856 research outputs found

    Intelligent Web Services Architecture Evolution Via An Automated Learning-Based Refactoring Framework

    Full text link
    Architecture degradation can have fundamental impact on software quality and productivity, resulting in inability to support new features, increasing technical debt and leading to significant losses. While code-level refactoring is widely-studied and well supported by tools, architecture-level refactorings, such as repackaging to group related features into one component, or retrofitting files into patterns, remain to be expensive and risky. Serval domains, such as Web services, heavily depend on complex architectures to design and implement interface-level operations, provided by several companies such as FedEx, eBay, Google, Yahoo and PayPal, to the end-users. The objectives of this work are: (1) to advance our ability to support complex architecture refactoring by explicitly defining Web service anti-patterns at various levels of abstraction, (2) to enable complex refactorings by learning from user feedback and creating reusable/personalized refactoring strategies to augment intelligent designers’ interaction that will guide low-level refactoring automation with high-level abstractions, and (3) to enable intelligent architecture evolution by detecting, quantifying, prioritizing, fixing and predicting design technical debts. We proposed various approaches and tools based on intelligent computational search techniques for (a) predicting and detecting multi-level Web services antipatterns, (b) creating an interactive refactoring framework that integrates refactoring path recommendation, design-level human abstraction, and code-level refactoring automation with user feedback using interactive mutli-objective search, and (c) automatically learning reusable and personalized refactoring strategies for Web services by abstracting recurring refactoring patterns from Web service releases. Based on empirical validations performed on both large open source and industrial services from multiple providers (eBay, Amazon, FedEx and Yahoo), we found that the proposed approaches advance our understanding of the correlation and mutual impact between service antipatterns at different levels, revealing when, where and how architecture-level anti-patterns the quality of services. The interactive refactoring framework enables, based on several controlled experiments, human-based, domain-specific abstraction and high-level design to guide automated code-level atomic refactoring steps for services decompositions. The reusable refactoring strategy packages recurring refactoring activities into automatable units, improving refactoring path recommendation and further reducing time-consuming and error-prone human intervention.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/142810/1/Wang Final Dissertation.pdfDescription of Wang Final Dissertation.pdf : Dissertatio

    Assessing emphysema in CT scans of the lungs:Using machine learning, crowdsourcing and visual similarity

    Get PDF

    An examination of how lecturers' pedagogical beliefs are reflected in their use of ICTs in teaching practice : a case for Africa University EMBA lecturers

    Get PDF
    In the study, six lecturers were surveyed to determine their pedagogical beliefs. The findings of the lecturers' beliefs survey indicated that no one lecturer strictly held one belief construct. They instead held a mixture of the beliefs and the distinction was in the actual mix

    Formal Methods Specification and Analysis Guidebook for the Verification of Software and Computer Systems

    Get PDF
    This guidebook, the second of a two-volume series, is intended to facilitate the transfer of formal methods to the avionics and aerospace community. The 1st volume concentrates on administrative and planning issues [NASA-95a], and the second volume focuses on the technical issues involved in applying formal methods to avionics and aerospace software systems. Hereafter, the term "guidebook" refers exclusively to the second volume of the series. The title of this second volume, A Practitioner's Companion, conveys its intent. The guidebook is written primarily for the nonexpert and requires little or no prior experience with formal methods techniques and tools. However, it does attempt to distill some of the more subtle ingredients in the productive application of formal methods. To the extent that it succeeds, those conversant with formal methods will also nd the guidebook useful. The discussion is illustrated through the development of a realistic example, relevant fragments of which appear in each chapter. The guidebook focuses primarily on the use of formal methods for analysis of requirements and high-level design, the stages at which formal methods have been most productively applied. Although much of the discussion applies to low-level design and implementation, the guidebook does not discuss issues involved in the later life cycle application of formal methods

    1992 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    For the 28th consecutive year, a NASA/ASEE Summer Faculty Fellowship Program was conducted at the Marshall Space Flight Center (MSFC). The program was conducted by the University of Alabama and MSFC during the period June 1, 1992 through August 7, 1992. Operated under the auspices of the American Society for Engineering Education, the MSFC program, was well as those at other centers, was sponsored by the Office of Educational Affairs, NASA Headquarters, Washington, DC. The basic objectives of the programs, which are the 29th year of operation nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate and exchange ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers

    Informed selection and use of training examples for knowledge refinement.

    Get PDF
    Knowledge refinement tools seek to correct faulty rule-based systems by identifying and repairing faults indicated by training examples that provide evidence of faults. This thesis proposes mechanisms that improve the effectiveness and efficiency of refinement tools by the best use and selection of training examples. The refinement task is sufficiently complex that the space of possible refinements demands a heuristic search. Refinement tools typically use hill-climbing search to identify suitable repairs but run the risk of getting caught in local optima. A novel contribution of this thesis is solving the local optima problem by converting the hill-climbing search into a best-first search that can backtrack to previous refinement states. The thesis explores how different backtracking heuristics and training example ordering heuristics affect refinement effectiveness and efficiency. Refinement tools rely on a representative set of training examples to identify faults and influence repair choices. In real environments it is often difficult to obtain a large set of training examples, since each problem-solving task must be labelled with the expert's solution. Another novel aspect introduced in this thesis is informed selection of examples for knowledge refinement, where suitable examples are selected from a set of unlabelled examples, so that only the subset requires to be labelled. Conversely, if a large set of labelled examples is available, it still makes sense to have mechanisms that can select a representative set of examples beneficial for the refinement task, thereby avoiding unnecessary example processing costs. Finally, an experimental evaluation of example utilisation and selection strategies on two artificial domains and one real application are presented. Informed backtracking is able to effectively deal with local optima by moving search to more promising areas, while informed ordering of training examples reduces search effort by ensuring that more pressing faults are dealt with early on in the search. Additionally, example selection methods achieve similar refinement accuracy with significantly fewer examples

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Development of a methodology for classifying software errors

    Get PDF
    A mathematical formalization of the intuition behind classification of software errors is devised and then extended to a classification discipline: Every classification scheme should have an easily discernible mathematical structure and certain properties of the scheme should be decidable (although whether or not these properties hold is relative to the intended use of the scheme). Classification of errors then becomes an iterative process of generalization from actual errors to terms defining the errors together with adjustment of definitions according to the classification discipline. Alternatively, whenever possible, small scale models may be built to give more substance to the definitions. The classification discipline and the difficulties of definition are illustrated by examples of classification schemes from the literature and a new study of observed errors in published papers of programming methodologies
    corecore