
(NASA-CR-148212) DEVELOPMENT OF A N76-26896
NETHODOIOGY FOR CLASSIFYING SOFTWARE ERRORS
Final Technical Report, 1 Jan..- 30-Jun.,
1976 (Duke Univ.), 93 p HC $5.00, CSCL 09B Unclas

G3/61 42320'

PDARTMENT
OF

CO PUTER SCIENCE

DUKE UNIVERSITY " t

https://ntrs.nasa.gov/search.jsp?R=19760019808 2020-03-22T14:00:34+00:00Z

%/Y1 -s$8 94.

DEVELOPMENT OF A METHODOLOGY FOR

CLASSIFYING SOFTWARE ERRORS

by

Susan L. Gerhart

Grant NSG 1267 to

DUKE UNIVERSITY
Durham, N. C. 27706

Jan.1-June 30, 1976

Investigator: 	 Susan L. Gerhart,

Compdter Science Department

Final Technical Report

July 2, 1976

PRICES SUBJECT TO CHANGE

BN
REPRODUCED

NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERESPRIGFIELD, VA. 22161

ABSTRACT

Classification of errors in software is an important and difficult problem.

Its purpose is to gain insight into the nature of errors in order to develop

better methods for preventing and detecting errors and to develop methods

for assessing quality and predicting existence of errors in software. The

problem is difficult since errors (real or potential) pervade all programming

activities and therefore all programming concepts must be utilized in

discussing errors.

The problem seems to have a circular character: classification requires

definition, but, to a great extent, definition requires classification. To

find a way out of this circularity, a mathematical formalization of the

intuition behind classification is devised and then extended to a "classification

discipline": Every classification scheme should have an easily discernible mathe

matical structure and certain properties of the scheme should be decidable

(although whether or not these properties hold is relative to the intended

use of the scheme). Classification of errors then becomes an iterative process

of generalization from actual errors to terms defining the errors together

with adjustment of definitions according to the classification discipline.

Alternatively, whenever possible, small-scale models may be built to give

more substance to the definitions.

The classification discipline and the difficulties of definition are illus

trated by examples of classification schemes from the literature and a new

study of observed errors in published papers of programming methodologies.

Several recommendations are made for studies which would further clarify the

problem and begin to produce useful classification schemes.

INTRODUCTION

Errors are a fundamental problem in the development and use of

high-quality software. As computing systems, especially hardware

components, have become more sophisticated, powerful, and reliable, so

have the demands on.these systems. As computing systems are given more

responsibility in life-critical activities, such as flying airplanes

and diagnosis and monitoring in medical-care, the potential for disastrous

results from even a single error has increased immensely. It is also the

conventional wisdom, reinforced by various studies, that errors account

for a large share of the cost of developing software.

Although errors are an ever-present fact of life for individual

programmers, programming projects, and users of programmed systems,

there has been relatively little direct study of errors. Studies have

concentrated on syntactical (grammatical) errors which impact on the

quality of software only in the time consumed by detecting and correcting

these errors. Errors which affect the final behavior of a system are

harder to study. Many studies have been largely collecting data on

errors and analysing these data for some tentative conclusions. The

purpose of these studies may be one or all of the following:

1. 	 Insight into activities that give rise to errors

or that fail to detect errors

2. 	 Development of better methods for preventing and

detecting errors

3. 	 Viewing programming as a dynamic process, modeling the

error subprocesses

4. 	 Assessment of quality of software with respect to

latent errors

A crucial factor in the execution and validity of these studies is

the classification of errors, for it is classification that organizes

the 	 error data into meaningful patterns from which abstraction, insight,

and conclusions can occur. That is, none of the above purposes can be

achieved fully if attention is paid only to errors on a one-at-a-time

basis.

The purpose of the research reported on here is the development of

a methodology for classification of errors. The research originally

proposed included study of two tasks with respect to their errors and

an assessment of various methods of preventing and detecting errors.

However thissoon ran agrund on two accounts:

1. 	 A collection of errors in published papers which have been

influential in the development of methodologies for pre

venting and detecting errors, along with additional

reading, indicated that the assessment was both premature

and 	 too large to be accomplished within the time-span of

the 	 research.

2. 	 The specific studies and a reading of previous work showed

that there were more fundamental problems that must be

addressed.

The most appropriate course of action given these two discouragements seem

ed to be to attack the problem on a more fundamental level using the

insight gained from the failures. This attack used the common approach

of factoring the problem into separate subproblems (classification and

errors) with the aim of reuniting the subproblems (into classification of

errors) after their separate study. The results reported in the rest

3

of this paper are:

1. 	 Classification can be considered as a general problem

independent of errors. This leads to some mathematical

definitions which provide the foundation for explicating

the structure of classification and evaluation of specific

classifications. The mathematics is quite elementary and serves

to formalize intuition about classifications.

2. 	 It is not as easy to consider errors separately from

classification. The subject of errors brings in the

entire realm of programming and computation. The mathe

matical theory of computation is not fully developed and,

even if it were, computation is such a rich area that the

mathematics is complicated. Of course, programming is a

human activity not easily rendered mathematically. It will

be illustrated later that a fundamental difficulty is

communication between people whose orientations and experience

cover different aspects. of computation, say hardware vs.

software.

3. When we put the two subjects together, we see that in a way

the critical difficulty is circularity: to classify errors

requires definitions of errors and definitions require

classifications.

The rest of the paper considers first classifications, then errors,

then a series of small and incomplete studies of classifications of

errors. Our approach is to attack the problem from various angles;

mathematical, linguistic, psychological, and technological. The subject

http:aspects.of

4

is truly difficult and comprehensive. Our purpose is to expose some

of the reasons for the difficulty and to provide a number of small remedies

and tentative recommendations for resolving the difficulties. Our claim

is that indeed errors can ultimately be classified for the various purposes

discussed above but that the task is perhaps harder than one might expect.

Most of the paper focuses on the mathematisation of classification

and the appendix, a paper entitled "Observations of Fallibility in

Applications of Modern Programming Methodology". That paper illustrates

many points about errors and about classification.

I claimed above that errors are discussed relative to individuals

with different backgrounds.

Much of this paper must be understood relative to my background:

software, rather than hardware; academic, with exposure to, but no direct par

ticipation in government and industrial programming activities; programming

in-the-small, rather than programing-in-the-large; theoretical, more than

technical or management; verification; more than design, of programmed systems.

5

2. 	 THE MATHEMATICS OF CLASSIFICATION

When we talk about classification, we mean that there is a set of

objects and some means of grouping these objects together into classes such

that each class has some common property. We can look at a classifi

cation from two different standpoints - the classes and the properties

which define (or describe, or characterize) the classes. When we do so)

there are some observations we can usually make about the classes:

whether they overlap, include all objects, or include any objects.

It is also interesting to look at the ways the properties are defined and

how properties can be built up from other properties with the concomitant

effects on classes.

We will now state some definitions and prove some theorems which

attempt to capture these notions about classification. The mathematics

is adapted from set theory and logic and is not far beyond the level of

the 'new math" taught in schools today (A good reference is Stoll, (1)).

Someone has said that "mathematics is the science of structure". Our

thesis is that these elementary mathematical concepts can make precise

for us what we mean when we talk about classification, that is, we can

study the structure of classifications. After the definitions, theorems,

and a mathematical example, we will examine the definitions in more detail

and apply them to classification of errors.

DEFINITIONS AND NOTATION:

Let 	 X be a fixed reference set.

1. 	 A class-defining property is a statement which evaluates to

either true or false whenever any reference to a member of X

is replaced by an actual member of X. Let o(x) denote a statement

referring to x, a member of X. The property c(a) is satisfied

by a of X if c(a) evaluates to true.

Z.- Let c be a class defining property. The class associated with
c, denoted c, is the subset of X which satisfies c, i.e.
c = : x is a member of X and c(x)}a:

6

3. 	 Two classes c.and c' are mutually exclusive if c A c' = 4.
A class c is empty if c = 4. (d is the empty set and A denotes
intersection, returning exactly the members of both sets.)

4. 	 A classification scheme C is a set of class-defining properties,

the class system associated with C, denoted C, is the set of

all classes associated with class-defining properties of C. We

will say that C induces Con X.

5. 	 A class system C is

a. 	 exclusive if every pair of classes from C is mutually exclusive.

b. 	 inclusive if every member of X is a member-of some class of C.

c. 	 full if no class of C is empty.

6. 	 The product of two classification schemes C and C', denoted

C x C', is defined as

{c4 c' : c is a member of C and c' is a member of C'}
(c 4 c) (x) is defined as c (x)g c'Cx). & is the logical
and operator, which is true only when both operands are true.

7. A class system C' is a refinement of another class system C

if for every c' of C' there is a c of C such that c _¢ c and the
union of classes of-C' equals the union of classes of C.

8. 	 A classification scheme C' is an extension of a classification

scheme C if every property in C' is constructed using the

logical operators g and -i (and, negation) on the properties of

C.

9. 	 Suppose X and Y are two sets with a relation R on X x Y and that
CX and CY are classification schemes defined for X and Y
respectively. Then the class relation R is defined

cx R cy.iff for some x and y, members of cx and .Sy, xRy

Convention: We will say that a classification scheme has a property

(exclusive, inclusive, full, refinement, extension) if its associated

class system has the property and vice versa,

Example (Mathematical):

Let 	 X= the integers from 1 to 9,

D= 	 {d2, d31

where d2(x)="x is divisible by 2"

d3(x)="x is divisible by 3"

E= 	 {prime, -iprimel

where prime (x)="x is prime, i.e. has no divisors

except 1 and itself"

D= { {2,4,6,8,101, {3,6,91 1

prime ={1,2,3,5,7}

_ wime ={4,6,8,91

E_= -rime, (prime) I

D is not exclusive or inclusive but is full.

E is inclusive, exclusive, and full.

D x E - {d4 prime, d2 -iprime, d3 prime, d3 4 -- prime}
D x E is a refinement of D and of E.

7a

An extension of D is {d2g d3, d2g--d3, -- d2 d3,---id2g--d3,}

This extension is exclusive, inclusive, and full.

THEOREMS:

1. 	 Any classification scheme C can be extended to an exclusive,

inclusive and full classification scheme C'.

Proof: Suppose C = {el,...cnl, Let
C*{l c2 ,... u cl o2q.. cn, ... -c -c ..- n
C* is exclusive since every class property has at least one com

ponent property which appears both negated and non-negated.

C* is inclusive since every combination of component properties

and their negations is represented and so one must be satisfied by

any member of X. Delete the empty properties from C* to get C'.

For future reference, let us call C* the complete extension of C.

2". If C and D are inclusive and exclusive classification schemes, then

C x D is inclusive and exclusive.

Proof: Consider cl dl, c24 d2 from C x D.

Their mutual exclusion foilows from mutual exclusion of cl and c2

if cl = c2 or the mutual exclusion of dl and d2 if cl=c2.
Inclusion follows from the fact that for every x there must be
some c and some d satisfied by x, so-c d is satisfied by x.

3; 	 If D is inclusive then C x D is a refinement of.C.

Proof: c" _<_c for every c and d,

o = 	 union of aTl cxd such that d is a class of D.
Therefore the union of all cxd in CxD equals the union of all

classes of C.

4. 	 If a classification scheme C is inclusive and exclusive for some

set X, then it is inclusive and exclusive for any subset Y of X.

Proof: Let .CX, CY be the class systems induced by C on X and Y,

respectively. Then every class cy of CY is a subset of a class

cx of CX so CY is exclusive. Every member of Y is a member of X
and so satisfies some c of C and therefore is a member of some
cy or CY.

7b

Let us now make some observations about the terms and theorems:

a.; We have defined class-defining properties relative to a set X.

These properties are functions and we are intending that the set X be a

subset of the domains of the properties. That is, we assume the properties

are well-defined for X. Let us call X the domain.

b. The notion of a classification scheme is more general than the

notion of class systems. A class system is specific to the reference set

X, but a classification scheme may be defined for many reference sets.

c. We might ask whether there is some kind of "ideal" classification

scheme. If we look at X as the largest set of objects to which some

classification scheme C might ever be applied, then we can observe:

i 	 Full means that every class of C is represented by some member

of X. This would seem to be a good property to have since

otherwise the classification scheme has some superfluous

qualities. But it might be that the scheme can only be

devised meaningfully as, say, a product of two other

classification schemes which just don't completely fit

together.

ii. Inclusion is certainly desirable since its absence means that

there are some objects which escape discussion in terms of

the classification schne. On the other hand, Theorem 1

shows that an inconclusive scheme can be extended to be

inclusive.

ii. Exclusion really depends on the intended usage of the

classification scheme and the nature of the class-defining

properties. If the purpose is to obtain a precise characteri

zation of each object with respect to certain features, then

exclusion should be sought, but the properties may be "fuzzy"

or probabilistic so that exclusion is not meaningful. Or it

may 	 be highly desirable that the properties not be mutually

exclusive, e.g. if there is a probability of failure in

determining whether a property is satisfied, but a high overall

probability that every object satisfies some property.

B

Now, 'ifwe look at X another way, as a subset of the set of all objects

to which C may be applied, full simply means that not every class-defining

property has a representative in X; inclusion is probably still desirable,

but may mean that X should be pre-classified into the subset which satisfy

some property of C, to which C can be applied, and the complementary subset

to which some other classification scheme should be applied; exclusion again

depends 6n the context of usage.

d. The notion of extension and the result of Theorem 1 say that there

may be ways of building up good classification schemes from a set of properties

which initially are satisfied by only a few objects in the reference set. That

is, the initial set of properties might be devised by simply generalizing

from a few members of X and then extended to some more comprehensive scheme.

On the other hand, this approach has the deficiency that some objects are

classified only by their failure to have certain properties and this may not

give a good description of the properties they do have.

e. The product of two classification schemes is seen to be a well-de

fined notion and to preserve certain characteristics of classification schemes.

Its value comes from the correlations that may be observed from considering

what properties from two different schemes are satisfied by an object.

Notice that Theorem 2 does not guarantee that full is preserved by product,

.since it may not be. Thus an empty class in a product scheme may provide

useful information.

f. About all we can do with a non-product type of scheme is count

the objects, unless the scheme is further refined.,

g. The notion of refinement leads to the concept of a hierarchy of

classification schemes. We might denote this by

C={cl:Cl,c2:C2,...., cn:Cn}

where ci:Ci means that the classification scheme Ci is well-defined for ci and

refines it. Thus all of the subclassification schemes Ci when applied

to their respective subclasses induce a refinement on C.

h. Finally, the notion expressed by definition 8 "lifts" a relation

between two .(possibly very different) sets to a relation between classification

schemes over these objects. This might be useful if R were interpreted as,

say, "causes" so that a cause-effect relationship between two objects

suggests a possible cause-effect relationship for other members of their

containing classes.

9

The mathematical definitions given here could stand some polishing and

certainly more theorems could be proved. Our purpose has been to try and

capture-some of the notions which seem to underly classification activities.

We will try to show in the rest of the paper that this endeavor has paid

off by allowing us to make specific analysis of various kinds of classifi

cation schemes. It also can guide us in deciding what we want from classifi

cation schemes and in designing classification schemes. Our claim is that

it is extremely important that classification schemes have a clear structure,

which structure should be explicated in terms of our definitions (and

possibly others) while it is less important that schemes have characteristics

-such as exclusion, inclusion, and full (or possibly other such characteristics)

than that it be possible to decide whether the scheme has these

characteristics. That is, our goal is to discipline our thinking about

classification by using these mathematically expressed concepts.

We have been able to characterize classification abstractly.

Certainly, classification is a common activity that is carried on in other

disciplines, e.g. classification of symptoms according to disease or

classification of crimes for demographic studies. Some collegues in medical

computing pointed me toward a book on "Clustering Algorithms" (Hartigan, (2))

with the warning that the study of clustering, which is nearly synonamous with

classification, is fairly new and has only recently found its way into books.

The difference between our needs and this work is that it starts with

numerical data and measures. Hartigan does list some purposes of

classifications which are worth reviewing:

a. to name a class, presumably with some meaningful name

b. to di lay related objects in such a way that subtle
differences are more apparent

c. to summarize so
by its property
to abstract

that it
rather

is possible to refer to a class
than its individual objects, i.e.

d. to predict since if some objects of a class have a property
it is reasonable to expect others also to have it

e. to require explanation since clear-cut and compelling clusters
require an explanation of their existence and thus promote the
development of theories

He also warns that the clustering techniques are not all based on sound

probability models and that it is often difficult to evaluate the results

and to determine if the clustering is stable.

There may well be more worthwhile work in the area of pattern recog

nition which I could not find or understand.

10

However, I believe the problem of classification of errors is at a more

fundamental level because it is first necessary to classify errors by

their properties (and to define those properties) after which frequencies

can be counted and larger patterns ascertained.

3. ERRORS

Consider 	 the following dictionary definitions (3)

"deviation from accuracy or correctness; a mistake"
error

synonyms: blunder, slip, oversight

fault -	 "defect or imperfection; a flaw; a failing"

"error or mistake"

synonyms: failing, foible, weakness, vice

mistake-&rror in action, opinion, or judgment"

Clarification:an error is an unintentional wandering or deviation

from accuracy; a mistake is caused by bad judgment

or a disregard of rule or principle; a blunder is

a careless, stupid, or gross mistake, suggesting

awkwardness, heedlessness, or ignorance; a si is

usually 	 a minor mistake made through haste or

carelessness

What is the best word to use when we talk about errors Cor whatever

they are) in software? The word "fault" also has meanings in geology and

electrical engineering that the other terms do not. It seems best to me

to use the work "error" consistently when talking about software, based on

the fact that errors are made by people with the effect of deviation from

accuracy or correctness. When used in-the context of software, "fault" seems

-to take on the meanings "foible, failing, vice" more than its other meanings

which have physical connotations. It also seems appropriate not to spare

the use 	 of the words blunder and slip, when their meanings report exactly

the reasons for an error; although the attached meanings nay cause ill

feelings, they may be perfectly appropriate.

The purpose of this discussion on definitions is simply to clarify

the word I am using and the reasons I am using it. Another reason is to

bring out what I see to be a critical problem in dicussing errors - the

communication between people with different backgrounds and therefore

different vocabularies. To a completely software-oriented person, a fault

is something like the San Andreas and there is nothing physic'al associated

with errors. However, a hardware-oriented person is more accustomed to

dealing with physical devices which do have imperfections and failings and

therefore may try to ascribe the word fault-to certain errors. That is not

to say that software cannot be affected by faults since programs ultimately

reside and are executed on physical devices, but it seems best to restrict

attention separately to software errors, hardware faults, and the interaction

between 	the two.

The 	 following example is worked through to demonstrate some of the

linguistic problems associated with discussing software errors.

EXAMPLE:

The 	following program fragment appears in a book on structured

programming (reference 6 of the appendix)

1=1;

DO WHILE (I<=N & KEY --=TAB(I));
I=I+i;

END;

The 	 language is PL/I. Assume that

a. 	 N,KEY,I, and TAB are declared as integers

b. 	 TAB is an array with one subscript ranging from I to N

c. 	 N, KEY, and TAB are initialized to positive integers

d. After execution I is compared with N and further action is taken.

The program fragment linearly searches the "table" TAB for KEY i.e. searching

starting at 1 until either KEY is found at TAB(I) or I exceeds N,.in

which case KEY is not in TAB(l to N). DO WHILE is the loop construct of

FL/I and &,<=,-r= are the logical operators "and", " less- than or equal",

and"not equal". In PL/I, A & B is defined to be true only when both A and B

are 	 true.

The program produces interesting results when executed on a large IBM

computer with standard IBM software and four existing PL/I compilers. One

compiler was an optimizer, while the others were intended for various degrees

of debugging and standard (non-optimized) usage. The test data of interest

was N=50, TAB(I)=I for I from 1 to N, and KEYl00. The program produced by

the optimizing compiler ran correctly while the other PL/I compilers terminated

in DATA INTERRUPTand SUBSCRIPTRANGE errors. The cause for the different

results for different compilers is the ambiguous definition of & in the PL/I

language. The optimizing compiler produces "short-circuited" code which

ceases evaluation of A & B and A is found to be false, while the code

produced by the other compilers evaluates both operands. In the above

program, when I reaches N+l, KEY-eTAB (I) is still evaluated with resulting

violation of subscript range. The language is defined so that each of these

compilers is considered to be a correct implementation of the language.

Clearly, there is an error here. Let us consider some of the different

ways we might describe and (subsequently classify) this error:

1. 	 It is a logical (semantic) error

a, The subscript range of TAB is violated

13

b. 	 An operand of & is caused to be executed when it

is possibly undefined.

C. 	 The terminating condition of the loop is possibly

undefined.

2. 	 The error is one of "improper termination" i.e. the

program blows up.

3. 	 The error is reported variously in hardware-oriented (DATA

INTERRUPT) and software-oriented (SUBSCRIPTRANGE) terms so

the error is related to both hardware considerations

(finite storage) and software protection (subscript checking)

4. 	 The authors' knowledge of PL/I is incomplete in that they

should have been aware of this pitfall in PL/I

5. 	 The authors' knowledge of programming languages in general is

deficient, since this condition is carefully considered in

other languages, e.g. ALGOL W

6. 	 The error is the implementation in PL/I of a multi-exit loop,

one where two or more different actions are 'appropriate

upon 	 termination of the loop.

7. 	 The error is in the implementation of the well-understood

linear-search algorithm.

8. 	 The error is in the design of the PL/I language-in that the

necessity and order of evaluation of operands of logical

operators is left undefined and therefore is compiler-dependent

9. 	 The error is in reference materials on PL/I (none of the ones I

looked at warns of this possibility)

10. 	 The error is in the authors' publication of a program which had

not been tested (since the optimizing compiler is quite expensive,

testing would probably be with one of the other compilers and

at least two cases, KEY in and not in TAB, would have been run)

11. 	 The error is in the authors' reasoning in an informal proof (with

an asserion) that the program is correct; they did not prove

proper termination

12. 	 The error is possibly transient, in the sense that PL/I compilers

have the option of evaluating superfluous operands and the error

might appear and disappear with changes in an installation's

PL/I compiler

14

To complete the example, consider some of the other ways the linear

search algorithm could be implemented:

(1) 	 DO I=1 TO N WHILE (KEY-7=TAB(I));

END

is another PL/I version recommended by the authors of the above book, but is

not 	 used because the empty body of a loop disturbs some readers

(2) 	 10 IF (I.LE.N) 20,100

20 'IF (KEY.EQ. TAB(I)) 200 ,30

30 I=I+l

GO TO 10

100 ...

200 ...

is a 	 FORTRAN type of implementation which explicitly separates the two ways

of exitting the loop

(3) 	 while I<=N and KEY--,= TAB(I) do

I :=I+l

end

is an ALGOL-like construction where and is defined equivalent to if A then

B else false.

(4) 	 An even better implementation- when there is room is

I=1;

TAB (N+I)=KEY;

DO WHILE (KEY-=TAB(I));

END

since this implementation requires only one comparison per iteration while

others require two.

The point is that there are many ways of implementing a linear search

and the language does have an effect.

Consider the terms used in describing the nature of the error:

structured programming, subscript range, linear search, table, optimizing

and debuggingand standard compilers, compiled code, short-circuit,.evaluation,

logical, semantic, undefined, proper termination, blows up, testing, proof,

assertion, transient, algorithm implementation, multi-exit loop, etc. If

we gave this list to practically any person associated with computing, I

doubt that the person would ascribe the same meaning as I did and that many

terms would be either completely unfamiliar or completely misinterpreted

(or rather interpreted completely different from my intended meaning).

15

The error might be surprising to some people and completely natural

to others. For example, a hardware oriented person would probably be

comfortable with the notion of addressing exceptions but might be surprised

that the & was not defined to cover exactly this situation; a FORTRAN

programmer might be surprised that subscript dhecking was such a big deal;

a language expert might consider the PL/I treatment of & as perfectly

appropriate since optimization is so important to them. In my experience,

a prominent- computer scientist familiar with IBM ways, several graduate

students, and many programmers of various kinds did not recognize an

error when the problem was presented as "find the error in this program".

The first time I encountered the problem was while introducing logical

operators to an introductory programming class. They asked quite naturally

whether the second operand of A&B was evaluated if.A were false. At that moment

I did not know the answer. The only other persons who knew the answers were

a computer center director who had received queries and complaints about

exactly this situation and two persons with extensive experience in PL/I.

y. point is: how are we ever going to talk about errors when the

people we must communicate with differ so greatly in their experience and

technical vocabulary? I have tried to show that this error is not just a

little PL/I anomaly, but that its discussion brings to bear a vast range of

computing areas: programming knowledge, e.g. search algorithms and how to

construct multi-exit loops; hardware knowledge, e.g. addressing schemes;

correctness notions, e.g. proper termination; and programming language

knowledge, e.g. the conditional execution of logical operators. In other

words, it is impossible to talk about errors in isolation; the subject of

errors pervades computing.

Since we have isolated definition as an important problem in

discussing errors, it might be worth considering briefly definition as a

general probelm of communication. Reference (4) Words and Ideas: A Handbook

for College Writing, has a chapter on definition. A formal definition is

shown to be of the form "x is a member of class y with the differentiating

characteristics z". For example, "an autobiography is the story of a

person's life written by himself." Several shortcomings of definitions are

enumerated:

a.

b.

The defining class
a general area
The differentiating
defined

may

ch

be

ara

too inclu

cteristics

sive

may

to help

use the

narrow

term being

down

16

c. The differentiating characteristics may not adequately
differentiate between things that are similar or
closely related

d. A definition may be too restrictive
e. Instead of enumerating characteristics of the term being

defined, a definition may offer a synonym
f. A definition may be only a partial description or a

tangential observation.

The author of this handbook offers some other advice: (1) Many words

are defined sufficiently by the context of their usage and (2) definitions

depend,for reinforcement on comparison and contrast.

If we accept this brief discussion of definitions as useful, then

we can observe the important points that classification is also definition

and that definitions are often not adequate to fully explain the meaning

of a term.

Consider the following classification of errors that is often seen:

" An error is either syntactic or logical."

Given an error that we want to classify, we first have to define

the terms "syntactic"and"logical". Each has a-large number of meanings in

common and technical usage. We might try to define the terms separately or

together. If we observe that the context is classification, then we

can apply our classification formalisation to try and ascertain the meanings.

-It would seem most likely that the persons who proposed this classification

meant it to'be exclusive and inclusive over program errors (whatever they are).

This would mean that syntactic=non-logical and logical=non-syntactic. This.

assumption leaves a choice of terms to define. Syntactic is most often

defined operationally "a syntactic error is one caught by a compiler" using

the reasoning that compilers do syntactic analysis of programs for the

purpose of translating the program. Of course, compilers can differ in the

extent to which they catch errors, e.g. some compilers detect uninitialized

variables. "Logical" is so vague a term to me that it is meaningless but

"non-syntactic", I understand.

What we are saying is that the technical terms we use everyday in our

work are almost completely without standard usage. This means that individuals

come to understand terms and groups reconcile their differing use of terms by

context and by example. Context can often be in the form of classification

and indeed that is often the reason why definition becomes necessary. Put

another way, we might expect to get very different answers if we pose the

17

two different questions:

Is x'a y?

and

Is x a y or a z?

Is there some explicit way or aermnnng errorsi it seems to me that the

answer is "yes there are many formal models of computation or aspects of

computation, but the complexity of many of these models may make their use

for definition impossible". For example, there is a formal definition of

PL/I (5) written in terms of an abstract machine which interprets PL/I

programs. The abstract machine is nondeterministic state-transition

oriented with additional features which assist in describing programming

language concepts, e.g. the environments from which identifiers acquire

values and attributes. But this definition is regarded by many people as

almost impossible to understand. It comes in several volumes which together

are several inches thick. Part of this reflects the nature of the

definitional mechanism and how well it is adapted to express PL/I but it

also reflects the structure of the language itself, e.g. having to deal with

numerous special cases which are inconsistently defined. If we were to

use this definition an the above example, we would probably locate abstract

machine instructions which show how & is defined and how KEY (I) is evaluated.

If so, we could say that the error was associated with one or both of these

instructions. Such a definition would lay out the spectrum of PL/I errors

but its complexity might be so great that it might be almost impossible to

trace down a specific error to the place where it is covered.

So, if programming languages do not have formal definitions suitable

for defining errors, are there at least partial solutions to the definition

problem? I believe so and will illustrate these in several places in section

5.

Let us come back to the psychology of errors, a subject which simply

cannot be ignored. Software errors are caused by people, but whether they are

attributed to individuals or not is another matter. -Most classifications have

not detailed individuals. The study to be discussed in the next section

does name names. The point is whether errors can be abstracted completely

away from the people who make them. Most people would want that protection,

but we will argue that it may not be the best idea. If errors are brought

out into the open, it may well be possible to learn more from them.

18

The study of errors is a strange pursuit. Although errors pervade our

everyday life, it is hard to find studies which directly attack errors. A

few exceptions are psychologists who study short-term memory or the Freudian

slip and historians who study the mistakes of U.S. presidents. The study

of errors is considered negative, perverted, and pessimistic. I can testify

that the study of errors does affect one psychologically and does affect

one's relations with colleagues. As I became interested in errors and took

obvious delight in finding an error which reinforced some theory I had as to

causes or errors, I could see other people "clam up" in fear that. they would

be the next victim. I was not interested in destroying their self-image and

I had seen enough errors that one more was not going to adversely affect my

image of them, but they did not know that. The point is that objective study

of errors is hard, if not impossible. It is necessary to view errors as a

phenomenon of programming which requires study and while it is necessary to

be sensitive to peoples' reactions when threatened by exposure of errors,it

may be healthier to get the errors and the errants out in the open rather

than to cover up the human origin of errors.

19

4. ERRORS IN PUBLISHED PAPERS ABOUT PROGRANMING METHODOLOGIES

The appendix to this report is a paper which is to be published in IEEE

Transactions on Software Engineering in September, 1976. It enumerates and

analyzes errors which have occurred in 12 programs or classes of programs in

18 published papers or unpublished theses. The purpose of the paper was

to point out these errors and then draw some conclusions about and make some

recommendations for improvement in some of the modern programming methodologies.

In order to fully understand the content of the rest of this section, it will

be necessary to read the paper, but it should still be possible to under

stand the discussion of classification without reading the paper. We will

summarize the errors for reference throughout the rest of this section.

SI, S2, and S3 are errors in specifications, where the specifications do

not fully capture the informal purpose of the program and therefore

leave open the possibility that the specifications could be satis

fied by a program which did not do what was actually intended

S4 is a collection of data structure problems for which adequate

specification techniques do not exist and therefore arguments

arise as to whether programs are correct

TI is a simple program to generate certain types of sequences

which has a low-level coding error

T2 is a line formatting program which had numerous errors

P2 is an improvement of the line formatter with a proof of correctness,

but the improvement has errors not caught by the proof

T3 is basically a word counting problem for which the specifications

are inadequate and there are numerous difficulties with the

programs. Its history is that authors of one paper detailed how

their top-down construction failed and the error was detected and

a follow-up paper by another author systematically constructed

the program but with more errors.

T4 is a high-level machine language program for sorting which had

an initialization error

T5 is the well-known 8-queens program which was incompletely con

structed such that any completion of the program led to

difficulties

P1 is the linear search program discussed in the last section

P3 is an adaptation of a program into a language currently under

development where the program had an error undetected by a proof

P4 is an instance where the specifications and program are each

correct but the refinement process went astray

20

When the study was undertaken, the data on errors consisted simply of

the merge of errors I had found with errors found by my colleague and

co-author, along with a previous write-up of only a few of the errors. It

was clear that some classification scheme was necessary and the most

natural one that sprang to mind was by what the errors had to say about

specifications, systematic program construction, and program proofs. In

terms of our previously discussed classification discipline, this is a

rather poor scheme. Errors 83, TI, T3, T4, T5, Pl, P3, P4 deal with one

progra appearing in one paper, while Si, 82, S4, and T3 deal with classes

of programs considered in several papers. S1, 82, and S3 are so similar

they probably should have been treated together. T2 and P2 are separate

papers dealing with the same program and probably should have been

classed together. In other words, our domain X was not a consistent set of

objects, such as papers, programs, or kinds of errors. Looking back, I am sure

that this inconsistency was the cause of some of the difficulties we had

writing the paper and that this is a source of confusion to readers, also.

Being more precise, our classification scheme was based on the three

methodologies: specifications, systematic program construction, and program

proofs. Let us abbreviate these S,T, and P, respectively. The classification

scheme used in the paper uses the class-defining property form "the main point

of error x is with respect to methodology i" where i is one of S,T, P. It

was important that the scheme be full and inclusive since we needed to group

these known errors in some way,-but the classification is artifically

exclusive. If we look at the class-defining properties as instead "x says

something about i" where again i is one of S,T, and P, we get the much better

class system

S: SlS2,S3,S4,T2,T3,P2

T: Tl,T2,T3,T4,TS,Pl,P3,P4

P: Pl,P2,P3,P4

This is not exclusive which is good because it hints at the inter-relationships

of the three areas. This suggests that we might want to look at which errors

say something about just one, two of the three, or all three areas. Again

illustrating our classification discipline, we investigate what mathematical

structure answers this type of question. Consider first the product C x C:

*{S&S, S&T, S&P, T&S, T&S, T&T, T&P, P&S, P&T,-P&P}

This doesn't work exactly right because SS contains S&T and S&P and we want

to directly construct a class with S&-nT&-7P. Nor does refinement work for

the same reason. The other choice is extension, especially a complete

21

extension, where we use a truth table to show the different combinations

S T ;P

TTT

T T F T2, T3 Note That if P2 and T2 were

T F T P2 treated as one, this would

T T F Sl, S2, $3, S4 appear in the first line

F T T Pl, P3, P4 as the only comprehensive

F T F TI, T4, T5 error.

F F T

F F F

By the way, this example suggests another theorem: the complete extension

of an inclusive classification scheme is not full.

A natural question is whether this scheme and the resulting class

system really means anything. My answer is "not much" because in reality

all three areas are intertwined: a systematic construction or a proof is

dependent on specifications and so on. What the class system displays is

more what the papers containing the errors discussed and what we chose to

add or delete from that discussion in our paper. However, it does suggest an

interesting classification of a large set of papers on programming

methodology. I suspect we would find that mostosystematic construction

papers would have no formal specifications while proof papers would and

this raises the question of correctness evaluation of systematically

constructed programs.

COULD BE

ERROR CORRECTED BY CHANGING PREVENTED BY PROGRAM STRUCTURING DETECTED BY PROGRAM

PROOF TESTINGYES NO
SPECS PROGRAM

Sl X

S2 XI

$3 x X

s4 x X

T2 x x X X x X

/

T3 X X / . . IX x

T4 X
/.
/ .XX

T5 X - - -.N - .

P2 X X - - - .. I X

P3 X - X X

P4

4

X

It 1

23

Table 1 shows three other classification schemes for this set of errors

with an x indicating that the class-defining property heading the column is

satisfied by the error. Let us consider the meaning and implication of

these classification schemes in more depth:

a. 	 Supposing we wanted to make a correction for the error, would it

be in the program or in the specifications? It is hard to have

definite answers to these questions. The four errors Sl-S4 did

not appear to affect the program. T2, T3, and P2 show necessary

corrections in both program and specifications. In fact, the

specifications are so vaguely stated it is possible to change them

to cover up the program errors. P4 simply reflects the fact that

both specifications and. program are correct, but the error was

in the refinement process. The classification also should show

that in some articles there are no specifications to be

corrected. If we were to continue this classification scheme to

a larger set of errors, we would certainly use the complete

extension of the class-defining propertie {error in program,

error in specifications}. Thinking about a classification

scheme such as this abstractly, apart from this set of errors, we

might be tempted to dismiss the possibility of an error in

neither specifications nor program, but error P4 confirms this

possibility. In other words, this set of errors demonstrates

that the complete extension is a very reasonable classification

scheme.

b. 	 Suppose we ask which errors could be prevented by full use of

program structuring, i.e. the principles of gotoe less ptogramming

and data structuring. T2 and P2 are in both "yes" and "no"

columns because there are several errors in the program. One

of those errors, an infinite loop, could have been prevented by

using a while construct rather than a goto. Error T5 is put in the

"yes" column because the program was never actually completed, but

if it were structuring might have shown the error. The errors

in the "no" column were in programs that were well-structured but

.where it didn't help. But remember that this is a classification of

errors which indicate fallibility of modern programming methodologies.

If we ask which errors could have been prevented by the full use of

program structuring in a wider sense, e.g. since the paths are so

clearly shown in a well-structured program it is possible to check

24

out the computations along these paths, then errors T4, P1,

and P3 should move over into the "yes" column. That is,

program structuring made these errors so easy to see that they

should have been detected; that they were not is another matter.

c. 	 Consider whether the errors could have been detected by proving

and by testing. The specification errors could be detected by

proving because the act of making up assertions in a proof is

like making up specifications for little parts of the program

and the redundancy could find the error. Or it might be that

the proof shows the program could do more than required by the

specifications and therefore inadequacy of the specifications

becomes obvious. However, testing is less likely to show up the

specification errors because the program output would simply be

checked with the specifications, The specifications would

probably not undergo further analysis since the programs are

correct and do satisfy the specifications. All the remaining errors,

except P4, are claimed to be detectable by both proving and

testing. Closer analysis of the errors shows that they are easily

detected by testing whereas proofs and systematic constructions

failed. Error P4 is a failure of refinement and of proof but the

proof could have caught the failure in the refinement process.

These various classification schemes suggest that there may be a number

of standard classification schemes when dealing with errors in programming

methodologies. The complete extension of the specification-program class

defining properties is a good starting point. Specification errors can be

further refined into consistency, completeness, and definiteness, where our

observed errors are of completeness and definiteness and consistency refers

to whether the specifications can be satisfied. Top-down, stepwise refine

ment, and systematic construction failures are much harder to classify

because they are so imprecisely defined. Errors in proofs have a nice

classification scheme based on the definition of correctness as proper

termination (which divides into looping and blowing up) and terminating

with a correct result. Further classification comes from looking at the

cases where programs and assertions are wrong. One of the purposes of this

study was to come up with recommendations that would prevent such errors

from re-occurring. The paper shows that we were reasonably successful at this.

For 	 example, for incompleteness of specifications we devised a test for

25

specifications: see if you can find an absurd program which satisfies the

specifications as written but not the intent of the specifications. Another

was based on the observation that several proof failures dealt with termination,

which is usually considered quite easy to prove; the recommendation was

simply not to ignore proof of termination. In several cases, our recommenda,

tions are on the order of "beware, here is a dangerous spot where the

necessary formal techniques have not yet been developed, therefore be

especia'lly careful in your informal work". - In other words, by looking

closely at individual errors, we claim that we are able to produce a

sufficiently deep level of understanding of the errors and sufficiently precise

recommendations that such errors can be avoided in the future by us, by

other authors, by reviewers, and by programmers. The purpose of this

comment is to contrast the type of gains made by studying individual

errors as opposed to collection of errors. Our conclusion is that the study

of individual errors produces immediate gains in understanding and recommenda

tions. Nevertheless, the observation of clusters of errors of the same type

reinforces the value of the recommendations and increases, the insight.

Finally, we must try to draw some higher level conclusions from this

study. An obvious question is: Are these errors typical? The errors

were made largely by academics using the traditional mode of academic

publishing and in articles that were largely pedagogical or experimental

in nature. There is no denying that pressure on academics to publish

creates haste and mistakes; the same goes for the reviewers of these

articles. But still, these papers have been read by non-academic researchers

and developers and probably by a substantial number of programmers. Few

of these errors were known before this study and there are no published

corrections either by the authors or by readers writing in to the journals.

So we must conclude- that the errors are not just "academic bungling", that

lots of different kinds of people were "taken in" by the errors. We

conclude that there must be some kind of mystique which surrounds these

articles that lets the errors slip by unnoticed and that our paper should

certainly alter, if not destroy, that mystique. However, we must also

conclude that if these errors were made in programs which were intended to

be used, not just to illustrate a methodology, they would have been caught

by testing.

- It is also interesting to study the reactions of other readers of this

paper with respect to the psychology of errors. One prominent computer scientist

26

described this study as "morbid, dissecting cadavers rather than devising

new and better treatments", but we claim that pathological study does lead to

positive measures. Another responded that "this study shows the goofs

of the 'best and the brightest' and if that doesn't demonstrate the

fallibility of human nature, nothing will." Of course, errors by highly

respected individuals may discourage more ordinary programmers from attempt

ing to use the methodologies, but it may also challenge them to top the

exp&rts and dispell the stigma of making mistakes. Yet another prominent

computer scientist replied simply that "the price of carelessness is

*embarassment." The only comparable study is that of Kernighan and Plauger

in The Elements of Programming Style (6) where they show errors and

improvements in programs published in elementary programming textbooks.

They chose to protect the anonymity of the authors of those textbooks.

That was not possible for us, since it was so important that the errors be

seen in the contexts of a single article and of developing methodologies.

Overall .this study has not left me pessimistic. It only confirms

my suspicion that programming is very hard and that this difficulty leads

us to grasp at straws. The study reveals many errors in proofs, but that

does-not detract from proving as a methodology since testing is also

fallible, but its ways of failing have barely been studied. Overall,

there are signs of improvement in the design and construction of good

programs, but freedom from error is not yet possible. Further study of

the prevention-detection aspects of the methodologies is called for and we

propose such a study in a later section.

27

5. EXAMPLES OF CLASSIFICATION FROM THE LITERATURE

There have been several previous studies of errors which required

classification or which shed light on the nature of errors. Our purpose

in this section is to analyze these studies based on the previous

discussions of classification and of errors.

"A study of high-level language features" (2) is an attempt to

identify language features and then evaluate them in the context of the

design of tactical languages for the Army. The design goals are relevant

to any language which requires capabilities for numerical calculations,

process handling, and input/output. A language feature is considered to be

a very small facet of a language. In this study there are over 1100

features grouped into declaration and storage management, scalar data

types and operations, aggregate data types and operations, control structure,

and program development aids. The features are evaluated on factors

describing properties of programs (efficiency, reliability, understandability,

modifiability, reusability, brevity), factors describing properties of

notations (naturalness, uniformity, brevity, usability), and factors

characterizing a problem domain (application dependence). Each of the

factors is further subdivided until there are a total of 33 factors for

evaluation of the 1100 features.

With respect to reliability, the factors are error prevention, error

detection (compile-time), testability (run-time error detection), and

clerical error reducti6n. Several examples of the types of errors which can

be prevented, detected, and reduced are given. We have seen some examples

of our own in sections 3 and j. The PL/I & operator might be evaluated

negatively toward error prevention and detection. The error T3 in section

, occurs in the comparison of two sequences A and B for inequality, i.e.

difference in at least one element. The error occurred while setting up

a loop for this comparison in an ALGOL-like language. In another language,

APL, this operation would be written as a single expression, V/AB; not

requiring a loop and thus APL might be said to prevent that error.

There are several points about this study which are relevant to our

purposes:.

1. It is an example of a monstrous classification problem, classifying

language features into groups, evaluation factors into groups, and then the

evaluation for each factor and feature. The evaluation chart is quite

sparse, i.e. the authors were able to evaluate only a small number of

28

selected features within the scope of their project.

2. It provides a very good framework for a more extensive study of just

the reliability factors of languages. For example, given a specific language

with the task of evaluating its influence on errors, we might take from the

list of 1100 features those which apply to the language. Using the principles

of evaluation and the factors which had already been evaluated, we might

perform a thorough analysis of each of the features in the language at hand.

For those that rated negatively, i.e. did not facilitate prevention or

detection of errors, we might forbid their use or devise specific techniques

against the associated errors, e.g. conventions or restrictions on their use,

specific testing or reading procedures. For features rated positively, we

might encourage their use and make sure their error prevention and detection

capabilities are used to the fullest. The evaluations however might be somewhat

subjective, but this only suggests that the.positive and negative subjective

evaluations be taken as hypotheses for experiments and data collection as to

how the language is used and what errors do occur.

3. Given the complete rating of features in a language, it might be

possible to calculate a reliability figure for programs written in the

language, e.g. based on the number of poorly rated factors used in the program.

Intuitively, a program which uses only good features seems more likely to be

reliable than one which uses many poor features, at least with respect to

errors associated with language features. But of course this leaves out

the measures that might be taken to offset the effects of poor features

and the possibility that good features are not fully utilized. In addition,

it seems that if the poor features are known it should be possible to eliminate

all errors related to the language.

4. One set of features omitted from the list of 1100 were for process

handling. A process is loosely defined as a set of actions on an environment,

what is often called a task. The implication is that computer systems are,

composed of many tasks, with the concomitant problems of-activation and

deactivation, synchronization, and protection. Relatively little is provided

by languages for handling processes and therefore an appendix is devoted to

discussing functional requirements for process handling language features.

"An experimental analysis of program verification methods" (8) is an

elaborate experiment carried out as a Ph.D. dissertation. The goal was to

compare three verification methods

a.reading-a disciplined and structured desk check

29

b. specification testing-devising and executing test cases

from specifications without access to source code

c. mixed testing-examination of the code and submission of

test cases for execution

on three types of programs (each a few hundred lines long and somewhat complex)

which contained known errors under conditions which were better than those

usually experienced during verification (e.g. fast turn-around time, other

good working conditions, and some training before starting). The results

were that specification and mixed testing were about equally effective)with

reading significantly inferior to both. None of the methods found much

better than half the errors. Other results were that verification ability

correlated highest with experience and training in programming, the distri

bution of time to detect the next error was uniform, and the requirement to

execute every path was of little help in detecting errors. Some effort was

made to determine a classification of errors by methods which worked best, but

these results were rather vague.

There are several points about this study relevant to our purposes:

a. The methodology for experimenting with programming methodologies is

highly complex and is not yet well developed. This study is a prototype for

other studies.

b. It would be very interesting to perform a classification analysis

on the errors used in these programs. The errors are generally well-described

and understandable. I made a stab at this, but due to the lack of fundamental

understanding of the task and of time, I did not get anywhere. The raw data

from this study, i.e. the results of all the verification sessions, were

preserved and it is possible that more insight could be gained into the nature

of the errors detected and undetected. On the other hand, the relatively poor

performance suggests that further experiments could be designed to try and

improve the results of the first experiment.

c. If we take the experimental results seriously, it suggests that

verification, or at least these verification methods or the conditions for

verification, simply did not work well. Therefore, verification cannot be

relied upon to detect and remove errors; errors must be prevented.

"A measure to support calibration and balancing of the effectiveness of

software engineering tools and techniques" (9) is an attempt to evaluate a

30

list of about 60 existing tools and techniques as to their effectiveness on

a long list of errors which occur during software development. A basic

assumption is that the absence of a function is an important as the existence

of an incorrect function. The overall classification scheme is requirements,

design (subdivided into processing, data base, interface), cohstruction

(subdivided into processing, data base, interface, general), verification,

and specification. Tools and techniques are classified as to their role in

test and design. An assessment of effectiveness (high, medium, low) produces a

somewhat sparse product classification. A little model for judging effective

-ness is developed, but the model runs into difficulty when tools and

techniques are not independent, i.e. exclusivity is a requirement.

There are several points of interest for our purposes:

a. The lists of tools and techniques is comprehensive and their

effectiveness ratings provide hypotheses for further study.

b. The author distinguishes faults (causes) from errors (effects) and

uses faults as the basis for his classification scheme.

c. The classification scheme, when examined in detail, illustrates all

the difficulties of classification and definition previously discussed.

For example,

i.. The specificity of the fault descriptions ranges from "erroneous data

accessing" and "incorrect resource allocation" to "recovery-procedures are not

implemented or are inadequate for momentary, correctable errors" and "routines

are not reentrant where usage so requires" under processing of design faults.

What is needed is further classification in order to make a list of 18

processing design faults more comprehensible.

ii.. Many of the faults are highly interdependent. For example, "require

ments missing" and lots of other aspects of requirements which are missing or

inadequate all intuitively imply another class.the separate fault "requirements

not testable/verifiable". As mentioned above, the need for exclusivity is dependent

on the purpose of classification scheme. In this case, it appears that lack

of exclusivity is a symptom of lack of structure of the classification scheme,

that in fact the scheme should be given hierarchically. I am unable to

revise the classification scheme into a proper hierarchy because the terms are

not sufficiently concrete for me.

iii. 	 Consider another classification scheme for data base design faults:

erroneous units

parameters in incorrect format, order, or location

erroneous values

duplicate data variables

missing data variables/values

If we isolate the terms used, we find: data variables, values (or is it

data values), parameters, units, erroneous, and missing.

What does the author mean by parameters and data variables and values?

These all seem like the same sort of thing. And there are several qualities

of these things; missing, erroneous, misrepresented, and misplaced. All of

these terms suggest that it might be possible to build a little formal model

which clarifies what is going on. Suppose we consider the references to the

data base as some sequence, rl, r2, ... What can go wrong? The value obtained

from the data base on reference ri might be erroneous because the wrong value

was placed in the data base or the value that was placed there used a different

unit than that assumed in the context of the reference or the reference might

somehow be going to the wrong place. The wrong value might become duplicated

from another place. References might be made in the wrong order. I have

difficulty building such a model, but it seems to me that people familiar with

the context should be able to build such a small model and define their terms

and the errors more concretely. That is, if we consider the problem of giving

meaning to the class-defining properties, we can do so by appeal to a formal

model as well as by context in a classification scheme.

The point is that the classification scheme appears very poorly structured

and yet it seems that the structure can be assigned with further analysis of

the class-defining properties., Another point is the way the classification

scheme for faults was used. Several experts-were asked to rate the effectiveness

of tools and techniques on the faults. How did those experts understand the

faults? If the classffication scheme were more hierarchically organized could

more have been said by the experts? How valid are the ratings the experts

did give?

Studies like this one appear to me to-be useful, but when one looks at

the bottom line, how the errors are described, the value seems to disappear.

The absence of a classification discipline and the imprecision of the terms

32

makes the whole effort a rather mysterious process. That is not to say that

the people involved in the study did not know what they were doing, but

only that an outsider does not know'what they were doing. I am simply trying

to point out why I have trouble understanding the study and what might have

been some of the problems they encountered during the study. If error

classification studies are ever to be valuable, they must be intelligible to a wide

range of people and they must be reproducable. The methodology used in the

study may be transferrable only down to the point where errors are actually

discussed which means that the results might not be reproducible.

We can analyze other classifications from other papers in similar fashion,

but-before doing so, it is worth re-examining our analysis questions:

What is the structure of the classification scheme in terms of the

section 2 of the present paper? Is there any clear structure? Can the structure

be improved?

Do we understand each of the class-defining properties? If so, how? By

context in the classification scheme, independent knowledge, context in the

problem area, example? Given an error which is possible in the context of the

known problem area, can we see where to place it in the classification scheme?

Can we go down the classification scheme and concoct errors which might fall

into each of the classes? That is, can we decide whether the classification

scheme has exclusivity, inclusivity, fullness?

What is the purpose of the classification scheme? How-did that influence

it? Was there some hypothesis to be proved? What characteristics should the

classification scheme have?

Another example of a classification scheme appears in "Toward a theory

of test data selection". (10) The purpose of classification is to get at the

types of errors that testing must deal with. Consider the subclassification of

control flow errors:

missing control flow paths

inappropriate path selection

inappropriate or missing action

If we dissect these terms, we find the following components: decisions

(selections) and actions, missing and wrong (inappropriate). This suggests

a little model based on the idea of a path of a program, viewed as a

sequence of decisions and actions with two things going wrong, missing

33

and wrong. We might represent this formally by the following table

Action Decision

Missing PI,P2/P1,a,P2 Pl,P2/P1,a,P3

Wrong Pl,al,P2/Pl,a2,P2 Pl,dl,P2/Bl,d2,P3

where P, a, d denote paths, actions, and decisions and A/B means that A and

B show the form of the erroneous and correct paths.

We can go further with this model. We can add the idea of a state vector

and a state-transition function and look at the series of state vectors associated

with a computation, identifying errors as places where the state vector contains

wrong values. Or we can define a computation function Comp (program statement,

state vector) which shows how each -program statement defines a new state

vector. Then we can isolate points in the trace of Comp which correspond to

different types of errors. At another level, we can look at the program text

and correlate errors with the type of correction to be made to the text, e.g.

inserting statements for missing actions, changing decisions in if-then-else

and while statements for wrong decisions, etc. Of course, there are a vast

number-of models of computation more specific than these. It would be

interesting to interject an error aspect, i.e. to define what is meant by

error in each of these models and then see how much- is said.

The classification schemes Used in "Some experi'ence with automated aids

to the design of large-scale reliable software" (11) are generally well

structured. For example, Table 1 uses "design" and "coding" a good definition

of "design" and "coding" with a good definition of "design" so that "coding" is

implicitly defined as "non-design." Figure 2 uses a product kind of classification

design, x before acceptance testing,

coding during or after acceptance testing

Table 2 enumerates some error categories which are applied to both design

and coding errors with a classification into mostly one or the other. However,

the meaning of the class-defining properties is unclear, because the error

categories are so vastly different. A subclassification is apparent: interface

(user, hardware, data base, software), device handling (tape, disk, card),

34

communication (output, error message), and computation (computation, bit

manipulation, indexing and subscripting, iterative procedure). Again these

are vaguely defined terms but some fnore thought might clarify their meaning.

The table must have a typographical error or the scheme is not inclusive

since the number of errors adds up to 220 but the total number of errors under

consideration is 224. Table 3 is a gross classification of error causes with

examples which help to clarify the meaning of the terms and tha nature of the

causes. It is a product type of classification. Once again in table 4, the

difficulty in defining errors is apparent. It looks like a quadruple product

{error typel x {software phasel x {origin-found} x {applicable tools} which

is useful but somewhat hard to decipher. For the error types, it looks like

there is a hierarchical classification something like behavior (first, later

cards processed right), relation to storage (internal, mass), data (range,

units, accuracy (range, units, values), program action (accept, reject)).

It seems to me that it should be possible to devise a clear set of terms and

a comprehensive classification scheme for errors like these. The data base

interface classification scheme discussed earlier suggests this to be common

and yet troublesome to discuss.

"An analysis of errors and their causes in system programs" (12) is an

interesting study; One of the first points of interest is the remark that

"although only the history of a single error (one discussed under T2 in the

appendix) is described, this type of investigation promises to be the most

successful." That may be interpreted as "gross collections of errors will be

less successful" or "investigations of single errors will provide the most

information". Another interesting point is the common-sense approach to

reporting errors: Who, Where, When, Why, and How. Again it is impossible to

report without classification. Who and When require information like

origination, propagation and detection of errors. Where involves classifi

cation into modules and statements. What is the general problem of error

classification seen so often. Why requires classifying factors, and How gets

into prevention and detection methods. The overall classification scheme is
I

well-structured but again at the lowest level, the descriptions of the errors,

it becomes difficult both to understand the class-defining properties and to

determine exclusivity and inclusivity. For several parts of the classification

scheme, a little model of the machine language level with precise usage of terms

like addressing- would help.

35

"Types, distribution, and test and correction times for programming errors"

(13) relates an extensive data collection effort. Again it is interesting to

look at :the wide range of descriptions of errors in Figure 3. One should

ask what it takes to use the TR/CR forms. Note that these are constructed to

be inclusive by using an "other" category and presumably only one box is

expected to be checked. Presumably the set of terms was predefined and maybe

illustrated by examples so that the originators could check the right boxes.

In summary, I have been trying to bring out some of the problems in

previous classification studies by use of the classification discipline and

to illustrate how that discipline can be applied. Another point is the difficulty

of definition and how that seems to be either unmastered or sometimes tolerated by

the use of context 'and classification assumptions. Finally, I have suggested

that there are several places where the definition and classification problems might

yield the building of small formal models.

This discussion is not intended to criticize authors of the papers for

something that they did not intend to do. Most of the studies are tentative

and the classification schemes were never intended to live up to the standards

we have applied to them. Nevertheless, I claim that had a classification discipline

been followed and-had more attention been paid to definitions, the results

might have been stronger. Viewed as experiments, we would like the reporting

to be such that the conclusions can be evaluated for how well they follow from

the data, but when we get down to the lowest level of defining errors we find

the imprecision troublesome. We would also like these experiments to be

repeatable, and this seems unlikely unless the definition problem is solved and

the same classification schemes apply in different situations. The class

defining properties were constructed bottom-up by generalizing from instances

of errors. My claim is that this doesn't work since the classification

schemes are ill-defined and unconvincing.

36

6. TWO ABORTED STUDIES OF ERRORS IN SPECIFIC TASKS

As mentioned earlier, the proposed research included studies of the errors

in two specific tasks: synchronization of processes and queue data structure

management. These studies were not very successful except in causing us to

confront the difficulty of the problem and back off to attack the basic

principles of classification and definition which are discussed in the rest of

the paper. However, there are some more observations which are worth con

sidering.:

a. A process is a sequence of operations carried out one at a time.

Processes may be executed concurrently in a computing system, i.e. their

executions may overlap in time. Concurrent processes introduce a host of

problems: synchronization, whenever two process interact; deadlock,when two

processes are waiting indefinitely for an event which can never occur;

scheduling, so that work gets done in an orderly fashion; and protection of

data of one process from the unrequired operations of another.

This is a subject where errors were recognized early as being of critical

importance: the difficulty of reproducing time-dependent errors made testing as

a means of verification unquestionably impossible. As a result of the error

difficulty and the overall fascinating complexity of the subject, there is a

vast amount of literature, perhaps best summarized in Brinch-Hansen (16).

There is considerable work on language mechanisms to -facilitate e.rror-prevention

and detection and mechanisms whose behavior can be provably determined and there

fore can be adopted as conventions.

At an abstract level, these problems are well handled, although it is not

yet totally understood. While errors may be well understood abstractly, there

are few examples of actual errors in the literature and this tends to leave one

hand hanging in limbo unless one has studied the problem for years and

developed the necessary intuition. I have found this subject particularly difficult

to understand and could not find a point at which to attack the problem. It

seems that there is something different about this problem than just its

complexity. Since the errors are so important, the biggest ammunition has been

trained on them and, at least abstractly, adequate mechanisms have been devised

for preventing these errors. At least, the difficulty is well enough recognized

that extreme care is taken. However, that is not to say that the mechanisms are

easy to use or-that they are used reliably in practice. It is at this-concrete,

mundane level that there is no data on errors: What mistakes do programmers

usually make? I believe that this is a fruitful area for study, but that it must

be undertaken by people more experienced in the area.

37

b. A queue is a data structure which has a first-in-first-out behavior, (17).

The usual operations are insertion and removal and, perhaps scanning the elements

stored in the queue. For example, letting I n denote "insert n into the queue"

and R mean "remove the next from the queue," with the following sequence of

operations, the queue would have the contents:

Queue Element removed

I i 1

R Empty 1

R Error

12 2

1 3 2,3

R 3 2

1 4 3,4

1 5 3,4,5

R 4,5 3

The programs are short and easily understood. gossible implementations

are (1) store the queue sequentially in a fixed sequence of locations and treat

these circularly, i.e. let the queue wrap around from the end; (2)Seqi.ntially as

in (1), except let the queue drift up to the end of storage, then move it back

to the front section; and (3) link the elements through some free area of

storage. In any case, one constant problem is finite storage, although in

(1)-and (2) the sizes of the queues are fixed and in (3)they vary with the

amount of storage available. There are phenomena which we might call "overflow",

too many elements tried to put in the queue, and "underflow", calling for

removal when there are no elements in the queue. This suggests a classification

of calls on the queue handler by the program using

CI = (normal, underflow, overflow)

Underflow and overflow might be considered as errors, not of the queue handler,

-but of the calling program. However, there are possible errors by the queue

handler associated with calls. Suppose we construct a product kind of classifi

cation with the class-defining property:"the call is i, but the queue handler

reports J" where i and j are from Cl. Now we have a precise description of

some of the possible deviations from accuracy. Another classification scheme

applies to the removed elements (call this the output) relative to the

inserted elements (call this the input).

c="output elements are the same as input elements."

c defines errors where somehow the queue handler either inputs or outputs

wrong. c may be further refined into where elements are removed are

{lost, -duplicated, or reordered}

in the output.

What are we defining here? Our reference sets are calls and input-output

lists of elements and we are using the classification discipline to generate

classification schemes which we then re-interpret in terms of errors. So

what we are doing is focusing on aspects of behavior and then working into

defining classes of errors. Now, suppose we look at an actual program which

we believe to be correct and inject errors into it. We might do so by systematically

changing operators, say + to -, or identifier names; deleting statements, or

otherwise altering the flow of control; and modifying various language aspects,

such as changing declarations from integer to real. We might want to see how

-the effects of each of these changes can be classified according to the above.

We might ask: does the error manifest itself as an "incorrect report to a class

call" or as "an incorrect output" or "both" or "neither"? Neither" is quite

possible since the program is likely to blow up. "Both" is alsopossible. One

problem is whether the effects are measured relative to a fixed input stream or

to any conceivable input stream. The latter is of more interest, but the former

can be experimented with. We can go on classifying into immediate vs. delayed

effects relative to the pattern of calls on the queue handler, detection by

testing and proof, and prevention by language features and conventions.

Our initial studies of this problem task were unsuccessful since we had

only the vaguest notion of the dlassification task and because error injection

was unenlightening. The programs are so simple and well understood that errors

were silly and we had no trouble devising assertions and test cases which would

immediately detect the errors. Furthermore, the injection of errors is

very tedious. However, that is not to say that any real insight was gained. We

had only the grossest classification scheme and little understanding as to why

errors manifested certain behavior or why they were so easily detected. We

also had difficulty finding "devious" errors, ones that would be hard to

detect and prevent.

After-development of the classification discipline, it now seems like a

more feasible project to study the errors that could be injected into this

program. However, such a project would still take several days of work. But

its purpose is unclear, since natural errors are so much more interesting

than artifical ones. We did not have the time or sufficiently defined purpose

to carry on the study after development of the classification discipline.

39

7. 	 SUMMARY

We took apart the problem of classification of errors. Looking at

classification abstractly, we devised some mathematical definitions and

operations which seemed to characterize the intuition used in classification

activities. We then turned to the subject of errors and showed that our

vocabulary is all-important and that it is very difficult to express what we

need 	 to say about errors. A kind of circularity arose: to discuss errors

we needed a classification scheme but to develop a classification scheme

we needed definitions of errors. We tried to find our way out of this cir

cularity by considering definitions of errors relative to formal models and

definition of errors by adjustment of their meanings to fit classification

notions, i.e. by context.

A number of examples of classifications were studied. The study of

observed errors on the fallibility of modern programming methodologies

suffered from an inconsistent error domain which caused several types of

classification schemes to be difficult to construct and to interpret.

Several papers from the literature had classification schemes with deficiencies

which we could diagnose in terms of our classification discipline. The

overall pattern there seems to be: given errors u,v,w,x,y,z, generalize to

say that u,v,w are a's; x,y,z are b's; and a's and b's are c's. At the

top-level, we may agree that a's and b's are c's but a and b describe different

kinds of properties of the errors. That is, the criteria for classifying the

errors, as expressed by the class-defining properties, are based on different

facets of the errors. This suggests that the errors could be better classified,

but for the purposes of the studies, it was sufficient to achieve classification

from the c level up. Our concern was the intelligibility and reproducability.

of the studies when the class-defining properties are ill-defined.

The problem when considering an individual error is that we want to say

Iterror x is an a,b,c, ... " where a,b,c express specific aspects of different

facets of x. But then we need a classification of,the facets and a further

classification of the aspects and of course this is a classification problem.

In our &lassification study the central point is seen as the class

defining property. In our error study, this translates into defining errors.

We claim that the problem must be approached top-down by defining terms

within the context of classification, bottom-up by testing the terms on

example errors and by generalization, and sideways by building formal models

which more precisely define the terms.

40

8. 	 RECOMMENDATIONS

a.; Explore the classification terminology and discipline further.

It requires polishing of terminology and there are certainly more definitions

and theorems which would be useful. The classification concepts are really

quite simple and therefore it should be easy to teach them with some

examples appropriate to the students at hand. However, its simplicity

could cause the whole subject to be ignored. The terms and theorems are so

obviously just a formalization of intuition and normal practice that it is

tempting to simply bypass them and go on with normal practice. However, our

studies of the literature have shown that, in fact, classifications often

turn 	 out confused, perhaps because intuition gets overwhelmed with detail.

Our claim is that the mathematical formalization of intuition leads to a

discipline which thereafter guides intuition to better and more easily

achieve structures. The classification material may be further developed in

two ways. One is simply abstractly building on what is there and the other

is by applying it to several examples and extending and adjusting the definitions

and theorems until it fully explains these examples.

b. .Develop criteria for good classification schemes.

We have put forth two criteria

I. A classification scheme should have a clean, immediately discernible

structure expressible in our classification terminology.

II. It should be decidable whether a classification scheme has character

istics such as exclusivity, inclusivity, fullness.

We have also claimed that whether a classification scheme has these properties

depends on its intended use. Therefore, there should be additional

criteria specialized to usage.

c. Develop an exemplary classification scheme.

The size of the classification scheme need not be large. Its purpose is to

show the difficulties and benefits of a good scheme. We have suggested something

like the data accessing which appeared in two classification schemes discussed

in section 5. The idea is to get at all the different things that can go

wrong whenever a program calls for data, in both device-independent and

,dependent 	 terms. Another possibility is addressing errors at the machine

language level. Both of these can be tied to little formal models which should

be developed to test out and refine the classification.

41

d. Develop an exemplary set of errors,

Explore possible statements about the errors: what should be said and how it

should be said. Experiment with different individuals with different orientations

and how they percieve and express the errors and how they understand and

react to perceptions and expressions of other orientations. The purpose would

be to obtain a complete analysis of a set of errors.

e, Decide whether to pursue errors individually or in collections.

It may well be more fruitful, at least initially, to study errors individually.

For example, suppose we take a single error and trace back all the ways it

could have been prevented and can be detected. This might well provide a

large number of specific recommendations that could then be generalized as the

same process is repeated with other errors. The alternative approach of

considering collections of errors might be less fruitful simply because there

is too much to consider at one time and/or classification does not help. In

other words, iterating on a set of data may be better than handling them in

parallel. However, the collection of error data probably would point to

the best errors to start with.

f. 	 If error data is going to be collected, this should be done under

some firm hypothesis. (15)

The problem is that there -is so-much data that can possibly be collected

that it is necessary to select in some fashion. A good selection procedure is

to adopt a relevant hypothesis. For example, Endres (12) observes that

many errors occur in "understanding the problem" which suggests collecting data

which traces all errors sufficiently far back that it can be determined whether

they are of this nature and also suggests predefining classifications under

this general rubric so that the errors can be meaningfully classified as they

occur. As another example, there is a vague feeling that structured programming

prevents errors, but there is little real data on what types of errors are

prevented. Perhaps the reason errors are prevented, if they are, has nothing

to do with the actual techniques, but instead is due to increased carefulness

or improved expectations. This might lead to collection of error data

which asks about the psychological reactions of persons associated with-the

error to it, as well as trying to pin down the exact cause of the error.

g. Interject error processes into formal models or re-examine formal

models from the standpoint of errors.

We mentioned the PL/I formal definition in section 4. While this formal

model of PL/I program execution is probably too complex, it might be

interesting to enumerate all it says about errors. We have also suggested that

42

it might be possible, and it certainly would be usefulto build some small

specialized models of situations where errors occur, e.g, data accessing.

The goat would be to abstract away from languages, devices, and problems, to

get at the nature of data accessing errors and obtain a general classification.

That model might then be specialized for languages, devices and problems with

added clarity.

h. Construct probabilistic models based on the classification mathematics.

Section 2 provides a way of classifying classification schemes. This seems

like a good place to start building up a probabilistic structure. What type

of model corresponds to each kind of classification scheme? What kinds of

questions does each scheme suggest and answer? How much does the model depend

on the class-defining properties and their characteristics?

What kinds of schemes are best for developing probabilistic structures?

It seems unlikely that reliability assessment methods can ever be devised

unless they have some abstract structure related to the classification

structure.

i. 'Continue some of the studies described in section 5.

We suggested that some of the classifications given there could be redone using

our classification discipline. There are more specific continuations.

I. Helzel's errors could be classified and his data used to explore them.

II. The language features in the Goodenough study could be specialized to

a single language, evaluated, and studied with respect to actual

errors.

III. 	 The effectiveness of tools and techniques is a promising way of

getting at immediate gains. A much simpler study might be to

propose three modes of verification:

reading - superficial analysis for the purpose of finding

gross errors or inconsistencies,

testing-case analysis with detailed exploration at the case

level

proving-statement of conjectures followed by deductive reasoning,

either mathematical or argumentative

and three types of programming activities

specification, design, and construction of programs

and apply all three modes to all three activities, trying to determine what

types of errors are differently detected. Another question is what type of

errors are undetected in one activity, but detected by later activities

and how.

43

However, remarkably little is known about how well testing works for

different types of errors. Both formal and experimental analyses are called

for. A few examples are seen in references (10) and (14). It would seem best

to cast a critical eye on the most prevalent activity before looking at the others.

REFERENCES

1. Stoll, R. Sets, Logic, and Axiomatic Theories, Freeman, 1961

2. Hartigan, J.A. Clustering Algorithms, Wiley Interscience, 1975.

3. American College Dictionary, 1966.'

4. Guth, 	 H. Words and Ideas: A Handbook for College Writing, Wadsworth, 1961.

5. PL/I 	 definition, Technical Report Series, IBM Labatories, Vienna, Austria.

6. 	 Kernighen, B..and Plauger Elements of Programming Style,

,McGraw-Hill, 1974.

7. 	 Goodenough J. and Shaffer, L. A Study of High Level Language Features,

ECOM-75-0373-F (2 volumes), February, 1976.

S. 	 Hetzel, W. "An analysis of methods of program verification", Ph.D.

dissertation, University of North Carolina, April, 1976.

9. Curry, 	 R. "A measure to support calibration and balancing of the effectiveness

of software engineering tools and techniques," MRI Symposium on Software

Engineering, April, 1976.

10. 	 Goodenough, J. and Gerhart, S. Toward a theory of test data selection",

IEEETSE, June, 1975

11. 	 Boehm, B., McClean, R., and Urfrig, D. "Some experience with Automated

Aids to the Design of Large-Scale Reliable Software",

Proc. Ind Conf. on Reliable Software, April, 1975.

12. 	 Endres, A. "An analysis of Software Errors'and their Causes",

Proc. Irtl. Conf. on Reliable Software, April, 1975. 2.,

13. 	 M.L. and Golsky; M.I. "Types, Distribution, and Test and
-S"hooman,

Correction Times for Programming Errors", Proceedings IntL Conf. P
on Reliable Software, April, 1975.

14. 	 Howden, W. "Reliability of the path testing strategy", IEEETSE,

September, 1976.

15. G6odenough, J. Personal Communication, May, 1976

16. Brinch-Hansen, P. Operating Systems Principles, Prentice-Hall, 1973

17. Knuth, D. The Art of Computer Programming, Vol. I.

APPENDIX

OBSERVATIONS OF FALLIBILITY IN APPLICATIONS OF

MODERN PROGRAAM1ING METHODOLOGIES

Susan L. Gerhart* and Lawrence Yelowitz
Computer Science Department Computer Science Department
Duke University University of Pittsburgh
Durham, NC 27706 Pittsburgh, PA 15260

May 1976

Keywords: 	 Program correctness, program specifications, programming

methodologies, program errors, correctness proofs, testing,

reliability, fallibility.

*This work was partially supported by NASA Grant NSG 1267 and NSF Grant

MCS 75-08146. The views and conclusions expressed in this paper are

those of the authors and do notnecessarily reflect those of the granting

agencies.

To appear in IEEE Transactions on Software Engineering, September, 1976.

/5

ABSTRACT

Errors, inconsistencies, or confusing points are noted in a variety

of published algorithms, many of which are being used as examples in

formulating or teaching principles of such modern programming methodo

logies as formal specification, systematic construction, and correctness

proving. Common properties of these points of contention are abstracted.

These properties are then used to pinpoint possible causes.of the errors

and to formulate general guidelines which might help to avoid future

errors. The comm6n characteristic of mathematical rigor and reasoning in

these examples is noted, leading to some discussion about fallibility in

mathematics, and its relationship to fallibility in these ljrogramming

methodologies. The overriding goal is to cast a more realistic perspective

on the methodologies, particularly with respect to older methodologies,

such as testing, and to provide constructive recommendations for their

improvement.

http:causes.of

1. INTRODUCTION

:It is well-known that programming is an error-prone process. As a

result, the last decade has seen the development of new programming

methodologies aimed at reducing the frequency and severity of errors dur

ing the progranming process. Briefly, we might label some of these newer

methbodologies:

Formal specification - Expression of program requirements in

unambiguous and complete terms;

Program structuring - Use of a restricted set of reliable con

trol and data structures;

Systematic construction - Development of programs through

successive refinements where correctness is argued infor

mally based on the simplicity of each step;

Program proving - Development and use of mathematical systems

for presenting proofs of program correctness.

Common to all these methodologies is the application of mathematical

reasoning to programming, the goal being a sufficiently high level of

mathematical rigor so that errors will occur infrequently and be easily

detected when they do occur.

In this paper, we show that the new programming methodologies are

still quite fallible. Our approach is, in part, to point out errors,

inconsistencies, or confusing points in a variety of published algorithms.

Many of these algorithms are being used as examples in teaching new pro

gramming methodologies, and it is important for such points of conten

tion to be discussed openly. We go beyond merely listing the points of

contention by trying to abstract common properties of them. These common

properties are used to help us conjecture some "reasons" for the errors

1

and to assist us in formulating general guidelines which might pre

vent reoccurrence of the errors. Our goal is to cast a more realistic

perspective on the methodologies and to make constructive recommenda

tions to improve them.

The errors are classified as:

l' Specification Errors, where something is wrong with the

specifications for a program, making the programming

and verification process fallacious;

2. Systematic Construction Errors, where errqrs contaminate

the process by which a program is developed and the

resulting programs are incorrect;

3. Proved Program Errors, where errors remain undetected

even though a "proof" has been given.

This tripartite categorization is largely a matter of convenience

in exposition and should not be construed too rigidly. Several of the

errors are, in fact, discussed in relation to more than one of the above

categories.

In the next three sections the error categories are discussed

individually. Each section begins with a short introduction, followed

by a listing of the points of contention, followed by a conclusion which

generalizes over the errors of each class and provides recommendations

for preventing -nd detecting errors of-the class. Each point of conten

tion is presented as a miniature case study, in which the following are

described: the context of the algorithm in.relation to the publication;

a description of the algorithm and its point of contention; and an analy

sis. Section 5 presents conclusions and recommendations generalized from

the three error classes. In Section 6, we discuss some relations between

fallibility in programming methodologies and fallibility in mathematics.

The errors are listed in a Table for reference.

2

We realize that this paper deals with a sensitive subject and that

the material can be interpreted in many ways. Therefore, we wish to pre

sent our views of the subject and to repeat our purpose:

1. We did not search for these errors; once we became aware of

the potential for error and developed some intuition about causes

and effects of errors, the observations appeared naturally in the

,course of our normal reading and research. This is discouraging

in that it signals a lack of awareness and/or critical reading

on the part of reviewers, but at the same time it is encouraging

in that it shows that errors can be identified once awareness and

critical reading skills have been developed.

2. We are convinced that the errors do not destroy credibility

of the modern programming methodologies. Perhaps we should split

the purpose of the methodologies into design and verification.

a.) Design has been continually emphasized in the program

ming methodology literature. The programs mentioned in this

paper are, for the most part, well-designed; that is, even

though errors are present, the programs are substantially

correct. There should be little doubt of the value of the

methodologies for design.

b.) It is at the verification level that the methodology

failures have been observed. As mentioned above, the pro

grams are substantially correct through good design but still

contain errors, most of which are minor and easily fixed.

However, even minor errors can have serious consequences

and be costly to fix. One of the most serious consequences

is to cast doubt on the usefulness of the methodologies.

3
 7

We believe that the analysis of errors and the recom

mendations we present can lead to prevention and early de

tection of most of the types of error that so frequently

occur.

3. We do not believe that the errors reflect negatively on the

skills of the persons who committed them. Instead,-mistakes are

inherent in the difficulty of the programming task and the early

stage of development of the methodologies. Each article mentioned

here makes a significant contribution to that development. Often

the erroneous examples are tangential to the main point of the

paper. The errors may only increase that contribution, albeit in

an-unplanned way. If blame is. to be laid anywhere, it should go

to the reviewers of the papers and other readers who have missed

the errors. We also believe that it is far healthier to discuss

these errors openly than to ignore or cover up their existence

Perhaps what we need is more "egoless publishing."

4. To some extent, we are playing the role of Monday morning

quarterbacks. Many of the errors are "old" in the sense, that the

papers are very early and much progress has been made since their

appearance. However, many of the errors have only recently been

detected and the errors are still occurring in contemporary papers.

This forces us to conclude that the analysis is necessary.

5. There is the additional aspect that the errors provide a way

of studying the programming methodologies which yields unique in

sights into the processes. We have learned much about how to write

specifications, assertions, and programs from our study of the

literature from the unique viewpoint of errors. Perhaps, others

will, also..

4

& That the testing methodology is fallible is so well known

that we did not attempt to include errors of this kind. Analyses of

testing fallibility are presented in (17) and (31), Examples occur

regularly in the algorithms section of the Communications of the ACM.

7. The common characteristic of mathematical rigor and reason

ing in these examples leads one to question the effectiveness of

"The Mathematical Approach", not only in Programming Methodology,

but in Mathematics itself. The frequency of errors in mathematical

theorems, proofs, and applications of theorems is well-recognized

and documented. Mills (5) provides a cogent argument for the use of

mathematics in programming, a subject we will return to in section*

6.

Readers are, of course, free to draw their own conclusions about

the significance of the errors and the implications about modern pro

gramming methodologies. We only ask that the material be considered in

the spirit in which it is offered.

2. ERRORS IN SPECIFICATIONS

2.1 Introduction

An early stage of the program development process should involve the

rigorous specification of requirements for a program in terms of expected

input, required output, constraints on storage and time, and actions in

response to invalid inputs or run-time storage or time limitations. In

practice, it seems that such specifications are used more frequently in

large multi-person software projects and are often skipped in pedagogi-.

cal articles on the new programming methodologies. In articles on proving

program correctness, however, at least formal input and output require

ments must be specified, although errors and algorithm constraints are

5

usually ignored. Our list of specification errors concentrates on

articles on program correctness, not necessarily because errors occur

more frequently here, but because there is a lack of other published

material on program specification.

Liskov and Zilles (1) discuss specifications as the media which

translate a concept in someone's mind of what a program should do to

solve a problem into a formal written statement of exactly what the

program should do. One value of this step is that it becomes possible

to formally prove consistency of programs with such formal specifica

tions. However, the complementary step of verifying that a program

specification implements the underlying concept must necessarily remain

informal. Most -of the error observations relate to deficiencies in the

concept-to-specification step. But we shall see that these errors sug

gest guidelines which can make this necessarily informal step more relia

ble.

2.2 Examples of Specification Errors

Sl: Prime Test

King (2) p. 190, Wegbreit (3) p. 106, Deutsch (4)

Context: The example is used in [King] to show the power of a mechanical

verifer using the inductive assertion method, and in [Wegbreit] to illus

trate a mechanical assertion generator.

Description: The informal specifications are "set the flag variable J

to 0 or 1 as A is or is not a prime". The formal specifications are

Input: A > 2

Output: [J=0 => Vk)(2 < k < A D A mod k # 0)] A

[J=l => (A mod 1=0)]

The program is (rewritten from flow charts to text):

1:=2;

while (A mod I) 0 do I:=I+l;

if I=A then J:=0 else J:=1;

The formal specifications are inadequate, as shown by the following

programs which are equally "correct" with respect to these specifications.

(1) 	 J:=2

(2) 	 I:=; J:=l

(3) 	 I:=A; J:=l;

(4) 	 J:=l; A:=0;.I:=l

(5) J:=0; A:=1

Analysis: A source of difficulty is that neither I nor J is sufficiently

constrained in the output specifications; also, A is not constrained to

have the same value it had upon input. More complete output specifications

are:

[J=0 	 => (Vk)(2 - k < A n A mod k#0)] .A

[J=l 	 => Ck)(A mod k=0 A 2 < k < A)] A

[J=0 	 V J=1] A [A = A01

(where A0 denotes the input value of A).

The error might have been detected by noting that the given program

can be proved without using the input specification. Such a phenomenon

would probably be noticed by a person performing a hand proof but possi

bly not by a machine proof that was not carefully inspected.

Comparing the informal and formal specifications, we see the" follow

ing inconsistencies:

a. 	 Informally, J is to be set to either 0 or 1.

Formally, this is omitted.

b. 	 The condition for A being a prime is translated correctly in

the-implication for J=0, but the condition for A being a non

7

prime is not. 	 This shows a failure to abstract the notion

"prime", such 	 as

prime (A) A 	 (Vk)(2 < k < A n A mod kO 0)A A - 2

'A is greater than I and has no divisors except

I and itself'

which may be 	 used to better express the formal specifications as

[J=O A prime(A) V J=2 A -"prime(A)] A [A=A 0]

c. The informal specifications clearly refer to the input value

of A, but this is not reflected in the output specifications.

S2: Sorting and Searching

King (2, p. 2 08), Deutsch (4), Mills (5), McGowan and Kelly (6, p. 33)

Context: The examples illustrate program proving techniques.

Description: Let A be a real-valued array indexed from I to N, N -> 0.

The output specification of a sorting-program is that:

Sorted(A,Ao)bPermutation (A,A0) and Ordered(A)

where Permutation formally expresses that A-is a permutation of A, (the

input value of A) and Ordered expresses that A is in (usually nondescend

ing) order. In the examples, the Permutation conjunct is often omitted

and ordering alone is used as the specification.

As pointed out by London(7) and Hoare(8), if this occurs the follow

ing program may be said to "sort A into nondecreasing order".

for I:=l to N 	 do A[I]:=O.

Specifications for the example searching programs usually look like:

Input: TAB(I::N) and KEY, where 1 < N declared subscript limit of TAB

and TAB and KEY are of compatible types.

Output: KEY = TAB(I) and 1 5 I N or KEY is not in TAB(::N).

8 	 3

The output specification should require TAB, N, KEY to be the

same as on entry. If this is not required the following programs may be
I

said to "search":

(1) I:=l; TAB(I):=KEY

(2) N:=O; 1:=O

Analysis: The Permutation property is messy to state and prove, especi

ally using the inductive assertion method. A common, and certainly rea

sonable, proof technique is to use the fact that if the only operations

performed on a vector are swaps of two elements, then the vector is al

ways a permutation of the input vector. The Ordered property is better

adapted to the inductive assertion method of proof. There is nothing

wrong with splitting the proof into two parts as long as it is expli

citly stated that Ordered is only part of the specification and does

not correspond by itself to Sorted.

The following properties of Permutation are often used:

(i) Permutation (AA)

(ii) Permutation (A, swap (A,I,J))

(iii) Permutation (A,B) A Permutation (B,C) D Permutation CA,C)

Notice, however, that it is insufficient to formally characterize Permu

tation by only these facts, which are also satisfied by

Permutation (A,B) = "the sum of the elements of A= the sum of the

elements of B"

However, it is still fair to use these facts within a proof.

We commonly understand that searching does not destroy the initial

values of KEY, N, or TAB (l::N), although it might be that TAB(N+l) is

used as a terminating value in a search loop. It is just a convention

by which programmers abide when writing search algorithms. (Search and

9

insert algorithms are another matter, though). From the standpoint of

formal specifications, however, it is hard to argue that the programs

(1) and (2) are not "correct". Like the permutation property of sorting

algorithms, the fact that input variables retain their values at output

is more easily shown by simply inspecting the program for absence of

.assignment or side effects in procedures than by the 6umbersome method

of incorporating these statements into inductive assertions. And again

this should either be adopted as a convention or explicitly stated as

a separate aspect of the specifications and proof.

S3: Magic Square Generator

Gerhart (9, p. 194)

Context: Proof techniques for APL programs are illustrated.

Description: The program, written in APL, is proved correct with res

pect to the specifications (informally stated.

Input: N 1 and N is an odd integer

Output: M is an N x N matrix and the sums of the rows,

columns, and main diagonals of M are the same.

An equally correct program with these specifications sets every

element of M equal to 0. The usual definition of a magic square adds the

requirement that every element of the matrix M should be an element of

the initial sequence of integers 1.. .N 2 , and that each element of that

sequence is an element of M. Of course, N should not be changed by the

program.

Analysis: Since the committer of this error is one of the present

authors, we can testify that the omitted requirement was simply forgotten.

The proof of a real magic square generator is difficult, using several

number theoretic results, and the author simply became absorbed in that

10

proof and failed to complete the output specification. Once the example

had made the point in the context of the thesis, it was considered com

plete. Like error S2, this implicit output condition is easily seen to

be valid by inspection of the program. Nevertheless, it should be stated.

This error first came to our attention when a story was related to

the authors about a computer science professor who assigned the magic

square problem as a programming assignment and gave the incomplete speci

fications above as the problem requirements. One student submitted the

program which set every element of M to 0. The furious professor was then

faced with the dilemma that the program was consistent with the given

specifications, but not a magic square geherator. This characterizes

the problems described in the last errors: specifications must be com

plete enough to capture the concept involved, and sufficiently con

strained so as not to be satisfiable by trival programs like those we

have been giving.

S4: Assertions about data structures

Oppen (10), Cook and Oppen (11), Knuth C13, Alg. 2.3.5D), Bertziss (14,

Alg. 10.8)

Note: These are points of contention, not necessarily errors.

Context: Two opposite approaches to discussing data structures are taken,

formal in the first two and informal in the last two references above.

The purpose of the formal papers is to develop the theoretical notion of

expressibility of languages for stating assertions about programs. The

two well-known books are sources of algorithms and techniques for data

structures.

Description: The main example of the Oppen papers is reversal of a list

11

by reversal of pointers. The underlying notation of datagraphs is-too

complex to describe here. There are two difficulties in the output

assertion for the program: (1) existential quantification over nodes

and arcs leads to incomplete specification, as in previous examples and

(2) the assertion seems inconsistent with respect to the last node of

the reversed list.

The point of contention in the [Knuth] and [Bertziss] books is the

precise specification of list structures, namely the constraints on how

nodes point to each other. The specific algorithms, which involve mark

ing in preparation for garbage collection, assume constraints on point

ers to list heads. It was difficult for us to elicit these assumptions

from the books. If the assumptions did not hold, some reachable cells

might be left unmarked.

Analysis: In private correspondence where we queried whether these errors

-exist, Knuth responded that "Rlinks never point to list heads" but the

algorithm itself makes a test to see if a node accessed by an Rlink

is a list head. Several readings later we decided that this case occurred

if the list was cirgular and that pg. 408 implied that heads of sublists

were pointed to by special sublist nodes. Reference to similar algorithms

in [Bertziss] did not resolve the assumption. Similarly, private corres

pondence with Oppen did not resolve the question of whether the informal

statement "reverse a list" was faithfully described in assertions in his

assertion language.

These careful readings and correspondences arose from a research

effort on the development of formalisms for data structures which would

support understandable and precise proofs of properties about data

structures, Yelowitz (12). There are several possible explanations for

12

the contention over the possibility of error in these examples:

(1) We may not have read the material carefully enough or we may

simply have confused ourselves.

(2) The articles and books may have left out critical assumptions

which are only revealed when our attempts to state and prove correctness

placed higher demands on precision than the usual reader.

(3) There may actually be errors.

Two things are certain: it is difficult to develop complete, precise, and

readable notation for discussing data structures, but it must be done

before correctness proofs can be given for data structures.

Our claim is not that the cited papers are wrong and that we are

right, but that when it takes multiple rounds of correspondence to re

solve issues such as these there is clearly a failure in the specifica

tion process. It may well be that specifying data structures is so dif

ficult that we will have to get along for a while with unsatisfactory

approaches. Our point is that we should be aware of this problem and

emphasize specifications and verifications of specifications. Put another

way, we suggest that if it is not possible to determine whether a pro

gram or specification is wrong, then indeed something is wrong.

2.3 Conclusions About Specification Errors

There are several explanations for these errors:

1. In some of the examples, there was no intention of making the

specifications complete. This occurs often in program proving where the

output specification is split into two or more parts which are proved

separately because different proof techniques or levels of detail in

proofs are applicable. Thus a proof that a program meets some given set

5r

13

of specifications is not meant to imply that the specifications are com

pleee. 'Correctness' in this case is a purely technical matter.

2. There is often an implicit understanding in the use of some

terms in specifications that constrains certain variables to be unal

tered in the program, and others to be created to report the result of

operating on the input. Examples are "searching", which implies that the

table and the key are unaltered, and the "testing for a property, such

as primeness", which says that the-variable being tested is unchanged.

It is debatable whether specifications should be explicit on these

points, but in the formal world which starts from a set of specifications

it seems fair that anything not designated as unalterable should be

treated as a program variable, Perhaps an explicit convention should be

adopted for this situation.

3. Confusion as to context and assumptions does not explain errors

S1 and S3; these are slips in translation from concepts to formal

specifications. This points to failure to confirm that the specifications

implement the concept completely and correctly, failure to recognize the

need for and therefore to attempt such a confirmation, or lack of tools

for verifying specifications.

4. There are cases where specifications are exceedingly difficult,

e.g., the line editor problem (16).to be discussed in T2.

Perhaps it is useful to view specifications as consisting of the

following three components: relations between input and output, asser

tions about input (independently of output), and'assertions about output

(independently of input). There are several suggestions for -devising spec

ifications that arise from these observations.

1. Check that assumptions have been made explicit:

14

a. If the specifications are not intended to be complete,

then state what is omitted, why it is omitted, and how

it can be handled.

b. 	 State which brand of correctness is being sought: "partial"

where termination is. not considered; or "total" which,

does 	 require termination, and state whether termination

includes eventually halting and/or halting "cleanly" (i.e.

no run-time errors).

2. 	 Structure the specifications using abstraction to capture the

important aspects of the concept and write the formal speci

fications to read like the informal specifications.

3. 	 Apply some tests to the specifications:

a. 	 (The absurd program test) Try to find the shortest program

which satisfies the specifications,

ing with a preconceived solution. If

ously does not satisfy the informal

specifications are inadequate.

b. 	 Break the spedifications into cases

ther in each case the specifications

con cep t.

instead of start

the program obvi

concept, the formal

and determine whe

match the informal

c. Formulate the specifications in a different way or

at a different point in time and prove consistency of

the two sets of specifications.

3. 	 Get an independent verifier for the specifications who will

be naive (with respect to the problem), critical, and know

ledgeable as to the above techniques for testing specifica

tions and eliciting assumptions.

15

)All in all, these errors point to the critical need for a better

specification methodology. Without proper specifications, the verifi

cation process is fallacious and program design is substantially more

difficult.

These examples clearly show that specifications niust be 'tested'

ini much the same way that programs are tested, by selecting data with

the goal of revealing any errors that might exist.

3.. ERRORS IN SYSTEMATICALLY CONSTRUCTED PROGRAMS

3.1 Introduction

- The goal of the methodology which is called by the various names

"structured programming", "systematic programming", "stepwise refine

ment", "topdown programming', etc. , is to factor the programming pro

cess into small enough steps and programs into small enough parts

so that each step or part can be seen to be "correct", and so that each step

or part fits together with others to-give correctness at a higher level.

This is not an easy concept to describe, teach, or grasp, so examples

have been the main pedagogical vehicle.

.The examples cited here have errors which illuminate the fact that

this methodology is not yet fully understood. We hope that the examples

point out pitfalls where those learning to apply the methodology should

be wary and where further development of the methodology is required.

16 (S

3.2 Errors in Systematically Constructed Programs

Ti: Sequence Generation

Wirth (15)

Context: This is the culminating example in the chapter on stepwise

program development. It is stressed as an example of a heuristic algori

thi, using the important technique of backtracking.

Description: The specific problem is to "generate a sequence of N char

acters, chosen from an alphabet of three elements such that no two

immediately adjacent subsequences are equal". The algorithm has three

fundamental operations for extending, changing, and checking a candi

date sequence.

The error occurs in refining the statement

good := (Sm-2L+I...SmL) (S-L+l... sm)

The Boolean variable 'good' should be set to true if the two se

quences of length L >,0 differ in at least one pair of corresponding

positions, false otherwise.

The refinement is

i := 0;

repeat

good S(m-L-i) # S(m-i); i := i+l;

until k good v i =L

17

The variable 'good' should-not be negated. As a counter example

consider m=4, 1=2,. and the sequence S=3,2,1,2. The above loop

forces 'good' to be false by finding the two 2's, but in fact the

sequence 3,2 is not equal to the sequence 1,2 so good should be

true.

Analysis: Since there is a difference of only one symbol, it might seem

that this is simply a typographical error, but it is hard to interpret

the insertion of the "0 character in that way.

This error seem to indicate failure to check the final step of the

program construction. Here is where program proofs enter the picture

because in being forced to write down a definition of "good" and to check

the until test the error would probably be found. For example, an asser

tion to hold right before the until test is

[good= (flj I 0 5 j < i)(S(m-Lj) # S(m-j))] A [l < i < L]

and then it is easily seen that terminating with -vgoodwill not give

the right result. The error was actually discovered while studying the

program in preparation for proof. It was later discovered that 'good'

is used elsewhere in the example with similar errors.

T2: A Line Editor

Naur (16)

Contest: The article presents a view of systematic construction based

on identifying important actions which are organized to meet the overall

requirements.

Description: The problem"requirements are "Given a text consisting of

words separated by BLANKS or by NL (new line) characters, convert it to

18

a line-by-line form in accordance with the following rules: 1) line

breaks must be made only where the given text has BLANK or NL; 2) each

line is filled as far as possible as long as 3) no line will contain

more than MAXPOS characters". There are numerous problems with the

specifications that lead to different interpretations of the problem,

e.gj. should two successive blanks be treated as ending one or two words?

How should the text end?

The program also has numerous problems: it doesn't show any expli

cit provision for termination; if the program does terminate, the last

word is left in the buffer unless followed by a BLANK or NL; there are

conditions under which extra line breaks and blanks are output at the

beginning; there is confusion between the two symbols NL and LF repre

senting the line break or new line character. These errors have been

extensively discussed and analyzed in Goodenough and Gerhart (17) in

an example illustrating test data selection techniques.

.Analysis: At one point in the paper, there is an assertion "the input

character preceding the one held in BUFFER(l) was a BLANK or a NL. This

has not been output."

For this assertion to be true the first time it is reached, it is

necessary for the text to start with NL or BLANK, but the specifications

do not state this requirement.

The point is that the action cluster methodology appears systematic,

but the resulting program fails to accomplish even the ill-defined task.

However, we believe that this failure can be traced back to the speci

fications, which are definitely inadequate. The specifications were some

what elaborated on in Goodenough and Gerhart (18), retaining the prose

format, but the authors finally concluded that there was no way to ever

19

get the full problem stated in English without some ambiguity or exces

sive length. A specification technique for this class of program has

been proposed by Noonan (18).

See also error P2.

T3: A Telegram Processor

Henderson and Snowden (19), Ledgard (20)

Context: Systematic development of a program to count words and format

a stream of telegrams is considered.

Description: [Henderson and Snowden] found when they ran their stepwise

constructed program that it miscounted words. They trace their error

history through the steps of the program development process. [Ledgard]

develops a new solution, which contains the following errors:

1. 	 Each output line of the program begins with a blank. There is

nothing in the specifications requiring or prohibiting this, but

it effectively reduces the line length by 1 and seems to contradict

the specification that'extra blanks should be removed from the tele

gram on output. Careful reading of the bottom-level program was

needed for the present authors to determine this.

2. 	 The instruction "CHAR next-char(BUFFER)" might lead to unpredic

table results. The meaning of this (predefined) instruction is not

given, but apparently is to set CHAR to A if there are no more

characters in BUFFER, and otherwise to set CHAR to the next (possibly

blank) character in BUFFER and logically delete that character from

BUFFER. Although Ledgard does not show the implementation of BUFFER,

a standard approach to implementing a buffer of length N is to

allocate an array A of length N+l, in which A[N+I] = A ; this

N+lst 	 element is analogous to an "end-of-file" marker. The problem

20

is that whenever the last word of the buffer is not followed by a blank,

;it is possible to execute "CHAR -"next-char(BUFFER)" twice before re

filling the buffer. So the above common implementation will not

satisfy the assumptions on the behavior of next-char. Again, a

careful reading at the bottom level is necessary to determine this.

Without knowing the behavior of next-char and the other primitives,

it is not possible to justify the correctness of the final program.

3. 	 Indentation is used as a bracketing device, rather than begin.

end. While not strictly an error, it may confuse other readers,

as it 	 did us. The use of two labels A also confused us at one

point.

4. 	 Termination conditions differ between the Final Program in Figure

6 (containing gotos) and the Final Program in Figure 7 (without

gotos). For the input stream "ZZZZ HELLO DOLLY ZZZZ ZZZZ", the

Figure 6 Program will print "HELLO DOLLY", whereas the Figure 7

Program will not print any telegram words. The specifications are

vague on this point, which forces us to ask how the program could

have been proved correct at any level.

Analysis: This problem, like the line editor problem (T2) is hard to

specify completely. There are surprisingly many potential sources of

error, and Henderson and Snowden warn against being lulled into a false

sense of security based upon systematic program development. Ledgard

provides some general guidelines on a program development methodology

at the beginning of his paper, and cites the need for formalizing and

debugging each of the levels. The above points of confusion show that

there is still a gap in the guidelines which permits programs to be

implemented without precise specifications and therefore without the
 4J 1

21

basis for insuring correctness at each level. In such cases, systematic

construction should be expected to be quite fallible.

T4: A Sorting Algorithm in PL360

Wirth (21, p. 53)

Context: The purpose of the PL360 language is to "...further the state of

the art of programming by encouraging and even forcing the programmer

to improve his style of exposition and his principles and discipline

in program organization" (from the abstract).

Description: The error is in procedure sort. The purpose of the

procedure apparently is to sort an array a, indexed from 0 to n in

increments of 4, into decreasing order. The incrementation by 4 is due

to the IBM 360 architecture -- 4 bytes comprise a word, and incrementa

tion by 1 would simply be a byte at a time.

In an outer loop, RI goes from 0 to n in steps of 4.; In an inner

loop, the procedure checks if there is some index greater than Rl, say

R3, such that

(1) a(R3) > a(Rl)

and (2) a(R3) = max {a(Rl+4), ... , a(n)}

If such an index R3 exists, then for definiteness let R3 be the

smallest possible value satisfying (1) and (2). For such an R3, the

appropriate logic is to swap a(R1) with a(R3) so that right after the

swap ,a(Rl) = max {a(Rl), a(Rl+4), ..., a(n)}., Then the outer loop

should continue. If no such R3 exists, then a(Rl) is already the max

imum of A(RI), ..., a(n) and the outer loop can continue immediately.

The error is that the swap occurs even if no such R3 exists; thus R3

might be undefined (if this is the first swap), or R3 might be "l.ft

over" from a previous iteration. In programming terms, R3 is assigned P

22

a value in the then-part of an if-then, but at the conclusion of the if

then, it assumed that the then-part has been executed.

This error has continued to appear in later reports and manuals on

PL360.

Analysis: Failure to initialize a variable is a common error, e.g., see

error P4 below. One virtue of structured programming is that all paths

leading to a given statement can be discerned relatively easily, making

it routine to verify that every variable is initialized prior to being

ref&renced. Apparently, that verification was not performed.

The error was discovered in a classroom exercise which involved

reformatting the program text.

T5: The 8-Queens Problem

Wirth (22)

Context: The "stepwise refinement" method is explained and illustrated.

Description: The "8-queens" problem is "find a way of placing 8 hostile

queens on a standard 8 x 8 chessboard so that no queen may-attack an

other". The point of contention is one of programming style and ro

bustness rather that an actual error. When attention is restricted to

only the 8-queen problem, no error will arise. If, however, we wish to

generalize the solution to the N-queens problem, for arbitrary N > 1,

then an error will arise for each N in which there is no solution (e.g.,

N=2,3). Since it might not be known in advance of running the program

if a solution exists for the 8-queens problem, it is fortuitous that

the error does not occur here also. The same error occurs when all solu

tions to the,8-queens problem are sought.

The specific error is a possible out-of-boind array reference. The

x-array is indexed from 1 to 8, and represents the current board con

figuration; x[p]=k if a queen is present in column p, row k, where

23

1 < p < j (j is a variable used to move left or right across columns).

When the program regresses out of the first column (as will occur when

no solution exists or all solutions have been produced) the following

code will be executed with j=l, (according to our interpretation dis

cussed below)

S j :=j-1;

xtj];

Analysis: Actually, it is somewhat ambiguous what .the final program

should be. After completing the stepwise refinement, Wirth observes

that x[j] can be replaced by a variable i, saving several subscript

computations. The proper modifications to coordinate i with xfjj are

mentioned and then'the affected procedures, except reconsiderprior

column, are rewritten. If one constructs the complete-concrete program

from the latest versions of the procedures, the adjustment for i does

not occur.because reconsidervriorcolumn is out of date. But if.one

.constructs, as we did, the program with the obvious recommended change

to reconsiderpriorcolumn

j :=j-l; i-:=x[j]

the subscript error occurs. A third possibility is to rewrite regress to read

begin J:=j

if ja:I

then i:=x[j]; removequeen,....

but this is a major deviation from the preceding refinements.

Our conclusion is that a seemingly safe optimization did not pre

serve correctness and should have been checked more carefully. We are

not sure how this type of program rewriting fits into the stepwise re

finement method.

24 7

3.3 	 Conclusions About Errors in Systematically Constructed Programs

It is hard to pinpoint the exact places of failure in the systema

tic constructions since there are always many assumptions in effect and

the reasoning is informal. Most errors seem to occur when the bottom

level 	 code is written. It is as if the systematic,construction is per

formed as a series of refinement steps where every step except the last,

in which concrete code is produced, is carefully checked. This leads to

the obvious recommendations:

1. 	 Be especially careful to verify that the concrete program

parts do exactly what the abstract parts intended.

2. 	 After completing a systematid construction, put all of the

pieces of program together and recheck, using standard

methods of testing and/or proving, that the program does

what was initially specified.

Some amount of formalization would probably benefit the systematic

construction methodology. Care must be taken to avoid overformalization,

since a point of diminishing returns can easily be reached, and passed.

For example, S4 and P4 (below) fail to detect errors despite a great

deal of formalism. One practical approach is to treat data reference and

program structure with more symmetry. In many articles, "structure" is

claimed for a program based upon the use of only well-known control

structures, but mention is seldom made of the degree of locality or

globality of data reference. If a variable is referenced and modified

at every level of a program, then the di-fficulty in understanding the

purpose of that variable might become inordinate, and the fact that

gotos have been avoided becomes somewhat academic. More recent work

(23) concentrates on the data structure aspect of systematic con

25

struction.

The following recommendations might be useful:

In addition to the standard refinement process, keep a list of

important program variables (or more general data structures). The list

should explain the purpose of the variable at a problem-solving, or

goal-oriented level, including its initialization, updates, and rela

tion to other variables'; a check then can be made that the purpose of

the variable corresponds to the pattern of references and modifications

as used by the program. Such a list might have caught the errors in T4

and P4.

It is also important to note that some errors-were easily dis

covered by hand simulation on test values. Finally, we note an alterna

tive viewpoint; systematic construction should expose various facts

about the program which then can serve as a basis for a proof, but the

systematic construction alone is insufficient to guarantee correctness.

4. 	 ERRORS IN 'PROVED' PROGRAMS

4.1 	 Introduction

Testing cannot guarantee in a practical sense that a program is

correct, although, in theory, testing can be viewed as a basis for an

induction proof which does demonstrate correctness (17). However, program

proving based on testing is not yet well-understood. The approach to pro

gram proving which has been advocated over the past few years stresses

the construction of theorems (verification conditions) to express program

correctness, and various mechanical techniques for proving these theorems.

Other work has concentrated on proof styles, ranging from the loose

arguments for correctness seen in articles on stepwise refinement to

much more rigorous proofs, some of which have been mechanically produced.

26

The overall goal of the work on proving program correctness is to

show Iconvincingly that programs do not contain errors. The following

examples demonstrate that proofs of correctness do not always discover

errors, even though the proofs may be persuasive, and perhaps even

"formalistic". We will have more to say about the nature of errors in

proofs in mathematics at the end of this article. For now, the reader

should bear in mind that there are two aspects to program proving: (1)

What to prove; and (2) How to prove it. Most of the errors are best

viewed as failures in defining what to prove.

4.2 Errors in Proved Programs

Pl: A Linear Search Program

McGowan and Kelly (6, p. 33)

Context: The example occurs in a section intended to help readers con

vince themselves "that careful reasoning about programs is a better

guide to correctness than extensive testing." (6, pg. 30).

Description: Suppose that a table TAB has been declared to have N ele

ments with 1-origin subscripting and that KEY and TAB are declared of

the same or compatible types. The language in use is PL/i. (The example

in the book uses structures, but we are simplifying to arrays without

losing the general idea). The following program is given to search an

initialized TAB for an initialized value of KEY:

I=1;

DO WHILE (I <= N & KEY-%=TAB(I)) ;

I=I+il;

END;

with the loop invariant

KEY 4 TAB(j) for 1 j I-i

27

The claim is that on exiting the loop, either I N+l and KEY is not in

TAB or KEY=TAB(I). (In fact, the invariant needs the conjunct I ! N+I

in order to conclude I=N+l at loop exit, but that is not the main

problem here.)

The specific problem is that if KEY is not present in TAB, the final

while test will be executed with the value I = N+Il, making the first con

junct false. In all but the optimizing PL/I compiler, however, the second

conjunct is evaluated (even though it is logically superfluous), giving

rise to DATA INTERRUPTS and SUBSCRIPT RANGE errors. (This experiment was

performed on an IBM 370/168 with standard IBM software in December, 1975.)

Analysis: The undefined order of evaluation of operands of logical oper

ators is a wellknown pitfall of PL/Il. Left-to-right, non-superfluous

evaluation is often assumed, but the P/I reference manual is vague on

this point. Other languages, e.g. ALGOL W, make it explicit that the

and operator in A and B is sequentially defined as if A then B else

false.

The error shoiws that ignoring control within expressions and

inexecutable operations can invalidate a correctness argument or a care

ful reasoning process. Elsewhere in reference (6), attention is paid to

logical operators in assembly language macros. The authors point out

that the pireferred code for this problem is

DO I=1 TO N WHILE (KEY-i=TAB(I));

END;

which avoids the problem of order of evaluation of operands for this

program.28

http:program.28

P2:: Line Editor

London (7)

Context: The Line Editor program has been discussed in error T2. [London]

corrected one error and proved several properties of the corrected program.

The goal was to illustrate the methods and some results of the approach

of proving programs correct and to suggest that the approach at least

be considered as a means of attaining 'software reliability.

Description The program provided by London has the following abstract

structure:

'initialize, program variables';

while 'more characters to be read' do

begin 'input a character';

'process that character' (putting it in the buffer or out

putting the buffer with a preceding blank or line feed,

as required by the line specifications)

end

The 'more characters to be read' action is simply expressed as 'halt

if no more characters'. The problem with this action is that when there

are no more characters, there may still be a word in the buffer. In this

version of the program, the buffer is not emptied.

Analysis: Several lemmas for properties of the program are proved: Varia

ble types are consistent; subscript errors do not occur if the words are

not oversized; the buffer array contains only legal parts of words; and

the words output on a line are done so correctly. The proof line 'the

output of each entire word (possibly null) after the first word must be

and is preceded either by a line feed...or a BLANK...' comes close to

hitting the point of error in the program, but it concentrates on showing

29

that the words which are output are done so correctly)not that all the

words. are output (and in the same order).

As in T2, tht proof missed a common and well-known pitfall of this

type of program, namely, failure to empty the buffer at the end of pro

cessing. The error probably was not caught because the program specifi

cations, and hence the correctness requirements, were .so loosely stated.

It should also be noted that this is one of the earliest published

attempts at proving a realistic program.

P3: Prime Sieve

Wulf (23)

Context: The language ALPHARD is being designed to provide, among other

features, the facility for handling abstractions in both control and data

structures. The prime sieve (sieve of Eratosthenes) program previously

developed and proved by Hoare (24) was reworked to display the abstrac

tions in the final text of the program. It is claimed that program prov

ing should be factored into proofs of high level algorithms (which may

often be omitted when they are well known, as in this example, or obvious)

and proofs that the representations correctly reflect the high level

algorithm. The intended proof style is used on the example.

Description: The high level algorithm is

while ,.j empty(sieve) do

(include(prime,rain(sieve)); removemultiples(sieve, in(sieve)))

where 'prime' is declared of type powerset of the integers 1..N and

initialized to empty and 'sieve' is declared of type powerset of the

integers 2..N and initialized to {2,... ,N}. The ultimate representation

of both is bits within an array of machine words.

The error is that the 'min' routine does not return the minimum

30

element of the sieve, as specified by the algorithm, but instead returns

the index of the minimum element as a pair of integers representing an

element in an array of words and a bit in that word. The index of the

least 	 possible element of 'sieve', that is, 2, corresponds to 0. There

,re two effects of this error:

(1) 	 'include (prime, min(sieve))' causes min(sieve)-l to be placed

in'prime'.

(2) 	 the operation removemultiples (sieve, min(sieve))' corresponds

to a 	 loop

for I 	 := X step X until N do

'remove
 the element with index I from sieve'

which is executed with X being the index of min(sieve) in

sieve, thus causing an infinite loop when X is 0.

Analysis: The proof shows that the bit-word pair and powerset forms are

correctly defined and attempts to show that an integer-set form is correct.

latter part of the proof states "removemultiples(n) removes the elements at

indexes n, 2n, 3n, ... , size of powerset" but this cannot be true when

n=0 and, even if that worked, the sieve would be emptied when n=-l. It is

not proved that the element which is included in 'prime' is actually the

minimum element of the sieve. The error seems to have occurred because

the data representations do not actually correspond to the algorithm,

with a resulting confusion between the minimum element of the sieve and

its index. Note that usually the initialization is stated in the algori

.thm but that in Alphard, initialization is distributed to the data

structure forms.

The original claim that program proving can be factored

into 	 algorithm and data representation

31A

is probably justified, but that there is still a substantial proof step

in, showing that the representations are faithful to the intent of the

algorithm. It should be noted that this is the first description of

Alphard and a more recent description (30) uses better defined language

constructs and takes a more rigorous approach.

P4: Maximum of a Series of Powers and Matrices

Lanzarone and Ornaghi (25)

Context: The paper presents a variation of the usual correctness formalism

to describe the stepwise refinement method.

Description: The example is specified: 'A symmetric matrix with positive

or null elements has to be multiplied by itself until the maximum of its

elements is greater than or equal to an assigned positive real number

alpha'. Let * represent matrix multiplication, jM11I represent the value

of the maximum element of matrix M, and x denote the input matrix.

The top level program is:

(a,b,c) (x,x,l xi)

while c < alpha do

(a,c) + (a.b, lla.bl)

The error occurs in the concrete code refined from the body of the loop.

As each element, say e, of the new product matrix is computed, a variable

d is set to max(d,e). However, d is not initialized at the start of each

matrix product computation, but only at the beginning. This causes d to

contain not the maximum of the current matrix, but the maximum of all

matrices computed so far. It might be thought that the historical maximum

always equals the current maximum, but for the matrix

.15
= (.95x

.15 .95

32

the successive maxima are .95, .925, -.921, .936, -.969. Nevertheless, the

program will still work correctly because if the current maximum is less

than a previous maximum, and termination has not occurred, then the cur

rent maximum is less than alpha.

Analysis: The point is that the final program is not a refinement of the

topi level program because the variable -d is not reinitialized every time

a new matrix is computed. The proof does not catch this discrepancy nor

did the proof give any indication that the final result is correct never

theless. It is debatable whether this should be considered an error, since

the final program is correct (assuming there are not other errors which

we have not found). However, it could have just been fortuitous that

everything worked out in this example, and in other examples the luck

might give out. The overall flaw in the approach seems to be that the

interfaces between refinements were not carefully checked. For example,

the input assertion about the section in error permitted 'd' to be any

real value, not necessarily 0.

4.2 Conclusions about the errors in proved programs

There are several common features of these four errors:

1. The inductive assertion method is used informally. It is diffi

cult to apply the assertion method to the line editor problem, lacking a

suitable assertion language. We believe the assertion method could have

caught the error in P4 since the property of d being the maximum of the

current matrix would have been in the loop assertion, as well as the error in

P3 since the relation between elements of prime and sieve must be stated.

All of these programs have a loose notion of the required verifica

tion task. The presentation in [6] is deliberately informal in order to

33

introduce correctness concerns. P2 uses an informal approach which is

dictated by the informal nature of the specifications. P3 skips a

crucial aspect of the proof,.namely that the representation corresponds to

the algorithm. P4 seems to skip the interface steps to concentrate on

proofs for the individudl refinements, although such interfaces play an

important role in the theory and practice of program develooment.

2. Three of the errors are related to proper termination: error P1

relates to the value of the conjunction at the time the loop exists;

error P2 occurs at the end of the text; error P3 results in a nontermina

ting loop; error P4 is related to initialization.

It is common in program proving to treat the termination task

informally since termination in most of the examples is relatively obvi

ous and easily checked. These errors suggest that perhaps more effort

should be concentrated on termination, especially since it is well known

that many programming errors occur at boundary points, which includes

initialization and termination.

3. Ironically, each of the first three errors are easily discovered

by the standard methods of hand simulation and testing. For example, test

cases for P1 would undoubtedly include the two subcases of KEY present,

and not present, in TAB, and the error would be revealed on any but the

optimizing PL/l compiler. Testing of error P2 might show the last word

left in the buffer, depending on type of input device. Hand simulation

on the prime sieve program quickly revealed the problem at the first loop

iteration when 2 is the minimum element of the sieve. (We had previ

ously been told that an error exists in this program, but we were not

told the details.)

Based on these generalizations, we make the following recommendations

34

for increasing the value and ciedibility of program proofs:

aI. Do not ignore the "standard" methods of verification. London (7)
gives the "hint that one should be fairly confident the program is cor

rect before starting to prove it so. This confidence may, for example,

arise from the standard testing/debugging process."

2. Check the proof and program especially closely at known pit

falls and problem areas of the programming language and the programming

task. One goal of programming language design is to minimize the number

of such trouble spots. There does not appear to exist a well-documented,

widely distributed and suitably general catalog of trouble spots in pro

gramming, but there is certainly informal 'communication of a large

amount of bitter experience.

3. Adopt a cautiously skeptical attitude toward proofs, as one of

several possible means of persuasion, in which formalization and abstrac

tion might provide some new insights and documentation. Keep in mind,

however, that there are usually at least some parts of the program that

are better-explained informally, and it is pointless to attempt sub

verting these parts to fit a particular formalism. Formalism should

supplement, definitely not replace, common sense and programming experiZ

ence and intuition. See Redish (26) for various types of common sense

questions to supplement the assertion method.

4. Even though a challenging aspect of a proof has been solved,

one should not let one's guard down on the more mundane aspects of the

program.

5. First concentrate a large amount of effort on stating what

should be proved in order to guarantee the program is correct, and then

set about proving it. It seems fair to say that in most of the above

errors the proving task was not well-understood. Therefore some things

35

which should have been proved were ignored, resulting in failure to

catch!errors.

5. OVERALL CONCLUSIONS AND RECOMMENDATIONS

Ike have identified and discussed some common features for each of the

three classes of errors. We can now elaborate on some common features of

all,three classes.

Observation 1: The tasks were not well defined: it was not recognized

that formal specification must be shown to capture the underlying infor

mal concept; there were gaps in the statements of what should be proved

about programs, especially proper termination; systematically constructed

programs were not checked closely to confirm their correctness.

Recommendation 1: Identify more carefully the complete task, for example,

by including those parts which coyer the errors we have discussed here.

Make sure the task is well understood and precisely stated before un

dertaking the time consuming and absorbing process of verifying that

the task was accomplished.

Observation 2: The errors are not deep. The standard methodologies and

everyday programming knowledge are sufficient to reveal most of them. The

errors seem to have been overlooked because the authors were concentrating

on pedagogical points and therefore looking at the program from restricted

viewpoints.

Recommendation 2: Apply as many techniques as possible to the task:

perform testing as well as proving; look for known difficult and error

prone language constructs; obtain an independent verifier to read and

check the results. The greatest confidence arises from consistent posi

tive results from different methodologies applied to the same task,

36

because different methodologies often have compensating strengths and

weaknesses.

Observation 3: There is a tendency to concentrate more effort on the

harder parts which require sophisticated techniques and less effort on

the "obvious" and easier parts. It is often claimed that the methodolo

gies are even more essential in multiprocessing programs than in sequen

tial programs. The errors show they do not yet work reliably for se

quential programs.

Recommendation 3: Do not bring to the task preconceived notions of hard

and easy, e.g. "termination is always trivial to prove" or "inductive

assertions are always hard to formulate". The apportionment of effort

must be somewhat tailored to the specific task. Do not get so bogged

down in formal proofs that some aspects of the task are ignored complete

ly.

Observation 4: Most of the erroneous programs were also well-structured,

according to current criteria. It is often,claimed that good structure

makes it easier to detect errors, but these errors sh6w that it is no

guarantee.

Recommendation 4: Do not confuse good structure with correctness. If

the structure is good, then make use of the clarity thereby gained to

verify the program, at least informally.

Observation 5: The methodologies proposed to increase software relia

bility are still in their early stages of development: the tasks are

not easily taught or learned ; old habits make it hard to take

seriously the importance of some tasks, e.g. the common practice of writ

ing the specifications after writing the program, or worse, never

writing the specifications at all; there is a tendency to believe that

37

following the techniques will automatically bring favorable results,

e.g. systematic construction will lead to correct programs.

Recommendation 5: Do not view new methodologies as panaceas, especially

when one has little experience in applying the methodologies or is un

aware of the pitfalls. Just as with any other skill, it will take

considerable training and experience before the new programming methodo

logies are mastered. Part of that experience will undoubtedly be commit

ting and recovering from errors.

6. SOME RELATIONSHIPS BETWEEN MODERN PROGRAMMING METHODOLOGIES AND
MATHEMATICS

Earlier we claimed that the common feature of the new methodologies

is the emphasis on the use of mathematical reasoning in programming. A

natural question to ask is, How well does mathematical reasoning work

in mathematics?

Here are a few documentations of error processes in mathematics.

1. The Mathematical Games section of- the December, 1975, issue of

Scientific American (27) reports an interesting instance of error. A

proof had been submitted that a particular algorithm produced all solu

tions to a given problem. A counterexample in the form of a missed so

lution was later submitted. The nature of the proof error was not given.

The author of the original "proof" was quozed from a book he had authored

to the effect that there is no "magic formula for a proof which makes it

immutable and unarguable henceforth and forevermore."

2. An interesting paper by an eminent mathematician P.J. Davis,

(28) relates many instances of errors in mathematics. It concludes that

"a derivation of a theorem or a verification of a proof has only probabi

listic validity" and that mathematics, as a somewhat experimental science,

is "saved from chaos

38

by the stability of the universe... and the self-correcting features of

usage."

3. Schwartz (29) relates the following anecdote: "I think here of

a case that became famous a few years ago, in which after certain state

ments in algebraic number theory had been proved by three independent

metiods in published papers (an algebraic proof; an analytic proof, and

an elementary proof), a counter-example was published."

Another point to consider is the purpose of a proof. In addition to

the'obvious one of'certification, Davis also points out the "discovery"

aspect of proofs. A mathematical proof of a giten statement helps to

elicit the hypotheses under which the statement holds and perhaps induces

minor alterations in the statement. Analogously, a program proof can help

to discover conditions on input under which the program will or will not

execute completely and provide the required output. These conditions may

or may not be subsumed by the program specification, which may need to

be altered.

Yet another aspect is that'a proof should reveal clearly

why a theorem holds. Likewise, a program proof should reveal why the pro

gram works and thus serve as a form of documentation. All in all, mathe

matical reasoning leads to a deeper understanding of the subject being

studied, if not to certainty in manipulating the understanding.

The certification aspect of mathematical proofs has an obvious

carryover to program proofs. It is recognized in mathematics that a proof

does not become a proof'until 'there has been a consensus of experts that

the proof is right' (28). In program proving, we would like one of our

experts to be mechanical proof checker, but of course this leads to

the question of correctness of the proof checker, as well as the immense

39

difficulty of constructing and the expense of running such a checker.

It should be observed that many of the above errors occur in papers which

have undergone a supposedly rigorous review process before publication.

It is a reasonable expectation that each article which had not been

reviewed had nevertheless been read by at least one other competent

person. Yet the errors persist. The conviction from a proof that a state

r s ment or program is correct is only neaningful if the pe on being con

vinced is critical and. trained to detect proof failures.

These are similarities between mathematical reasoning in mathematics

and in programming. There are diffferences, also.

1. Mathematical theorems are often stated and proved for their

elegance or their role within a theory. It is not necessary that there

be an immediate, or even an eventual, application of the theorem. In

programming, we are more immediately concerned with correctness since

program errors may be costly or dangerous.

2. There is usually an established and well known theory in which

a mathematical theorem is embedded, wheras in!'programming, each program

proof is usually isolated. A mathematician does not start from scratch-,

but instead builds upon a body of theorems with the result that the task

is easier and the theorem can be shown to be consistent or inconsistent

with other theorems in the theory. Currently, each program proof starts

from scratch and must be examined in isolation. This state will probably

change as a more mathematical theory of programs is evolved from present

work on program correctness and from the abstraction and organization of

programming knowledge.

3. Studies in the mathematical foundations of computer science

lead to advances in machine and language design. A current premise is

40

that languages should facilitate mathematical reasoning in programming,

be semantically defined in a mathematical fashion, and be sub

jected to rigorous mathematical analysis.

This discussion leaves us with the fundamental question:

What is the role of formalism and mathematical reasoning in pro

gramming methodologies? Based on our study of error6, we conclude that it

is one, but not the only, or necessarily best.tool for verifying programs.

It provides evidence of a logical nature that programs are substantially

correct, the degree of certainty being somewhat related to the depth

of logical analysis and the skills of the analyser(s), but never abso

lute. On the other hand, testing provides empirical certainty of at

least some correctness aspects of a program. Experience with both test

ing and mathematical reasoningshould convince us that neither type of

evidence is sufficient and that both types are necessary.

There are two important roles. other than verification, for formalism

in programming methodologies: (1) they provide the training in rigorous

thinking which is essential for good programming and (2) they provide

the most effective language for organizing and expressing knowledge about

programs. Of course, this is what the leading programming methodologists

have been saying for years. We hope that this paper provides new, and

more realistic, insight into the mathematical foundations of these methodo

logies. One unfortunate aspect of that reality is that "mathematics is a

human activity subject to human fallibility." (5) This statement should not

be interpreted to say that the mathematical approach should be abandoned,

for it will always be a necessary tool. Nor should it be construed to mean

that mechanical tools are the only solution, for these must ultimately be

evaluated by mathematical means. We simply must learn to live with falli

bility.

41

TABLE OF ERRORS

Reference Name of Classification(s)

Code Program(s)

Si Prime Test Specifications & proofs

S2 Sorting and Searching Specifications & proofs

S3 Magic Square Generator Specifications & proofs

S4 Data structure algorithms Specifications & proofs

Ti Sequence Generation Systematic Construction

T2/P2 Line Editor Systematic Construction/proofs

T3 Telegram Processor Systematic Construction & proofs

T4 Sorting Algorithm Systematic Construction

T5 8-queens Systematic Construction

PI Linear Search Program Proof

P3 Prime Sieve Systematic Construction & proofs

P4 Powers of matrices Systematic Construction & proofs

42

ACKNOWLEDGEMENTS

Error T2 was originally analyzed with the help of John Goodenough.

Ted Linden alerted us to error P3. Harlan Mills is the source for error

T4. Error T5 was independently confirmed.by Leon Stucki. Parts of errors

S2, Ti, and T3 have been previously discussed in the cited articies

and first sowed the seeds of doubt in our minds. We appreciate the

comments of many colleagues, especially Harlan Mills, Bernard Elspas,

and Ralph London, on an earlier and the present version of this paper.

However, the interpretations of the errors and the conclusions are our

own. The paper was distributed to the authors who committed errors and

we have tried to incorporate their replies, where received.

http:confirmed.by

BIBLIOGRAPHY

1. 	 Tiskov, B., and Zilles, S., Specifications techniques for data

abstractions, IEEETSE 1, pp. 7-19.

2. 	 King, J.C., A program verifier, Ph.D. Dissertation, Carnegie-

Mellon University, 1969.

3. 	 Wegbreit, B., The.synthesis of loop predicates-, CACM 17, pp. 102-112.

4. 	 Deutsch, L.P., An interactive program verifier, Ph.D. Dissertation,

University of California, Berkeley, June 1973.

5. 	 Mills, H.D., How to write correct programs and know it, Proceedings

of International Conference on Reliable Software. April 1975, Los

Angeles, pp. 363-370.

6. 	 McGowan, C.L., and Kelly, J.R., Top-Down Structural Programming
Techniques, Mason Charter, New York 1975.

7. 	 London, R., Software reliability through proving programs correct,

1971 IEEE Conference on Fault Tolerant Computing, pp. 125-'129.

8. 	 Hoare, C.A.R., Proof of a program: Find, J 14, 1971, pp. 39-45.

9. 	 Gerhart, S.L. , Verification of APL programs, Ph.D. Dissertation,

Carnegie-Mellon University, 1972.

10. 	 Oppen, D.,On Logic and Program verification, Ph.D. Dissertation,

University of Toronto, April, 1975. (Technical Report No. 82).

11. 	 Cook, S. and Oppen, D., An assertion language for data structure,
2nd Symposium on Principles of Programming Languages, 1975, pp.

160-166.

12. 	 Yelowitz, L., Assertions about data structures (unpublished manu

script).

13. 	 Knuth, D.E., The art of computer programming, vol. 1, Fundamental

algorithms, Second edition, Addison-Wesley Reading, Mass., 1973.

14. 	 Berztiss, A.T., Data structures: Theofy and practice, Second
edition, Academic Press, New York, 1975.

15. 	 Wirth, N., Systematic programming, Prentice-Hall, 1972. (1st printing)

16. 	 Naur, P., Programming by action clusters, BIT 9, 1969, pp. 250-258.

17. 	 Goodenough, J., and Gerhart, S., Toward a theory of test data

selection, IEETSE, 1, no. 2, 1975, pp. 156-173.

18. Noonan, R., Structured programming and formal specifications,

IEEETSE 1, 1975, pp. 421-425.

43

19. 	 Henderson, P., and Snowden, R. An experiment in structured
programming, BIT 12, pp. 38-53.

20. 	 Ledgard, H., The case for structured programming, BIT 13, pp. 45-57.

21. 	 Wirth, N., PL360, A programming language for the 360 computer,

JACM 15, pp. 37-74.

22. 	 Wirth, N. , Program development by stepwise refinement, CAC 14,.
pp. 221-227.

23. 	 Wulf, W.A., ALPHARD: Toward a language to support structured

programs, Report AFOSR-TR-74-1434, Carnegie-Mellon University,
April 1974.

24. Hoare, C.A.R., Notes on data structuring, in Dahl, et al., Structured

Programming, pp. 83-174.

25. 	 Lanzarone, G.A. and Ornaghi, M., Program construction by refine

ments preserving correctness, The Computer Journal 18, pp. 55-62.

26. 	 Redish, K.A., Comments on London's "certification of algorithm
245, CACM 14, pp. 50-51.

27. 	 Dec. 1974 Scientific American, Mathematical Games Section.

28. Davis, P.J., Fidelity in Mathematical Discourse: Is one and one

really two?, Am. Math. Mo., 1972, pp. 252-263.

29. 	 Schwartz, J.A., An overview of bugs, in Debugging Techniques in
Large -Systems, Prentice-Hall, 1971, pp. 1-16.

30. 	 Wulf, W., London; R. and Shaw, M., Verification and abstraction in

ALPHARD, unpublished.

31. 	 Howden, W., Reliability of the path testing strategy, this issue.

4/

44

