for differentiation between a diseased and non-diseased state, it is based on characterisation of 

the (bio) chemical nature of a sample, based on the characteristic vibrations of the molecular bonds of 

the constituent components. Raman is a form of vibrational spectroscopy, which in itself is a subset of a 

more general umbrella term of spectroscopy. The vibrations are characteristic of the molecular 

structure and, in polyatomic molecules, give rise to a spectroscopic “fingerprint”. The spectrum of 

vibrational energies can thus be employed to characterise a molecular structure, or changes to it due to 

the local environment or external factors. The Raman spectrum is thus a truly label free signature of the 

nanoparticle. Vibrational energies typically fall in the mid Infrared (IR) region of the electromagnetic 

spectrum and are quite commonly probed using IR absorption spectroscopy. Raman in many ways can 

be viewed as a complementary technique to IR spectroscopy; whereas IR involves absorption of 

radiation, Raman is an inelastic scattering technique whereby the incident radiation couples with the 

vibrating polarisation of the molecule and thus generates or annihilates a vibration. For a vibration to be 

active in IR spectroscopy, a change in dipole is required, whereas to be Raman active, a change in 

polarisability is required. As a rule of thumb, vibrations of asymmetric, polar bonds tend to be strong in 

IR spectra, whereas Raman is particularly suitable as a probe of symmetric, nonpolar groups. 

Importantly, this results in the O-H bonds of water being strong absorbers in IR spectroscopy, whereas 



they are relatively weak Raman scatterers. This allows for samples to be investigated in an aqueous 

environment and thus the technique of Raman spectroscopy more readily lends itself to live cell in 

vitro[38] or in vivo[39] measurement. As the vibrational spectrum is measured as a frequency (or 

energy) shift from that of the incident radiation, Raman spectroscopy can be performed across the UV, 

visible or near infrared spectral regions, and thus can benefit from the technologies available and 

advances made for confocal optical microscopy.    

 A number of variants which are based around the physical principal of Raman spectroscopy 

exist. Spontaneous Raman can take the form of Stokes Raman scattering and anti-Stokes Raman 

scattering, the former resulting from the creation of a vibration in a material, characterised by a 

decrease in the incident photon energy (frequency), the latter from the annihilation of vibration, 

characterised by an increase in the incident photon energy. If the incident radiation is resonant with an 

electronic absorption of the analyte, the Raman signal can be resonantly enhanced by several orders of 

magnitude. The use of Resonant Raman Spectroscopy (RRS) in biomedical systems has been limited, 

however, due to associated photochemical degradation phenomena and the generation of fluorescence 

which can swamp the Raman signal of the overall sample.   

 Other variants of these two techniques with increased sensitivities for more molecularly 

specific characterisation have been developed. These include resonant Raman spectroscopy, coherent 

anti Stokes Raman spectroscopy (CARS), tip enhanced Raman spectroscopy (TERS) and surface enhanced 

Raman spectroscopy (SERS).  The majority of these techniques have been applied to nanomedical 

applications; however, two of these methods deal inherently with the nanoscale, namely TERS and SERS. 

Although Raman is fundamentally an optical technique and is thus similar to confocal optical 

microscopy, limited to spatial resolution of the order of hundreds of nanometres, nanometre resolution 

can be obtained through localised enhancement processes. This localised enhancement led to the initial 



interest in the prospect of the use of Raman spectroscopy to probe the specific environment of the 

nanoparticle.  

This article will outline the applications of the various Raman spectroscopy based technique in the broad 

area of Nanomedicine. As they are nano-specific, the use of SERS and TERS techniques will be presented 

initially, while the increasing interest in the use of truly label free spontaneous Raman and Coherent 

Anti-Stokes Raman Spectroscopy (CARS) in nanomedical applications will then be explored. In Raman 

spectroscopy, the sensitivity, spatial resolution and penetration depth and required scan rates depend 

on technique employed, resonance conditions and even the instrumental set-up (microscope objective, 

grating, laser power). In the respective section describing each modality, examples of the state of the art 

in nanomedical applications are provided. The future perspectives attempts to address routes beyond 

the current state of the art. A more detailed description of the historical origin and basic principles of 

the Raman scattering process can be found in numerous excellent text books[40–44] and review 

articles[45–47]. A comparison of Raman and IR spectroscopies for biomedical applications can be found 

in [48].  

 

 
SERS 

 The phenomenon of surface enhanced Raman spectroscopy was described as early as 1974 

[49,50], and is understood to arise from a localised increase in the coupling between the 

electromagnetic field of the incident radiation and the polarisation of the analyte in the presence of 

optically induced surface plasmons on a metal surface. Increases of Raman intensities as high as 10
10

 

have been reported [51], although the spatial range of enhancement is only of the order of tens of 



nanometers. The enhancement process can be achieved using a number of substrates including 

roughened metallic surfaces, structured metal arrays and specially imprinted surfaces.  

Notably, the SERS effect can be induced through the use of metallic nanoparticles and nano 

colloid aggregates. SERS is a direct enhancement of the Raman signal and in the case of nanoparticles 

this occurs in the immediately surrounding local vicinity. The true principal that governs SERS 

enhancement is not fully understood, although the effect has largely been attributed to an electronic 

enhancement due to local fields generated by surface plasmon resonances at the metal surface. 

Alternatively, the enhancement has been attributed to a charge transfer process between the analyte 

and the surface, although it is probable that the processes act in tandem[52]. The technique of SERS in a 

biomedical context is reviewed in greater detail in the following papers[53–55].   

 Nanoparticles and aggregates which are used for SERS enhancement typically consist of a 

metallic nanoparticle, most commonly gold and silver. Quite often, these particles are subsequently 

modified via surface functionalisation which can include targeting moieties designed for specific 

applications, especially as nanosensors. The particle may also be labelled with a Raman reporter moiety 

which allows for identification of the particle in the biological milieu. Using these particles, it has thus 

been possible to apply SERS to a number of biological scenarios, which include diagnostic studies in 

vitro, ex-vivo[56,57] and in-vivo[58,59] , novel bio assays[60–62] as well as cellular studies.  

SERS has been proposed as a method for understanding how nanomaterials behave in a cellular 

environment, important in the study of the fundamental interactions of nanoparticles in the context of 

toxicology, drug delivery or contrast agents for diagnostics.  In 2003, Kneipp et al. proposed that by 

using SERS it would be possible to probe the chemical nature of the subcellular environment and the 

intracellular distribution of biomolecules. This work was extended by incorporation of Raman reporters 

which allowed for localisation of the SERS probe within the cell, leading to chemical probing of sub 



cellular nanostructures[63–66]. For example, in 2010, the group showed how a SERS nanosensor was 

capable of investigating pH changes in a cell throughout the stages of the endocytic pathway of the 

nanoparticle probe. The study was based on changes in the pH of the local environment in different 

cellular organelles which can be monitored via changes in the pH sensitive nanoprobe over time[67].   

Other cellular studies have also investigated the possible use of SERS in the investigation of cell 

surface receptors associated with cancer. In one such study, Kong et al 2012 used organometallic SERS 

active nanoparticles which were targeted to live cells expressing the EGFR (epidermal growth factor 

receptor). The SERS nanoparticles were shown to be capable of specific targeting to the cell surface and 

offered increased sensitivity in comparison to other imaging modalities[68].  Figure 1 a-e, shows oral 

squamous cell carcinoma (OSCC) cells expressing the epidermal growth factor receptor (EGFR), c and e 

show the SERS image generated by CO at 2030cm
-1

 and protein at 1600cm
-1

 respectively. The targeting is 

verified in Figure 1 f – j in a non-EGFR expressing cell line SKOV3 (ovarian carcinoma) and in Figure 1 k-p 

by blockage of the EGFR using an EGFR antibody.  



 

Figure 1 shows (a, f, k) the brightfield image, (b, g, l) the darkfield image of the nanoparticles, c, h, m) 

the SERS image of CO at 2030cm
-1

, (d, I, o) merged SERS and brightfield, and (e, j, p) the SERS image 

generated using the protein band at 1600cm
1
. a – e shows OSCC cells, f – g SKOV3 cells not expressing 

EGFR and k – p OSCC cells treated with anti-EGFR. Reproduced from [68] 

Another demonstrated application of SERS in is the analysis of human serum. Lin et al., in 2011, 

demonstrated the power of SERS coupled with multivariate analysis to distinguish in a non invasive way 

between patients previously diagnosed with colorectal cancer and control patients with 100% diagnostic 

sensitivity and specificity[69]. 

In-vivo SERS is also possible, and has been demonstrated as a potential labelling method for a 

number of applications. SERS has been used in-vivo to investigate how enhancement of the Raman 

signal can be used as a method for tumour detection. Qian et al. showed how EGFR targeting PEGylated 



gold nanoparticles labelled with a Raman reporter where capable of >200 times greater signal 

generation in the infrared compared to that of near infrared fluorescent quantum dots, which allowed 

for the possible identification of small tumours at penetration depths of ~ 1-2cm[58]. Other in-vivo 

applications of SERS have also been explored, including an in-vivo study of inflammation in mice[70], 

demonstrating improvements over fluorescent based methods. SERS has also been shown to be capable 

of single molecule detection in-vitro, a sensitivity which sets it apart from spontaneous Raman 

spectroscopy [71].    

More complex Raman based investigations have also taken advantage of the surface enhancement 

process. Techniques such as deep penetrating spatially offset Raman (SORS) have been combined with 

nanoparticle based SERS in SESORS[72,73]. In brief, in the SORS technique, introduced in a paper by 

Matousek et al, the Raman spectra are collected at positions spatially offset from the point of incidence 

of the probe laser beam. Rather than using microscopic objectives for delivery and collection, fibre 

probes are used. By moving the collection point away from the probe launch site, contributions from the 

surface Raman photons are diminished and those of Raman photons from deeper within the sample are 

increased. Using multivariate statistical methods, it is possible to reconstruct spectra from the different 

layers with a much greater depth of penetration than a traditional confocal microscopy setup[74]. 

Depth sensitivities of up to several millimeters are now achievable and examples of emerging 

applications include non-invasive diagnosis of bone disease, cancer and monitoring of glucose 

levels[75] SESORS uses this same principal, taking advantage of the surface enhancement of the Raman 

signal from metallic nanoparticles embedded within the sample. In a recent publication by Xie et al, 

SESORS was used to identify bisphosphonate-functionalized nanotags on bone through 20mm of porcine 

tissue[76]. This study highlights the increasing potential for in-vivo applications which SORS and SESORS 

may have, in the field of nanomedicine.      



SERS has enjoyed increasing popularity over the past decade, particularly since the emergence 

of as increasing range of nanoprobes. However, the uptake rates and mechanisms as well as the 

subsequent trafficking may be specific to the nanoparticle type, size and surface chemistry. Most SERS 

probes are specifically designed for a target application and so are labels themselves for the SERS signal. 

Furthermore, the molecular specificity of the surface enhancement process is not well understood. 

Therefore, a truly label free method for generic monitoring and characterising the cellular uptake and 

subcellular localisation of nanoparticles in general is still required. 

TERS another method for generating enhancement of the Raman signal. Like nanoparticle based 

SERS, this method is also based on probing of the inherent nanoscale environment of the sample in 

close proximity to a nanoprobe and will therefore be discussed.  

 

TERS  

Tip Enhanced Raman spectroscopy, or TERS, is a method which combines Raman spectroscopy and 

scanning probe microscopic techniques such as AFM.  TERS, like SERS, is a method to enhance the 

Raman signal and, in principle, the mechanism of enhancement is the same. Scanning probe tips have 

dimensions of the order of tens of nanometers or less, and when metal coated, surface plasmon 

resonances can be optically induced, similar to the case for metallic nanoparticles. In TERS, the 

topography of the nanoscale environment of samples can be probed by bringing the tip into close 

proximity with the area of the sample to be probed, but the Raman signal from the environment being 

probed by the tip is selectively enhanced by several orders of magnitude, swamping the spontaneous 

Raman from the remainder of the illuminated spot.  Therefore TERS is a method which allows for very 

small areas or even individual molecules to be probed in a label free manner. 



TERS has been used to investigate viral cell interaction[77], cytochrome-c states in isolated 

mitochondria[78], lipid and protein organisation in artificial cell membranes[79], as well as hemozoin 

crystal formation inside malaria infected red blood cells, as shown in Figure 2 [80]. Figure 2 A –C show 

AFM images of infected red blood cells, highlighting the hemozoin crystals inside the cellular vacuole in 

C. Figure 2 D shows the TERS spectrum from the edge of the crystal deposits showing characteristic 

peaks associated hemozoin and the profile is compared to the SERS and RRS spectra of β-hematin in F 

and G . This study highlights TERS as a nanoscale technique with can be used to probe very specific areas 

which may have implications in disease. In this instance, TERS provides a potential method to study the 

interaction of quinoline anti-malarial drugs which are believed to preferentially bind to the edge of 

hemozoin crystals.    



 

Figure 2. TERS probing hemozoin crystal formation inside malaria infected red blood cells. A – C show 

AFM images of infected red blood cells. D shows the TERS spectrum for the edge of the hemozoin crystal 

deposit, E is the spectrum of the tip following retraction from the cell, F SERS spectrum of β-hematin, G 

resonance Raman (RR) spectrum of β-hematin. Reproduced from [80].  



 

TERS has also been used in the investigation of the interaction between cells and nanoparticles. 

Alexander and Schultz (2012) were able to show the interaction of individual antibody conjugated 

nanoparticles and cell surface bio molecules using TERS, with a similar sensitivity to SERS[81].  

However, as TERS requires the use of AFM tips to enhance the signal, the method is restricted to 

being a surface classification technique and thus is of limited use for intracellular or indeed ex-vivo or in-

vivo tissue analysis. While surface enhanced methods provide promise in a number of nanomedical 

areas, there are some caveats associated with these methods. Firstly, the probe must be capable of 

generating a surface enhancement of the Raman signal; this is only applicable to certain types of gold 

and silver particles or coated tips, as well as nanoaggregates of these metals. Additionally, these 

techniques require a considerable expertise in synthetic chemistry and design of probes or tips for 

specific target applications. Furthermore, reproducibility of the enhancement is also a concern, in 

particular with TERS, were the reproducibility of the tip characteristics is important in gathering 

reproducible spectra. Therefore it is important to consider that, while surface enhanced methods have 

been shown to be capable of nanoscale accuracy, these methods are heavily reliant on specifically 

designed nanoparticle sensors or probes and tips which in some way dilutes the label free aspect which 

spontaneous Raman spectroscopy provides.     

Spontaneous Raman Spectroscopy 

To differentiate it from the numerous variants of Raman spectroscopy which have emerged over the 

past decades, including SERS and TERS, the originally named phenomenon of Raman spectroscopy is 

now frequently called spontaneous Raman spectroscopy. Spontaneous Raman spectroscopy has been 

used extensively over the past decades for a range of biomedical applications and is emerging as a viable 

alternative to gold standard protocols in medical diagnostics. Other uses include investigations in 



blood[82] and serum samples[83], investigations of human skin[36,37], cellular investigations[84–86], 

in-vivo[39] and ex-vivo[33] characterisations as well as studies of interaction of nanoparticles[34]. 

 Importantly, these applications using Raman spectroscopy rely on the use of data analytical 

methods which aid in the classification and understanding of the data which has been acquired. This 

may entail the use of chemometric methods to cluster a data set so that one can see a cell or tissue as a 

distribution of similar spectra in a map. Multivariate statistical methods can be employed for the 

separation of two different classes of spectra e.g. a diseased and non-diseased state. A full description 

of such analytical methods is beyond the scope of this review. However, it is important to highlight how 

Raman spectroscopy and multivariate data mining approaches are commonly used together to 

investigate the biochemical nature of samples.  Some good examples of where these statistical methods 

have been applied to Rama hyperspectral datasets can be found here[85,87,88]. 

 Despite the extensive development of Raman spectroscopy for biomedical applications and the 

specific use of SERS using nanoprobes, not many studies have explored the use of spontaneous Raman 

spectroscopy for nanomedical applications. Of the reports that exist, some have aimed to look at 

probing cells for a toxic response [34,89], others have aimed to look at how nanomaterials behave in a 

cellular environment[32,90] and some have looked at degradation patterns of potential nanoparticle 

drug carriers[91].  

 The potential of Raman spectroscopy as a toxicological screening method has been 

demonstrated for the case of carbon nanotubes and their effects on human cells in vitro. Kneif et al 

2010, showed how the cellular spectral signatures differed between control and exposed cells due to 

changes in specific Raman spectral peaks of the cell nuclei. This method provided a way of investigating 

the toxic response of cells to nanomaterials in a truly label free manner, compared to more typical dye 

based cytotoxicity testing. In addition to detecting differences in response due to nanoparticle exposure, 



it was also possible to statistically compare the dose dependent responses of the Raman signatures with 

other gold standard toxicity tests, demonstrating the potential of the technique as a quantitative high 

throughput screening assay[34].  

In a different type of study by Dorney et al 2012, the aim was to demonstrate the potential of 

Raman spectroscopy to visualise and investigate the interaction of polystyrene nanoparticles in cells. 

The purpose was to use these particles, which are often used as a standard in toxicity studies, as a 

model particle for further applications using Raman spectroscopy. In brief, the Raman spectroscopic 

signatures of the cells were mapped with a step size of 0.75µm over a region which contained both 

nuclear, perinuclear and cytoplasmic regions of the cell. Using a combination of K-means clustering and 

principal component analysis, it was possible to identify the localisation of the particles inside cells 

based on the intrinsic polystyrene signature and also to probe the chemical characteristics of the local 

subcellular environment[32]. A highlight of the results in shown in Figure 3 for cells incubated for 24hrs 

with polystyrene nanoparticles. The image in Figure 3 (i) shows the brightfield image (A) and the K-

means image constructed for the Raman hyper spectral dataset (B). The polystyrene nanoparticles are 

shown as green pixels in the image and the K-means average spectra are shown in Figure 3 (ii) A-D. The 

cluster associated with the green pixels clearly shows characteristic peaks associated with polystyrene 

when compared to a pure sample spectrum, Figure 3 (iii) A and B. The light blue and green clusters were 

then compared using Principal Components Analysis showing that the nanoparticles are located in lipid 

rich regions of the cell, which, by comparison with confocal fluorescence microscopy, was demonstrated 

to be the endoplasmic reticulum. 

 

 



Figure 3. Identification of intracellular distributions of polystyrene nanoparticles using Raman 

spectroscopy. (i) A shows the brightfield and 

cluster average spectra associated with the clusters i

the K-means cluster spectrum associated with polystyrene nanoparticles (A) 

spectrum of polystyrene (B). The Right panel

differentiating the green (nanoparticle) and light blue clusters (cytoplasm)

Component 1 (Bottom, A), suggesting the local environment surrounding th

Reproduced from [32]. 

Additionally, in a follow up paper by Keating et al 2012,

cross correlation analysis (SCCA) for localisation of 

Identification of intracellular distributions of polystyrene nanoparticles using Raman 

shows the brightfield and (B) K-means image of the cell. (ii) shows the K

a associated with the clusters in the K-means image in the panel

means cluster spectrum associated with polystyrene nanoparticles (A) compared 

B). The Right panels show a Principal Component Analysis 

the green (nanoparticle) and light blue clusters (cytoplasm), and the loading of Principal 

suggesting the local environment surrounding the nanoparticles is lipid rich. 

Additionally, in a follow up paper by Keating et al 2012, the supervised approach 

cross correlation analysis (SCCA) for localisation of nanoparticles was used on the same 

 

Identification of intracellular distributions of polystyrene nanoparticles using Raman 

shows the K-means 

means image in the panel above, (iii) shows 

compared with a pure 

 scatter plot (top), 

and the loading of Principal 

e nanoparticles is lipid rich. 

supervised approach of spectral 

the same spectral dataset. 



It was thus possible to identify all the regions within the cell that contained polystyrene nanoparticles, 

accounting for the misidentification of some clusters in the dataset that were apparent with K-means 

cluster analysis. The localisation of the nanoparticles to a lipid rich region of the cell is highlighted in 

Figure 4. Figure 4A and B show a pure polystyrene and lipid spectrum which have been cross correlated 

against the dataset to produce the pseudo colour images in Figure 4C, showing the lipid distribution, 

Figure 4D the distribution of polystyrene and the merge of the two in Figure 4E. This method provides a 

clear analytical approach for identification of nanomaterials and separation of different regions of the 

cell with a particular biochemical distribution[92].      



Figure 4.  Verification of identification of intracellular nanoparticles using spectral cross correlation 

analysis (SCCA). (A) and (B) show

phosphatidylethanolamine. (C) and 

distribution following SCCA with 3-

shown in E, indicating the particles in a lipid rich environment.  

of identification of intracellular nanoparticles using spectral cross correlation 

show a pure spectrum of polystyrene nanoparticles and 3

and (D) show the pseudo colour image of lipid and nanoparticle 

-sn- phosphatidylethanolamine and polystyrene. Th

the particles in a lipid rich environment.  Adapted from [92].  
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Another recent study by Chernenko et al[93] aimed to investigate how different types of 

deuterated liposomal nanoparticles are distributed in cells.  More specifically, it aimed to investigate 

how different chemical compositions affected how the liposomes associated with the mitochondrion. 

Notable in this study is the use of deuterated liposomes to enhance the ability to differentiate liposomes 

from endogenous lipids in the cell, based on the fact that the C-D vibrational frequency is significantly 

down shifted from that of the C-H stretch of the very abundant intrinsic macromolecules of the cell. 

Another paper by the same group also looked at the degradation of polymeric nanoparticles over time 

in cells and concluded that poly lactic-co-glycolic acid (PLGA) and polycaprolactone (PCL) drug delivery 

systems are degraded and incorporated into the late endosomes of the Golgi system, based on spectral 

changes associated with the specific degradation patterns of the nanocarriers[91].   

 Spontaneous Raman spectroscopy has therefore already been demonstrated to be a chemically 

specific method for investigating nanoparticle interactions and also to probe the biochemical nature of 

cells.  Notably, a number of biochemical features can be accessed simultaneously without the need for 

fluorescence or other labelling methods, or for costly cytotoxicological assays. It should be noted, 

however, that, based on current technologies, spontaneous Raman is a relatively weak effect, thus 

highlighting the attention which surface enhanced techniques such as SERS and TERS have received. 

Relatively weak signals can be compensated for by longer acquisition times, with maximum 2D scan 

times of the order of 40-80 mins for a 50µm*50µm area with a step size of 500nm for cellular data[94]. 

However, these scan speeds are largely dependent on the required signal to noise ratio and the step size 

used in image acquisition. For these reasons real-time imaging has not been realised to date.  

Ultimately, for in vivo applications, penetration depth is also an important consideration. In 

Raman microscopy, sensitivities are optimised by choice of objective, providing optical spatial resolution 

but limited penetration depth (~1-50µm). As Raman spectroscopy is an optical technique, the 



penetration depth is largely determined by the choice of wavelength of the source laser, and optimally 

this can be chosen in the near infrared region where tissue has a transmission window. Absorption is 

largely governed by that of chromophores such as melanin (in skin) or haemoglobin across the visible, 

and by the overtones of OH vibrations in the near infra red regions. Scattering is an additional loss 

mechanism, but the development of Spatially Off-Set Raman Spectroscopy [75] using fibre probe rather 

than microscope objective delivery and collection optics, has exploited the fact that the signal from the 

deeper layers is scattered to a greater extent, to improve penetration depth sensitivities. CARS is 

another label free type of Raman scattering which can be used to probe bio and nanomedical scenarios 

and in recent years has seen a growth in applications in cells, tissues and in-vivo imaging. Using single 

wavelengths, imaging of large areas can be achieved at video rates.  

 

CARS 

Coherent anti-Stokes Raman spectroscopy (CARS) is a form of Raman spectroscopy whereby the anti-

Stokes shifted Raman signal is used to probe the molecular bonds within a sample. The coherent process 

takes advantage of a third order non-linear optical phenomenon by which three beams are used to 

probe the sample.  A fixed pump laser beam, a tunable probe beam are set at a frequency difference 

which is exactly equal to the frequency of a specific molecular vibration, resulting in the coherent build 

up of a scattered signal on the anti-Stokes side of the pump laser frequency [95,96]. The signal can be 

orders of magnitude larger than a spontaneous Raman signal. Thus, CARS can be used to rapidly 

generate images of a particular biochemical distribution and therefore can be used in the generation of 

video rate image sequences of cells and tissues. To generate a full spectroscopic signature, however, the 

pump beam has to be tuned such that the difference frequencies scan the vibrational spectrum, a 

process which can take considerable time, under current technological constraints. The nonlinear 



process is furthermore intensity dependent, requiring costly and notoriously temperamental short pulse 

lasers, whereas spontaneous Raman can be conducted with conventional steady state lasers.  

 In a biomedical context, the technique has been used to investigate a number of phenomena, 

also in conjunction with other methods such as immuno fluorescent labelling. Primarily, CARS has been 

used in the study of the C-H stretch region which is most commonly associated with lipids in living 

organisms. Examples include the use of CARS for the study of atherosclerotic lesions[97], intracellular 

trafficking[98], drug delivery[99], cancer metastasis[100], quantitative imaging of lipid distributions in 

living Caenorhabditis elegans[101] as well as imaging of the axonal myelin both in-vivo and ex-

vivo[102,103] CARS has also been used in the assessment of nanomaterials. Notably ,the technique 

has been used to study particle interaction in biological organisms, receptor mediated particle 

uptake[104] as well as the effects of particle size and coating on zebra fish embryos[105]. Moger et 

al[106] used CARS to investigate the interaction of metal oxide nanoparticles within the gills of rainbow 

trout, Onchrhynchus mykiss. They were able to show in a label free manner the translocation of TIO2 

particles across the epithelial membrane and into the capillaries in fish gill tissue. This is shown in figure 

5, which illustrates the forward (a) and epi-CARS images (b) of exposed fish gills. The merged image 

shows the localisation of the particles in the gill tissues, revealing particle clumps in green.   

 



Figure 5. CARS images of the TiO2 nanoparticle distribution in Onchrhynchus mykiss gills, (a) forward 

CARS image showing the nanoparticles, (b) epi-CARS image of the gill tissue and (c) merged forward and 

epi CARS image. Images reproduced from [106]. 

The method has also recently been used to investigate the mechanisms of oral uptake of 

Quaternary Ammonium Palmitoyl Glycol chitosan (GCPQ) nanoparticles. In this study, the particles were 

deuterated to shift the CH2 stretching vibration located at 2840cm
-1

 to a CD2
 
stretching vibration of 

2100cm
-1

. This allows for CARS to be carried out in the so called ‘silent region’ of the cell. Additionally 

second harmonic generation and two photon fluorescence were used to image the tissue containing 

nanoparticles.  In doing this, Garrett et al. were able to examine chitosan uptake and recirculation in the 

gut by being able to target the nanoparticles with cellular precision to the gastrointestinal tract, liver 

and gall bladder, providing novel insights in the role of enterocytes and bile recirculation regarding 

chitosan nanoparticles [99,107]. Figure 6 shows the identification of the deuterated nanoparticles in 

green (2100cm
-1

), which are highlighted by the arrows. Figure 6A and 6B show liver and stomach tissue 

respectively, with the C-D2 resonance being used to identify the deuterated nanoparticles (2100cm
-1

) in 

green and the C-H2 (2845cm
-1

) in red. Figure 6C shows a multimodal label free imaging approach 

combining CARS imaging (green), second harmonic generation (SHG) and two photon fluorescence (TPF) 

in imaging nanoparticle interaction with jejunum tissue. Figure 6D and 6E show the use of a combination 

of CARS and TPF to image the ileum and duodenum respectively, while Figure 6F shows a combination 

of CARS, SHG and TPF of the gall bladder. These approaches show not only how CARS can be used to 

probe nanoparticle interactions, but also highlight how multiple imaging approaches can be combined in 

multimodal approaches to give different types of information building towards a more complete picture.      



 

Figure 6: Epi-CARS images with contrast derived from CD2 and CH2 resonances in GCPQ nanoparticles at 

2100 cm
−1

 (green) and 2845cm
−1

 (red) respectively. (A) Liver tissue. (B) Stomach tissue samples. (C) 

shows Jejunum tissue imaged with epi-CARS with contrast derived from the CD2 resonance (green), SHG 

contrast derived from collagen (blue) and TPF contrast derived from endogenous fluorophores. (D) 

Ileum tissue imaged with epi-CARS with contrast derived from the CD2 and TPF (red) (E) Duodenum 

imaged with epi-CARS with contrast derived from the CD2 and TPF (red). (F) Gall bladder imaged with 

epi-CARS with contrast derived from the CD2 resonance (green), SHG (blue) and TPF (red). Reproduced 

from [99]  

 

Surface enhancement can also be exploited in the CARS format. Surface enhanced CARS 

(SECARS) has been used in conjunction with nanoparticles and has been shown to be capable of 

achieving greater signal enhancement than that of SERS or CARS alone. For biomedical applications, it 

has also been used for the detection of single molecules of deoxyadenosine and deoxyguanosine 



monophosphate (dAMP and dGMP) [108] and has also been used in immuno-histochemistry 

studies[109]. 

 

Conclusions and Outlook 

This article has attempted to provide an overview of the current state of the art of the developing 

applications of Raman spectroscopic techniques in Nanomedicine. A recent review has dealt more 

broadly with the applications of these techniques in the investigation of the interaction of nanomaterials 

with complex biological systems [110]. The development of biomedical applications of vibrational 

spectroscopy, both Raman and IR, has been extremely active for the past two decades and more and the 

challenges to nanomedical applications are intrinsically linked, as indeed they are to those of the 

fundamental understanding of nanobio interactions in general. 

As a molecular specific tool, Raman spectroscopy can potentially aid significantly to the understanding 

of nanobio interactions in vitro. Even before interaction with the cell, it has been argued that the 

biological identity of the nanoparticle is determined by the surface coatings of the dispersion medium, 

the co-called protein corona [111]. While SERS active nanoparticles can be employed to probe this 

interaction acellularly, there is evidence that the nanoparticle medium interaction is very specific to the 

surface characteristics and size, and thus the use of truly label free spontaneous Raman spectroscopy 

may lead to broader insights. In this context, the increased sensitivity of TERS may be of significant 

benefit. SERS has however demonstrated that the surface coating can evolve significantly after 

endocytosis of the nanoparticle [110], and this is a critical consideration in the bioavailability of surface 

functionalities, including release of active ingredients, which have been specifically designed for 

nanomedical applications.  



As an confocal optical microscopic technique, Raman holds all the benefits of confocal 

fluorescence techniques, but has the potential advantage of being truly label free, adding the promise of 

reduced cost and sample processing requirements. SERS probes have demonstrated the potential to 

probe nanoparticle uptake, trafficking as well as the local environment, but these probes need to be 

specifically chemically tailored for the given application can so the technique cannot be considered to be 

truly label free. Spontaneous Raman spectroscopy is, on the other hand, an intrinsically weak 

phenomenon and cellular mapping is often a prolonged processes. Nevertheless, a number of cellular 

studies have been conducted which, although not specifically probing nanoparticles, may have 

implications in future nanomedical applications. For example, some studies have shown the application 

of Raman to drug delivery investigations [112,113] while other studies have identified sub cellular 

structures such as the mitochondrion as well as lipid rich regions which may be associated with the Golgi 

and endoplasmic reticulum [86]. Klein et al. used image registration and immuno fluorescence to verify 

the locations of cellular organelles and also as a means of extracting the spectra which were specifically 

associated with the organelle[114]. These studies could be extended to look at nanoparticle trafficking 

studies, colocalizing the particle to an organelle in a label free manner, without using fluorescently 

labelled nanoparticles or organelle stains. Although spontaneous Raman studies are commonly 

conducted on fixed cells, live cell spectral profiling has been demonstrated [37]. Image analysis is 

ultimately dependent on the reliability of multivariate chemometric techniques and simulated model 

systems can prove invaluable in validating their accuracy [81]. Increased acquisition rates can be 

achieved by systems custom designed for biological applications, and CARS potentially offers a route 

towards routine in vitro screening of intracellular nanobio interactions, although its ability to rapidly 

screen the full spectrum is currently limited by the (tuneable) laser source technologies and applications 

are thus restricted by the need to identify specific spectral marker bands. 



In terms of disease diagnostics, ex vivo applications of Raman spectroscopy have received much 

attention. For the range of Raman modalities, however, mapping of large areas of tissue biopsies also 

suffer from issues of weak signals (spontaneous), specifically targeted probes (SERS), surface sensitivity 

(TERS) or the need for specific spectral markers (CARS). As a chemically specific probe, however, Raman 

techniques are particularly suitable for analysis of biomarkers of disease in biological fluids [71,72] and 

this suitability is readily extended to applications in nanomedicine.  

Raman scattering is fundamentally an optical technique and in vivo applications are thus limited by the 

ability to access the area of interest. For dermal analysis, custom designed systems are commercially 

available which exploit the near infrared transmission window of skin, although, in a microscopic format, 

the penetration depth is further limited by the delivery optics, typically to some hundreds of microns. 

Advances in SORS have increased the depth resolution, and such technologies could prove invaluable 

tools for analysis of transdermal nanodrug delivery or environmental exposure to nanoparticles. As an 

optical technique, Raman spectroscopy readily lends itself to endoscopic probes [115], however, and 

recent advances in such in vivo probes may significantly impact on biomedical applications of Raman 

spectroscopy, including, inevitably Nanomedicine. 

Future Perspectives 

The field of nanotechnology is set to grow ever rapidly as new applications and avenues of research are 

explored over the coming decade. Crucially, characterisation and visualisation methods in a medical 

setting must develop in tandem, to access the applicability of such nanotechnology. Raman 

spectroscopy represents a method proven in the field of disease diagnostics and biomedical imaging and 

thus by extension holds the capability to progress the field of nanomedicine.  

Spontaneous Raman spectroscopy provides a versatile and truly label free method which has seen 

success in a number of different medical applications, most notably in disease diagnostics. Key enabling 



technological developments in this context include endoscopic and other in vivo probes. Relatively Low 

signal strengths currently limit the technique to small areas and/or long scan times, however, and 

continuing improvements in signal throughput and detector sensitivities are important.  EU Directives 

limiting the use of animal models will put increasing emphasis on the development of in vitro screening 

methods and Raman is a potential candidate for high content analysis of, for example, the efficacy and 

mode of action of novel chemotherapeutical agents of toxicants. The high optical resolutions obtainable 

make Raman particularly suitable for acellular or subcellular studies of nanobio interactions. As the 

sensitivity of the Raman technique is intimately linked with the multivariate statistical data analysis 

methods, the quantitative specificities of these methods must be established. This can only be done if 

the true result is known, and in this context the use of specifically constructed model datasets may 

provide a quantifiable insight into how far Raman spectroscopy can be pushed in both a medical and 

nanomedical context.  

SERS provides increased sentitivities to probe the nanoscale environment surrounding metallic 

nanoparticles. Although the technique is not truly label free, with the increased sensitivities achievable 

as well as the targeting potential of such probes, SERS may provide alternative imaging strategies for 

disease diagnostics in-vivo, as well as provide enhanced methods for the monitoring of human fluids 

such as serum and other metabolic excretions ex-vivo. SERS in-vitro may also prove a useful tool in 

probing the nature of the so called protein corona of nanoparticles in biological media and thus provide 

valuable insights into the surface behaviour of nanomaterials in a biological setting. Other enhancement 

methods such as TERS also provide novel insights into the nanoscale environment although they are 

limited by being mainly a molecular or surface specific technique.   

Coupling these advances in spontaneous and surface enhanced Raman with the development of SORS 

and SESORS, some of the shortcomings in signal generation and depth penetration of Raman 



spectroscopy in-vivo may be overcome. In addition to the development of endoscopic and needle based 

probes which will increase access to the point of interest, realistic applicable in-vivo Raman studies in 

nanomedicine may not be too far away. CARS provides a method which is capable of video rate scan 

speeds. However, as of yet the technique is not a spectroscopic imaging technique as it only allows for 

the probing of one particular wave number or vibrational marker at a time. The technique therefore 

requires a clearly identifiable biomarker for imaging, which may not be the case for all biomolecules.  A 

CARS system that could provide a spectrum of the finger print region of the sample with similar real 

time imaging capabilities would be ideal. Specifically for CARS to progress as a spectroscopic imaging 

modality, advances in laser technology such as rapidly tunable lasers will need to develop in tandem. 

These advances would then open a myriad of applications for CARS imaging along the lines of 

spontaneous Raman imaging.   

 

Executive Summary 

Raman Spectroscopy: Raman spectroscopy is a well established chemical analysis technique finding 

increasingly broader applications, particularly in biochemical analysis and disease diagnostics.  

Surface/Tip enhanced Raman Spectroscopy: The techniques of SERS and TERS specifically probe the 

nanoscale and, although TERS is a topical/surface technique, SERS probes have already been used 

extensively for in vitro and in vivo studies. SERS probes are normally chemically functionalised according 

to the specific target, and so the technique is arguably not truly label free. 

Spontaneous Raman Spectroscopy: As a truly label free technique, (spontaneous) Raman spectroscopy, 

coupled with multivariate analytical techniques potentially provides a probe of nanoparticles in 



cells/tissue, their nature of their local environment, and physiological changes. Unenhanced, the signals 

are however relatively weak, and large scale mapping can be time consuming. 

Coherent anti-Stokes Raman Spectroscopy: CARS is a nonlinear optical technique which is increasing in 

prominence for biomedical applications. Tuned to a specific vibrational frequency, it can scan large areas 

(cm
2
) at video rates. Currently, however, it is not a spectroscopic technique and does not avail of the full 

biochemical information available, but relies on the presence of a specific spectral marker.  

Outlook: The range of modalities of Raman spectroscopy potentially hold great promise for biomedical 

and nanomedical applications, although many technical challenges remain. 
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