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ABSTRACT 

Classification of errors in software is an important and difficult problem.



Its purpose is to gain insight into the nature of errors in order to develop



better methods for preventing and detecting errors and to develop methods



for assessing quality and predicting existence of errors in software. The



problem is difficult since errors (real or potential) pervade all programming



activities and therefore all programming concepts must be utilized in



discussing errors.



The problem seems to have a circular character: classification requires



definition, but, to a great extent, definition requires classification. To



find a way out of this circularity, a mathematical formalization of the



intuition behind classification is devised and then extended to a "classification



discipline": Every classification scheme should have an easily discernible mathe

matical structure and certain properties of the scheme should be decidable



(although whether or not these properties hold is relative to the intended 

use of the scheme). Classification of errors then becomes an iterative process 

of generalization from actual errors to terms defining the errors together 

with adjustment of definitions according to the classification discipline. 

Alternatively, whenever possible, small-scale models may be built to give 

more substance to the definitions.



The classification discipline and the difficulties of definition are illus

trated by examples of classification schemes from the literature and a new 

study of observed errors in published papers of programming methodologies. 

Several recommendations are made for studies which would further clarify the 

problem and begin to produce useful classification schemes. 



INTRODUCTION



Errors are a fundamental problem in the development and use of 

high-quality software. As computing systems, especially hardware



components, have become more sophisticated, powerful, and reliable, so



have the demands on.these systems. As computing systems are given more



responsibility in life-critical activities, such as flying airplanes



and diagnosis and monitoring in medical-care, the potential for disastrous



results from even a single error has increased immensely. It is also the



conventional wisdom, reinforced by various studies, that errors account



for a large share of the cost of developing software.



Although errors are an ever-present fact of life for individual



programmers, programming projects, and users of programmed systems,



there has been relatively little direct study of errors. Studies have



concentrated on syntactical (grammatical) errors which impact on the



quality of software only in the time consumed by detecting and correcting



these errors. Errors which affect the final behavior of a system are



harder to study. Many studies have been largely collecting data on



errors and analysing these data for some tentative conclusions. The



purpose of these studies may be one or all of the following:



1. 	 Insight into activities that give rise to errors



or that fail to detect errors



2. 	 Development of better methods for preventing and



detecting errors



3. 	 Viewing programming as a dynamic process, modeling the



error subprocesses



4. 	 Assessment of quality of software with respect to



latent errors





A crucial factor in the execution and validity of these studies is 


the classification of errors, for it is classification that organizes 


the 	 error data into meaningful patterns from which abstraction, insight, 

and conclusions can occur. That is, none of the above purposes can be 


achieved fully if attention is paid only to errors on a one-at-a-time 


basis. 


The purpose of the research reported on here is the development of



a methodology for classification of errors. The research originally



proposed included study of two tasks with respect to their errors and



an assessment of various methods of preventing and detecting errors.



However thissoon ran agrund on two accounts:



1. 	 A collection of errors in published papers which have been 

influential in the development of methodologies for pre


venting and detecting errors, along with additional



reading, indicated that the assessment was both premature



and 	 too large to be accomplished within the time-span of



the 	 research.



2. 	 The specific studies and a reading of previous work showed



that there were more fundamental problems that must be



addressed.



The most appropriate course of action given these two discouragements seem

ed to be to attack the problem on a more fundamental level using the 

insight gained from the failures. This attack used the common approach



of factoring the problem into separate subproblems (classification and



errors) with the aim of reuniting the subproblems (into classification of



errors) after their separate study. The results reported in the rest
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of this paper are:



1. 	 Classification can be considered as a general problem



independent of errors. This leads to some mathematical



definitions which provide the foundation for explicating



the structure of classification and evaluation of specific



classifications. The mathematics is quite elementary and serves



to formalize intuition about classifications.



2. 	 It is not as easy to consider errors separately from



classification. The subject of errors brings in the 

entire realm of programming and computation. The mathe


matical theory of computation is not fully developed and, 

even if it were, computation is such a rich area that the 

mathematics is complicated. Of course, programming is a



human activity not easily rendered mathematically. It will 

be illustrated later that a fundamental difficulty is 

communication between people whose orientations and experience 

cover different aspects. of computation, say hardware vs.



software. 

3. When we put the two subjects together, we see that in a way 

the critical difficulty is circularity: to classify errors



requires definitions of errors and definitions require



classifications.



The rest of the paper considers first classifications, then errors,



then a series of small and incomplete studies of classifications of 

errors. Our approach is to attack the problem from various angles; 

mathematical, linguistic, psychological, and technological. The subject



http:aspects.of
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is truly difficult and comprehensive. Our purpose is to expose some



of the reasons for the difficulty and to provide a number of small remedies 

and tentative recommendations for resolving the difficulties. Our claim



is that indeed errors can ultimately be classified for the various purposes 

discussed above but that the task is perhaps harder than one might expect. 

Most of the paper focuses on the mathematisation of classification 

and the appendix, a paper entitled "Observations of Fallibility in 

Applications of Modern Programming Methodology". That paper illustrates 

many points about errors and about classification. 

I claimed above that errors are discussed relative to individuals 

with different backgrounds. 

Much of this paper must be understood relative to my background: 

software, rather than hardware; academic, with exposure to, but no direct par

ticipation in government and industrial programming activities; programming

in-the-small, rather than programing-in-the-large; theoretical, more than 

technical or management; verification; more than design, of programmed systems. 
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2. 	 THE MATHEMATICS OF CLASSIFICATION
 


When we talk about classification, we mean that there is a set of



objects and some means of grouping these objects together into classes such 

that each class has some common property. We can look at a classifi

cation from two different standpoints - the classes and the properties 

which define (or describe, or characterize) the classes. When we do so) 

there are some observations we can usually make about the classes: 

whether they overlap, include all objects, or include any objects. 

It is also interesting to look at the ways the properties are defined and



how properties can be built up from other properties with the concomitant



effects on classes.



We will now state some definitions and prove some theorems which



attempt to capture these notions about classification. The mathematics



is adapted from set theory and logic and is not far beyond the level of



the 'new math" taught in schools today ( A good reference is Stoll, (1)).



Someone has said that "mathematics is the science of structure". Our



thesis is that these elementary mathematical concepts can make precise



for us what we mean when we talk about classification, that is, we can



study the structure of classifications. After the definitions, theorems,



and a mathematical example, we will examine the definitions in more detail



and apply them to classification of errors.



DEFINITIONS AND NOTATION:



Let 	 X be a fixed reference set.


1. 	 A class-defining property is a statement which evaluates to



either true or false whenever any reference to a member of X


is replaced by an actual member of X. Let o(x) denote a statement


referring to x, a member of X. The property c(a) is satisfied


by a of X if c(a) evaluates to true.



Z.- Let c be a class defining property. The class associated with 
c, denoted c, is the subset of X which satisfies c, i.e. 
c = : x is a member of X and c(x)}a: 
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3. 	 Two classes c.and c' are mutually exclusive if c A c' = 4. 
A class c is empty if c = 4. (d is the empty set and A denotes 
intersection, returning exactly the members of both sets.) 

4. 	 A classification scheme C is a set of class-defining properties,


the class system associated with C, denoted C, is the set of



all classes associated with class-defining properties of C. We


will say that C induces Con X.



5. 	 A class system C is


a. 	 exclusive if every pair of classes from C is mutually exclusive.


b. 	 inclusive if every member of X is a member-of some class of C.


c. 	 full if no class of C is empty.



6. 	 The product of two classification schemes C and C', denoted


C x C', is defined as
 


{c4 c' : c is a member of C and c' is a member of C'} 
(c 4 c) (x) is defined as c (x)g c'Cx). & is the logical 
and operator, which is true only when both operands are true. 

7. A class system C' is a refinement of another class system C


if for every c' of C' there is a c of C such that c _¢ c and the 
union of classes of-C' equals the union of classes of C. 

8. 	 A classification scheme C' is an extension of a classification


scheme C if every property in C' is constructed using the


logical operators g and -i (and, negation ) on the properties of


C. 

9. 	 Suppose X and Y are two sets with a relation R on X x Y and that 
CX and CY are classification schemes defined for X and Y 
respectively. Then the class relation R is defined 

cx R cy.iff for some x and y, members of cx and .Sy, xRy



Convention: We will say that a classification scheme has a property
 

(exclusive, inclusive, full, refinement, extension) if its associated


class system has the property and vice versa,



Example (Mathematical):



Let 	 X= the integers from 1 to 9,


D= 	 {d2, d31
 


where d2(x)="x is divisible by 2"


d3(x)="x is divisible by 3" 

E= 	 {prime, -iprimel


where prime (x)="x is prime, i.e. has no divisors



except 1 and itself"


D= { {2,4,6,8,101, {3,6,91 1


prime ={1,2,3,5,7}


_ wime ={4,6,8,91


E_= -rime, ( prime) I



D is not exclusive or inclusive but is full.


E is inclusive, exclusive, and full.
 


D x E - {d4 prime, d2 -iprime, d3 prime, d3 4 -- prime} 
D x E is a refinement of D and of E. 
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An extension of D is {d2g d3, d2g--d3, -- d2 d3,---id2g--d3,}


This extension is exclusive, inclusive, and full.



THEOREMS:



1. 	 Any classification scheme C can be extended to an exclusive,


inclusive and full classification scheme C'.


Proof: Suppose C = {el,...cnl, Let
C*{l c2 ,... u cl o2q.. cn, ... -c -c ..- n 
C* is exclusive since every class property has at least one com

ponent property which appears both negated and non-negated.


C* is inclusive since every combination of component properties


and their negations is represented and so one must be satisfied by


any member of X. Delete the empty properties from C* to get C'.


For future reference, let us call C* the complete extension of C.



2". If C and D are inclusive and exclusive classification schemes, then


C x D is inclusive and exclusive.


Proof: Consider cl dl, c24 d2 from C x D.


Their mutual exclusion foilows from mutual exclusion of cl and c2


if cl = c2 or the mutual exclusion of dl and d2 if cl=c2. 
Inclusion follows from the fact that for every x there must be 
some c and some d satisfied by x, so-c d is satisfied by x. 

3; 	 If D is inclusive then C x D is a refinement of.C.


Proof: c" _<_c for every c and d,


o = 	 union of aTl cxd such that d is a class of D. 
Therefore the union of all cxd in CxD equals the union of all 

classes of C. 

4. 	 If a classification scheme C is inclusive and exclusive for some


set X, then it is inclusive and exclusive for any subset Y of X.


Proof: Let .CX, CY be the class systems induced by C on X and Y,


respectively. Then every class cy of CY is a subset of a class



cx of CX so CY is exclusive. Every member of Y is a member of X 
and so satisfies some c of C and therefore is a member of some 
cy or CY. 
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Let us now make some observations about the terms and theorems:



a.; We have defined class-defining properties relative to a set X.



These properties are functions and we are intending that the set X be a 

subset of the domains of the properties. That is, we assume the properties



are well-defined for X. Let us call X the domain.



b. The notion of a classification scheme is more general than the
 


notion of class systems. A class system is specific to the reference set



X, but a classification scheme may be defined for many reference sets.



c. We might ask whether there is some kind of "ideal" classification



scheme. If we look at X as the largest set of objects to which some



classification scheme C might ever be applied, then we can observe:



i 	 Full means that every class of C is represented by some member



of X. This would seem to be a good property to have since



otherwise the classification scheme has some superfluous 

qualities. But it might be that the scheme can only be 

devised meaningfully as, say, a product of two other 

classification schemes which just don't completely fit 

together.



ii. Inclusion is certainly desirable since its absence means that 

there are some objects which escape discussion in terms of



the classification schne. On the other hand, Theorem 1



shows that an inconclusive scheme can be extended to be 

inclusive. 

ii. Exclusion really depends on the intended usage of the 

classification scheme and the nature of the class-defining



properties. If the purpose is to obtain a precise characteri

zation of each object with respect to certain features, then



exclusion should be sought, but the properties may be "fuzzy" 

or probabilistic so that exclusion is not meaningful. Or it 

may 	 be highly desirable that the properties not be mutually 

exclusive, e.g. if there is a probability of failure in



determining whether a property is satisfied, but a high overall



probability that every object satisfies some property.





B


Now, 'ifwe look at X another way, as a subset of the set of all objects 

to which C may be applied, full simply means that not every class-defining



property has a representative in X; inclusion is probably still desirable,



but may mean that X should be pre-classified into the subset which satisfy



some property of C, to which C can be applied, and the complementary subset



to which some other classification scheme should be applied; exclusion again



depends 6n the context of usage.



d. The notion of extension and the result of Theorem 1 say that there
 


may be ways of building up good classification schemes from a set of properties



which initially are satisfied by only a few objects in the reference set. That



is, the initial set of properties might be devised by simply generalizing



from a few members of X and then extended to some more comprehensive scheme.



On the other hand, this approach has the deficiency that some objects are



classified only by their failure to have certain properties and this may not 

give a good description of the properties they do have.



e. The product of two classification schemes is seen to be a well-de

fined notion and to preserve certain characteristics of classification schemes. 

Its value comes from the correlations that may be observed from considering 

what properties from two different schemes are satisfied by an object. 

Notice that Theorem 2 does not guarantee that full is preserved by product, 

.since it may not be. Thus an empty class in a product scheme may provide 

useful information.



f. About all we can do with a non-product type of scheme is count



the objects, unless the scheme is further refined.,



g. The notion of refinement leads to the concept of a hierarchy of



classification schemes. We might denote this by



C={cl:Cl,c2:C2,...., cn:Cn}



where ci:Ci means that the classification scheme Ci is well-defined for ci and



refines it. Thus all of the subclassification schemes Ci when applied



to their respective subclasses induce a refinement on C.



h. Finally, the notion expressed by definition 8 "lifts" a relation



between two .(possibly very different) sets to a relation between classification



schemes over these objects. This might be useful if R were interpreted as, 

say, "causes" so that a cause-effect relationship between two objects 

suggests a possible cause-effect relationship for other members of their



containing classes.
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The mathematical definitions given here could stand some polishing and



certainly more theorems could be proved. Our purpose has been to try and



capture-some of the notions which seem to underly classification activities.



We will try to show in the rest of the paper that this endeavor has paid



off by allowing us to make specific analysis of various kinds of classifi

cation schemes. It also can guide us in deciding what we want from classifi


cation schemes and in designing classification schemes. Our claim is that



it is extremely important that classification schemes have a clear structure,
 


which structure should be explicated in terms of our definitions (and 

possibly others) while it is less important that schemes have characteristics 

-such as exclusion, inclusion, and full (or possibly other such characteristics) 

than that it be possible to decide whether the scheme has these 

characteristics. That is, our goal is to discipline our thinking about 

classification by using these mathematically expressed concepts. 

We have been able to characterize classification abstractly.



Certainly, classification is a common activity that is carried on in other 

disciplines, e.g. classification of symptoms according to disease or



classification of crimes for demographic studies. Some collegues in medical



computing pointed me toward a book on "Clustering Algorithms" (Hartigan, (2)) 

with the warning that the study of clustering, which is nearly synonamous with 

classification, is fairly new and has only recently found its way into books.
 


The difference between our needs and this work is that it starts with 

numerical data and measures. Hartigan does list some purposes of 

classifications which are worth reviewing: 

a. to name a class, presumably with some meaningful name 

b. to di lay related objects in such a way that subtle 
differences are more apparent 

c. to summarize so 
by its property 
to abstract 

that it 
rather 

is possible to refer to a class 
than its individual objects, i.e. 

d. to predict since if some objects of a class have a property 
it is reasonable to expect others also to have it 

e. to require explanation since clear-cut and compelling clusters 
require an explanation of their existence and thus promote the 
development of theories 

He also warns that the clustering techniques are not all based on sound 

probability models and that it is often difficult to evaluate the results



and to determine if the clustering is stable. 

There may well be more worthwhile work in the area of pattern recog


nition which I could not find or understand.
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However, I believe the problem of classification of errors is at a more



fundamental level because it is first necessary to classify errors by



their properties (and to define those properties) after which frequencies



can be counted and larger patterns ascertained.





3. ERRORS



Consider 	 the following dictionary definitions (3)



"deviation from accuracy or correctness; a mistake"
error 


synonyms: blunder, slip, oversight



fault -	 "defect or imperfection; a flaw; a failing" 

"error or mistake"



synonyms: failing, foible, weakness, vice



mistake-&rror in action, opinion, or judgment"



Clarification:an error is an unintentional wandering or deviation



from accuracy; a mistake is caused by bad judgment 

or a disregard of rule or principle; a blunder is



a careless, stupid, or gross mistake, suggesting



awkwardness, heedlessness, or ignorance; a si is



usually 	 a minor mistake made through haste or 

carelessness



What is the best word to use when we talk about errors Cor whatever



they are) in software? The word "fault" also has meanings in geology and



electrical engineering that the other terms do not. It seems best to me



to use the work "error" consistently when talking about software, based on 

the fact that errors are made by people with the effect of deviation from



accuracy or correctness. When used in-the context of software, "fault" seems 

-to take on the meanings "foible, failing, vice" more than its other meanings 

which have physical connotations. It also seems appropriate not to spare



the use 	 of the words blunder and slip, when their meanings report exactly 

the reasons for an error; although the attached meanings nay cause ill



feelings, they may be perfectly appropriate. 

The purpose of this discussion on definitions is simply to clarify 

the word I am using and the reasons I am using it. Another reason is to 

bring out what I see to be a critical problem in dicussing errors - the 

communication between people with different backgrounds and therefore 

different vocabularies. To a completely software-oriented person, a fault



is something like the San Andreas and there is nothing physic'al associated



with errors. However, a hardware-oriented person is more accustomed to



dealing with physical devices which do have imperfections and failings and



therefore may try to ascribe the word fault-to certain errors. That is not



to say that software cannot be affected by faults since programs ultimately



reside and are executed on physical devices, but it seems best to restrict



attention separately to software errors, hardware faults, and the interaction



between 	the two.





The 	 following example is worked through to demonstrate some of the



linguistic problems associated with discussing software errors. 

EXAMPLE: 

The 	following program fragment appears in a book on structured 


programming (reference 6 of the appendix) 

1=1; 

DO WHILE (I<=N & KEY --=TAB(I) ); 
I=I+i;



END;



The 	 language is PL/I. Assume that 

a. 	 N,KEY,I, and TAB are declared as integers



b. 	 TAB is an array with one subscript ranging from I to N 

c. 	 N, KEY, and TAB are initialized to positive integers



d. After execution I is compared with N and further action is taken. 

The program fragment linearly searches the "table" TAB for KEY i.e. searching 

starting at 1 until either KEY is found at TAB(I) or I exceeds N,.in 

which case KEY is not in TAB(l to N). DO WHILE is the loop construct of 

FL/I and &,<=,-r= are the logical operators "and", " less- than or equal", 

and"not equal". In PL/I, A & B is defined to be true only when both A and B 

are 	 true.



The program produces interesting results when executed on a large IBM



computer with standard IBM software and four existing PL/I compilers. One



compiler was an optimizer, while the others were intended for various degrees 

of debugging and standard (non-optimized) usage. The test data of interest 

was N=50, TAB(I)=I for I from 1 to N, and KEYl00. The program produced by 

the optimizing compiler ran correctly while the other PL/I compilers terminated 

in DATA INTERRUPTand SUBSCRIPTRANGE errors. The cause for the different 

results for different compilers is the ambiguous definition of & in the PL/I 

language. The optimizing compiler produces "short-circuited" code which 

ceases evaluation of A & B and A is found to be false, while the code
 


produced by the other compilers evaluates both operands. In the above



program, when I reaches N+l, KEY-eTAB (I) is still evaluated with resulting



violation of subscript range. The language is defined so that each of these



compilers is considered to be a correct implementation of the language.



Clearly, there is an error here. Let us consider some of the different



ways we might describe and (subsequently classify) this error:



1. 	 It is a logical (semantic) error



a, The subscript range of TAB is violated
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b. 	 An operand of & is caused to be executed when it


is possibly undefined.



C. 	 The terminating condition of the loop is possibly


undefined.



2. 	 The error is one of "improper termination" i.e. the



program blows up.



3. 	 The error is reported variously in hardware-oriented (DATA



INTERRUPT) and software-oriented (SUBSCRIPTRANGE) terms so 

the error is related to both hardware considerations



(finite storage) and software protection (subscript checking) 

4. 	 The authors' knowledge of PL/I is incomplete in that they



should have been aware of this pitfall in PL/I



5. 	 The authors' knowledge of programming languages in general is



deficient, since this condition is carefully considered in



other languages, e.g. ALGOL W



6. 	 The error is the implementation in PL/I of a multi-exit loop,



one where two or more different actions are 'appropriate



upon 	 termination of the loop. 

7. 	 The error is in the implementation of the well-understood



linear-search algorithm.



8. 	 The error is in the design of the PL/I language-in that the



necessity and order of evaluation of operands of logical



operators is left undefined and therefore is compiler-dependent



9. 	 The error is in reference materials on PL/I (none of the ones I



looked at warns of this possibility)



10. 	 The error is in the authors' publication of a program which had
 


not been tested (since the optimizing compiler is quite expensive,



testing would probably be with one of the other compilers and 

at least two cases, KEY in and not in TAB, would have been run) 

11. 	 The error is in the authors' reasoning in an informal proof (with 

an asserion) that the program is correct; they did not prove



proper termination



12. 	 The error is possibly transient, in the sense that PL/I compilers 

have the option of evaluating superfluous operands and the error 

might appear and disappear with changes in an installation's



PL/I compiler
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To complete the example, consider some of the other ways the linear


search algorithm could be implemented:



(1) 	 DO I=1 TO N WHILE (KEY-7=TAB(I));



END



is another PL/I version recommended by the authors of the above book, but is 

not 	 used because the empty body of a loop disturbs some readers



(2) 	 10 IF (I.LE.N) 20,100



20 'IF (KEY.EQ. TAB(I) ) 200 ,30



30 I=I+l



GO TO 10



100 ...



200 ...



is a 	 FORTRAN type of implementation which explicitly separates the two ways 

of exitting the loop



(3) 	 while I<=N and KEY--,= TAB(I) do 

I :=I+l 

end 

is an ALGOL-like construction where and is defined equivalent to if A then



B else false.



(4) 	 An even better implementation- when there is room is



I=1; 

TAB (N+I)=KEY;



DO WHILE (KEY-=TAB(I));



END



since this implementation requires only one comparison per iteration while



others require two.



The point is that there are many ways of implementing a linear search 

and the language does have an effect. 

Consider the terms used in describing the nature of the error: 

structured programming, subscript range, linear search, table, optimizing 

and debuggingand standard compilers, compiled code, short-circuit,.evaluation,



logical, semantic, undefined, proper termination, blows up, testing, proof,



assertion, transient, algorithm implementation, multi-exit loop, etc. If



we gave this list to practically any person associated with computing, I



doubt that the person would ascribe the same meaning as I did and that many 

terms would be either completely unfamiliar or completely misinterpreted



(or rather interpreted completely different from my intended meaning).
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The error might be surprising to some people and completely natural



to others. For example, a hardware oriented person would probably be 

comfortable with the notion of addressing exceptions but might be surprised



that the & was not defined to cover exactly this situation; a FORTRAN



programmer might be surprised that subscript dhecking was such a big deal;



a language expert might consider the PL/I treatment of & as perfectly



appropriate since optimization is so important to them. In my experience,



a prominent- computer scientist familiar with IBM ways, several graduate 

students, and many programmers of various kinds did not recognize an 

error when the problem was presented as "find the error in this program". 

The first time I encountered the problem was while introducing logical



operators to an introductory programming class. They asked quite naturally



whether the second operand of A&B was evaluated if.A were false. At that moment



I did not know the answer. The only other persons who knew the answers were



a computer center director who had received queries and complaints about



exactly this situation and two persons with extensive experience in PL/I. 

y. point is: how are we ever going to talk about errors when the 

people we must communicate with differ so greatly in their experience and 

technical vocabulary? I have tried to show that this error is not just a 

little PL/I anomaly, but that its discussion brings to bear a vast range of



computing areas: programming knowledge, e.g. search algorithms and how to 

construct multi-exit loops; hardware knowledge, e.g. addressing schemes;



correctness notions, e.g. proper termination; and programming language



knowledge, e.g. the conditional execution of logical operators. In other



words, it is impossible to talk about errors in isolation; the subject of



errors pervades computing. 

Since we have isolated definition as an important problem in 

discussing errors, it might be worth considering briefly definition as a 

general probelm of communication. Reference (4) Words and Ideas: A Handbook 

for College Writing, has a chapter on definition. A formal definition is 

shown to be of the form "x is a member of class y with the differentiating 

characteristics z". For example, "an autobiography is the story of a 

person's life written by himself." Several shortcomings of definitions are 

enumerated: 

a. 

b. 

The defining class 
a general area 
The differentiating 
defined 

may 

ch 

be 

ara 

too inclu 

cteristics 

sive 

may 

to help 

use the 

narrow 

term being 

down 
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c. The differentiating characteristics may not adequately 
differentiate between things that are similar or 
closely related 

d. A definition may be too restrictive 
e. Instead of enumerating characteristics of the term being 

defined, a definition may offer a synonym 
f. A definition may be only a partial description or a 

tangential observation. 

The author of this handbook offers some other advice: (1) Many words



are defined sufficiently by the context of their usage and (2) definitions



depend,for reinforcement on comparison and contrast.



If we accept this brief discussion of definitions as useful, then



we can observe the important points that classification is also definition 

and that definitions are often not adequate to fully explain the meaning 

of a term. 

Consider the following classification of errors that is often seen: 

" An error is either syntactic or logical." 

Given an error that we want to classify, we first have to define 

the terms "syntactic"and"logical". Each has a-large number of meanings in 

common and technical usage. We might try to define the terms separately or 

together. If we observe that the context is classification, then we



can apply our classification formalisation to try and ascertain the meanings.



-It would seem most likely that the persons who proposed this classification



meant it to'be exclusive and inclusive over program errors (whatever they are).



This would mean that syntactic=non-logical and logical=non-syntactic. This.



assumption leaves a choice of terms to define. Syntactic is most often



defined operationally "a syntactic error is one caught by a compiler" using 

the reasoning that compilers do syntactic analysis of programs for the 

purpose of translating the program. Of course, compilers can differ in the 

extent to which they catch errors, e.g. some compilers detect uninitialized 

variables. "Logical" is so vague a term to me that it is meaningless but


"non-syntactic", I understand. 

What we are saying is that the technical terms we use everyday in our 

work are almost completely without standard usage. This means that individuals 

come to understand terms and groups reconcile their differing use of terms by



context and by example. Context can often be in the form of classification 

and indeed that is often the reason why definition becomes necessary. Put



another way, we might expect to get very different answers if we pose the 
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two different questions:



Is x'a y? 

and 

Is x a y or a z? 

Is there some explicit way or aermnnng errorsi it seems to me that the 

answer is "yes there are many formal models of computation or aspects of 

computation, but the complexity of many of these models may make their use 

for definition impossible". For example, there is a formal definition of 

PL/I (5) written in terms of an abstract machine which interprets PL/I 

programs. The abstract machine is nondeterministic state-transition 

oriented with additional features which assist in describing programming 

language concepts, e.g. the environments from which identifiers acquire



values and attributes. But this definition is regarded by many people as



almost impossible to understand. It comes in several volumes which together



are several inches thick. Part of this reflects the nature of the



definitional mechanism and how well it is adapted to express PL/I but it 

also reflects the structure of the language itself, e.g. having to deal with 

numerous special cases which are inconsistently defined. If we were to 

use this definition an the above example, we would probably locate abstract 

machine instructions which show how & is defined and how KEY (I) is evaluated. 

If so, we could say that the error was associated with one or both of these 

instructions. Such a definition would lay out the spectrum of PL/I errors 

but its complexity might be so great that it might be almost impossible to 

trace down a specific error to the place where it is covered.



So, if programming languages do not have formal definitions suitable 

for defining errors, are there at least partial solutions to the definition



problem? I believe so and will illustrate these in several places in section



5. 

Let us come back to the psychology of errors, a subject which simply



cannot be ignored. Software errors are caused by people, but whether they are 

attributed to individuals or not is another matter. -Most classifications have



not detailed individuals. The study to be discussed in the next section



does name names. The point is whether errors can be abstracted completely



away from the people who make them. Most people would want that protection,



but we will argue that it may not be the best idea. If errors are brought 

out into the open, it may well be possible to learn more from them. 
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The study of errors is a strange pursuit. Although errors pervade our 

everyday life, it is hard to find studies which directly attack errors. A



few exceptions are psychologists who study short-term memory or the Freudian



slip and historians who study the mistakes of U.S. presidents. The study



of errors is considered negative, perverted, and pessimistic. I can testify



that the study of errors does affect one psychologically and does affect



one's relations with colleagues. As I became interested in errors and took
 


obvious delight in finding an error which reinforced some theory I had as to



causes or errors, I could see other people "clam up" in fear that. they would 

be the next victim. I was not interested in destroying their self-image and 

I had seen enough errors that one more was not going to adversely affect my 

image of them, but they did not know that. The point is that objective study 

of errors is hard, if not impossible. It is necessary to view errors as a



phenomenon of programming which requires study and while it is necessary to
 


be sensitive to peoples' reactions when threatened by exposure of errors,it



may be healthier to get the errors and the errants out in the open rather



than to cover up the human origin of errors.
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4. ERRORS IN PUBLISHED PAPERS ABOUT PROGRANMING METHODOLOGIES 

The appendix to this report is a paper which is to be published in IEEE 

Transactions on Software Engineering in September, 1976. It enumerates and 

analyzes errors which have occurred in 12 programs or classes of programs in 

18 published papers or unpublished theses. The purpose of the paper was 

to point out these errors and then draw some conclusions about and make some



recommendations for improvement in some of the modern programming methodologies.



In order to fully understand the content of the rest of this section, it will 

be necessary to read the paper, but it should still be possible to under

stand the discussion of classification without reading the paper. We will 

summarize the errors for reference throughout the rest of this section. 

SI, S2, and S3 are errors in specifications, where the specifications do 

not fully capture the informal purpose of the program and therefore 

leave open the possibility that the specifications could be satis

fied by a program which did not do what was actually intended 

S4 is a collection of data structure problems for which adequate 

specification techniques do not exist and therefore arguments 

arise as to whether programs are correct 

TI is a simple program to generate certain types of sequences 

which has a low-level coding error 

T2 is a line formatting program which had numerous errors 

P2 is an improvement of the line formatter with a proof of correctness, 

but the improvement has errors not caught by the proof 

T3 is basically a word counting problem for which the specifications 

are inadequate and there are numerous difficulties with the 

programs. Its history is that authors of one paper detailed how 

their top-down construction failed and the error was detected and 

a follow-up paper by another author systematically constructed

the program but with more errors. 

T4 is a high-level machine language program for sorting which had 

an initialization error 

T5 is the well-known 8-queens program which was incompletely con

structed such that any completion of the program led to 

difficulties 

P1 is the linear search program discussed in the last section 

P3 is an adaptation of a program into a language currently under 

development where the program had an error undetected by a proof 

P4 is an instance where the specifications and program are each 

correct but the refinement process went astray 
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When the study was undertaken, the data on errors consisted simply of



the merge of errors I had found with errors found by my colleague and



co-author, along with a previous write-up of only a few of the errors. It



was clear that some classification scheme was necessary and the most



natural one that sprang to mind was by what the errors had to say about



specifications, systematic program construction, and program proofs. In



terms of our previously discussed classification discipline, this is a
 


rather poor scheme. Errors 83, TI, T3, T4, T5, Pl, P3, P4 deal with one



progra appearing in one paper, while Si, 82, S4, and T3 deal with classes



of programs considered in several papers. S1, 82, and S3 are so similar



they probably should have been treated together. T2 and P2 are separate



papers dealing with the same program and probably should have been
 


classed together. In other words, our domain X was not a consistent set of



objects, such as papers, programs, or kinds of errors. Looking back, I am sure



that this inconsistency was the cause of some of the difficulties we had



writing the paper and that this is a source of confusion to readers, also.
 


Being more precise, our classification scheme was based on the three
 


methodologies: specifications, systematic program construction, and program



proofs. Let us abbreviate these S,T, and P, respectively. The classification



scheme used in the paper uses the class-defining property form "the main point



of error x is with respect to methodology i" where i is one of S,T, P. It



was important that the scheme be full and inclusive since we needed to group



these known errors in some way,-but the classification is artifically



exclusive. If we look at the class-defining properties as instead "x says



something about i" where again i is one of S,T, and P, we get the much better



class system



S: SlS2,S3,S4,T2,T3,P2 

T: Tl,T2,T3,T4,TS,Pl,P3,P4



P: Pl,P2,P3,P4 

This is not exclusive which is good because it hints at the inter-relationships



of the three areas. This suggests that we might want to look at which errors



say something about just one, two of the three, or all three areas. Again



illustrating our classification discipline, we investigate what mathematical



structure answers this type of question. Consider first the product C x C:
 


*{S&S, S&T, S&P, T&S, T&S, T&T, T&P, P&S, P&T,-P&P}



This doesn't work exactly right because SS contains S&T and S&P and we want



to directly construct a class with S&-nT&-7P. Nor does refinement work for



the same reason. The other choice is extension, especially a complete
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extension, where we use a truth table to show the different combinations
 


S T ;P 

TTT 

T T F T2, T3 Note That if P2 and T2 were 

T F T P2 treated as one, this would 

T T F Sl, S2, $3, S4 appear in the first line 

F T T Pl, P3, P4 as the only comprehensive 

F T F TI, T4, T5 error. 

F F T 

F F F
 


By the way, this example suggests another theorem: the complete extension



of an inclusive classification scheme is not full.



A natural question is whether this scheme and the resulting class



system really means anything. My answer is "not much" because in reality



all three areas are intertwined: a systematic construction or a proof is



dependent on specifications and so on. What the class system displays is



more what the papers containing the errors discussed and what we chose to



add or delete from that discussion in our paper. However, it does suggest an



interesting classification of a large set of papers on programming



methodology. I suspect we would find that mostosystematic construction



papers would have no formal specifications while proof papers would and



this raises the question of correctness evaluation of systematically



constructed programs.
 




COULD BE


ERROR CORRECTED BY CHANGING PREVENTED BY PROGRAM STRUCTURING DETECTED BY PROGRAM 

PROOF TESTINGYES NO
SPECS PROGRAM 
 

Sl X 

S2 XI 

$3 x X 

s4 x X 

T2 x x X X x X 

/ 

T3 X X / . . IX x 

T4 X 
/.
/ .XX 

T5 X - - -.N - . 

P2 X X - - - .. I X 

P3 X - X X 

P4 

4 

X 

It 1
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Table 1 shows three other classification schemes for this set of errors



with an x indicating that the class-defining property heading the column is



satisfied by the error. Let us consider the meaning and implication of



these classification schemes in more depth:



a. 	 Supposing we wanted to make a correction for the error, would it 

be in the program or in the specifications? It is hard to have 

definite answers to these questions. The four errors Sl-S4 did 

not appear to affect the program. T2, T3, and P2 show necessary 

corrections in both program and specifications. In fact, the 

specifications are so vaguely stated it is possible to change them 

to cover up the program errors. P4 simply reflects the fact that 

both specifications and. program are correct, but the error was 

in the refinement process. The classification also should show 

that in some articles there are no specifications to be 

corrected. If we were to continue this classification scheme to 

a larger set of errors, we would certainly use the complete 

extension of the class-defining propertie {error in program, 

error in specifications}. Thinking about a classification 

scheme such as this abstractly, apart from this set of errors, we 

might be tempted to dismiss the possibility of an error in 

neither specifications nor program, but error P4 confirms this 

possibility. In other words, this set of errors demonstrates 

that the complete extension is a very reasonable classification
 


scheme.



b. 	 Suppose we ask which errors could be prevented by full use of



program structuring, i.e. the principles of gotoe less ptogramming



and data structuring. T2 and P2 are in both "yes" and "no"



columns because there are several errors in the program. One



of those errors, an infinite loop, could have been prevented by



using a while construct rather than a goto. Error T5 is put in the



"yes" column because the program was never actually completed, but 

if it were structuring might have shown the error. The errors
 


in the "no" column were in programs that were well-structured but



.where it didn't help. But remember that this is a classification of



errors which indicate fallibility of modern programming methodologies.



If we ask which errors could have been prevented by the full use of



program structuring in a wider sense, e.g. since the paths are so



clearly shown in a well-structured program it is possible to check
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out the computations along these paths, then errors T4, P1, 

and P3 should move over into the "yes" column. That is, 

program structuring made these errors so easy to see that they



should have been detected; that they were not is another matter.



c. 	 Consider whether the errors could have been detected by proving



and by testing. The specification errors could be detected by
 


proving because the act of making up assertions in a proof is



like making up specifications for little parts of the program



and the redundancy could find the error. Or it might be that



the proof shows the program could do more than required by the



specifications and therefore inadequacy of the specifications



becomes obvious. However, testing is less likely to show up the



specification errors because the program output would simply be



checked with the specifications, The specifications would



probably not undergo further analysis since the programs are



correct and do satisfy the specifications. All the remaining errors,



except P4, are claimed to be detectable by both proving and



testing. Closer analysis of the errors shows that they are easily
 


detected by testing whereas proofs and systematic constructions



failed. Error P4 is a failure of refinement and of proof but the



proof could have caught the failure in the refinement process.
 


These various classification schemes suggest that there may be a number



of standard classification schemes when dealing with errors in programming



methodologies. The complete extension of the specification-program class


defining properties is a good starting point. Specification errors can be



further refined into consistency, completeness, and definiteness, where our 

observed errors are of completeness and definiteness and consistency refers



to whether the specifications can be satisfied. Top-down, stepwise refine

ment, and systematic construction failures are much harder to classify 

because they are so imprecisely defined. Errors in proofs have a nice 

classification scheme based on the definition of correctness as proper 

termination (which divides into looping and blowing up) and terminating 

with a correct result. Further classification comes from looking at the 

cases where programs and assertions are wrong. One of the purposes of this 

study was to come up with recommendations that would prevent such errors



from re-occurring. The paper shows that we were reasonably successful at this. 

For 	 example, for incompleteness of specifications we devised a test for
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specifications: see if you can find an absurd program which satisfies the



specifications as written but not the intent of the specifications. Another 

was based on the observation that several proof failures dealt with termination, 

which is usually considered quite easy to prove; the recommendation was 

simply not to ignore proof of termination. In several cases, our recommenda,


tions are on the order of "beware, here is a dangerous spot where the



necessary formal techniques have not yet been developed, therefore be 

especia'lly careful in your informal work". - In other words, by looking 

closely at individual errors, we claim that we are able to produce a



sufficiently deep level of understanding of the errors and sufficiently precise 

recommendations that such errors can be avoided in the future by us, by



other authors, by reviewers, and by programmers. The purpose of this 

comment is to contrast the type of gains made by studying individual 

errors as opposed to collection of errors. Our conclusion is that the study



of individual errors produces immediate gains in understanding and recommenda

tions. Nevertheless, the observation of clusters of errors of the same type



reinforces the value of the recommendations and increases, the insight.



Finally, we must try to draw some higher level conclusions from this



study. An obvious question is: Are these errors typical? The errors
 


were made largely by academics using the traditional mode of academic



publishing and in articles that were largely pedagogical or experimental



in nature. There is no denying that pressure on academics to publish 

creates haste and mistakes; the same goes for the reviewers of these 

articles. But still, these papers have been read by non-academic researchers



and developers and probably by a substantial number of programmers. Few 

of these errors were known before this study and there are no published 

corrections either by the authors or by readers writing in to the journals.



So we must conclude- that the errors are not just "academic bungling", that 

lots of different kinds of people were "taken in" by the errors. We



conclude that there must be some kind of mystique which surrounds these 

articles that lets the errors slip by unnoticed and that our paper should 

certainly alter, if not destroy, that mystique. However, we must also



conclude that if these errors were made in programs which were intended to 

be used, not just to illustrate a methodology, they would have been caught



by testing. 

- It is also interesting to study the reactions of other readers of this 

paper with respect to the psychology of errors. One prominent computer scientist 
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described this study as "morbid, dissecting cadavers rather than devising



new and better treatments", but we claim that pathological study does lead to



positive measures. Another responded that "this study shows the goofs



of the 'best and the brightest' and if that doesn't demonstrate the



fallibility of human nature, nothing will." Of course, errors by highly



respected individuals may discourage more ordinary programmers from attempt


ing to use the methodologies, but it may also challenge them to top the



exp&rts and dispell the stigma of making mistakes. Yet another prominent



computer scientist replied simply that "the price of carelessness is



*embarassment." The only comparable study is that of Kernighan and Plauger



in The Elements of Programming Style (6) where they show errors and



improvements in programs published in elementary programming textbooks.



They chose to protect the anonymity of the authors of those textbooks.



That was not possible for us, since it was so important that the errors be



seen in the contexts of a single article and of developing methodologies.



Overall .this study has not left me pessimistic. It only confirms



my suspicion that programming is very hard and that this difficulty leads



us to grasp at straws. The study reveals many errors in proofs, but that



does-not detract from proving as a methodology since testing is also



fallible, but its ways of failing have barely been studied. Overall,



there are signs of improvement in the design and construction of good



programs, but freedom from error is not yet possible. Further study of



the prevention-detection aspects of the methodologies is called for and we



propose such a study in a later section.
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5. EXAMPLES OF CLASSIFICATION FROM THE LITERATURE



There have been several previous studies of errors which required



classification or which shed light on the nature of errors. Our purpose



in this section is to analyze these studies based on the previous



discussions of classification and of errors.



"A study of high-level language features" (2) is an attempt to



identify language features and then evaluate them in the context of the 

design of tactical languages for the Army. The design goals are relevant 

to any language which requires capabilities for numerical calculations, 

process handling, and input/output. A language feature is considered to be 

a very small facet of a language. In this study there are over 1100 

features grouped into declaration and storage management, scalar data 

types and operations, aggregate data types and operations, control structure, 

and program development aids. The features are evaluated on factors 

describing properties of programs (efficiency, reliability, understandability, 

modifiability, reusability, brevity), factors describing properties of 

notations (naturalness, uniformity, brevity, usability), and factors 

characterizing a problem domain (application dependence). Each of the 

factors is further subdivided until there are a total of 33 factors for 

evaluation of the 1100 features. 

With respect to reliability, the factors are error prevention, error 

detection (compile-time), testability (run-time error detection), and 

clerical error reducti6n. Several examples of the types of errors which can 

be prevented, detected, and reduced are given. We have seen some examples 

of our own in sections 3 and j. The PL/I & operator might be evaluated 

negatively toward error prevention and detection. The error T3 in section 

, occurs in the comparison of two sequences A and B for inequality, i.e. 

difference in at least one element. The error occurred while setting up 

a loop for this comparison in an ALGOL-like language. In another language, 

APL, this operation would be written as a single expression, V/AB; not 

requiring a loop and thus APL might be said to prevent that error. 

There are several points about this study which are relevant to our



purposes:.



1. It is an example of a monstrous classification problem, classifying



language features into groups, evaluation factors into groups, and then the



evaluation for each factor and feature. The evaluation chart is quite



sparse, i.e. the authors were able to evaluate only a small number of
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selected features within the scope of their project.



2. It provides a very good framework for a more extensive study of just



the reliability factors of languages. For example, given a specific language



with the task of evaluating its influence on errors, we might take from the



list of 1100 features those which apply to the language. Using the principles



of evaluation and the factors which had already been evaluated, we might



perform a thorough analysis of each of the features in the language at hand.



For those that rated negatively, i.e. did not facilitate prevention or



detection of errors, we might forbid their use or devise specific techniques



against the associated errors, e.g. conventions or restrictions on their use,



specific testing or reading procedures. For features rated positively, we



might encourage their use and make sure their error prevention and detection



capabilities are used to the fullest. The evaluations however might be somewhat
 


subjective, but this only suggests that the.positive and negative subjective



evaluations be taken as hypotheses for experiments and data collection as to



how the language is used and what errors do occur.



3. Given the complete rating of features in a language, it might be



possible to calculate a reliability figure for programs written in the



language, e.g. based on the number of poorly rated factors used in the program.



Intuitively, a program which uses only good features seems more likely to be



reliable than one which uses many poor features, at least with respect to



errors associated with language features. But of course this leaves out



the measures that might be taken to offset the effects of poor features



and the possibility that good features are not fully utilized. In addition,



it seems that if the poor features are known it should be possible to eliminate



all errors related to the language.
 


4. One set of features omitted from the list of 1100 were for process



handling. A process is loosely defined as a set of actions on an environment,
 


what is often called a task. The implication is that computer systems are,



composed of many tasks, with the concomitant problems of-activation and



deactivation, synchronization, and protection. Relatively little is provided



by languages for handling processes and therefore an appendix is devoted to



discussing functional requirements for process handling language features.



"An experimental analysis of program verification methods" (8) is an



elaborate experiment carried out as a Ph.D. dissertation. The goal was to



compare three verification methods



a.reading-a disciplined and structured desk check
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b. specification testing-devising and executing test cases


from specifications without access to source code



c. mixed testing-examination of the code and submission of


test cases for execution



on three types of programs (each a few hundred lines long and somewhat complex)



which contained known errors under conditions which were better than those



usually experienced during verification (e.g. fast turn-around time, other



good working conditions, and some training before starting). The results



were that specification and mixed testing were about equally effective)with
 


reading significantly inferior to both. None of the methods found much



better than half the errors. Other results were that verification ability



correlated highest with experience and training in programming, the distri


bution of time to detect the next error was uniform, and the requirement to
 


execute every path was of little help in detecting errors. Some effort was



made to determine a classification of errors by methods which worked best, but



these results were rather vague.



There are several points about this study relevant to our purposes:



a. The methodology for experimenting with programming methodologies is



highly complex and is not yet well developed. This study is a prototype for



other studies.



b. It would be very interesting to perform a classification analysis



on the errors used in these programs. The errors are generally well-described



and understandable. I made a stab at this, but due to the lack of fundamental



understanding of the task and of time, I did not get anywhere. The raw data



from this study, i.e. the results of all the verification sessions, were



preserved and it is possible that more insight could be gained into the nature



of the errors detected and undetected. On the other hand, the relatively poor



performance suggests that further experiments could be designed to try and



improve the results of the first experiment.



c. If we take the experimental results seriously, it suggests that



verification, or at least these verification methods or the conditions for



verification, simply did not work well. Therefore, verification cannot be



relied upon to detect and remove errors; errors must be prevented.



"A measure to support calibration and balancing of the effectiveness of



software engineering tools and techniques" (9) is an attempt to evaluate a





30



list of about 60 existing tools and techniques as to their effectiveness on



a long list of errors which occur during software development. A basic



assumption is that the absence of a function is an important as the existence



of an incorrect function. The overall classification scheme is requirements,



design (subdivided into processing, data base, interface), cohstruction



(subdivided into processing, data base, interface, general), verification,



and specification. Tools and techniques are classified as to their role in



test and design. An assessment of effectiveness (high, medium, low) produces a



somewhat sparse product classification. A little model for judging effective


-ness is developed, but the model runs into difficulty when tools and



techniques are not independent, i.e. exclusivity is a requirement.



There are several points of interest for our purposes:



a. The lists of tools and techniques is comprehensive and their



effectiveness ratings provide hypotheses for further study.



b. The author distinguishes faults (causes) from errors (effects) and



uses faults as the basis for his classification scheme.



c. The classification scheme, when examined in detail, illustrates all



the difficulties of classification and definition previously discussed.



For example,



i.. The specificity of the fault descriptions ranges from "erroneous data



accessing" and "incorrect resource allocation" to "recovery-procedures are not



implemented or are inadequate for momentary, correctable errors" and "routines



are not reentrant where usage so requires" under processing of design faults.



What is needed is further classification in order to make a list of 18



processing design faults more comprehensible.



ii.. Many of the faults are highly interdependent. For example, "require


ments missing" and lots of other aspects of requirements which are missing or



inadequate all intuitively imply another class.the separate fault "requirements



not testable/verifiable". As mentioned above, the need for exclusivity is dependent



on the purpose of classification scheme. In this case, it appears that lack



of exclusivity is a symptom of lack of structure of the classification scheme,



that in fact the scheme should be given hierarchically. I am unable to



revise the classification scheme into a proper hierarchy because the terms are



not sufficiently concrete for me.





iii. 	 Consider another classification scheme for data base design faults:



erroneous units
 


parameters in incorrect format, order, or location



erroneous values



duplicate data variables



missing data variables/values



If we isolate the terms used, we find: data variables, values (or is it



data values), parameters, units, erroneous, and missing.



What does the author mean by parameters and data variables and values?



These all seem like the same sort of thing. And there are several qualities



of these things; missing, erroneous, misrepresented, and misplaced. All of



these terms suggest that it might be possible to build a little formal model



which clarifies what is going on. Suppose we consider the references to the 

data base as some sequence, rl, r2, ... What can go wrong? The value obtained 

from the data base on reference ri might be erroneous because the wrong value 

was placed in the data base or the value that was placed there used a different



unit than that assumed in the context of the reference or the reference might



somehow be going to the wrong place. The wrong value might become duplicated



from another place. References might be made in the wrong order. I have



difficulty building such a model, but it seems to me that people familiar with



the context should be able to build such a small model and define their terms



and the errors more concretely. That is, if we consider the problem of giving



meaning to the class-defining properties, we can do so by appeal to a formal



model as well as by context in a classification scheme.



The point is that the classification scheme appears very poorly structured
 


and yet it seems that the structure can be assigned with further analysis of



the class-defining properties., Another point is the way the classification



scheme for faults was used. Several experts-were asked to rate the effectiveness



of tools and techniques on the faults. How did those experts understand the



faults? If the classffication scheme were more hierarchically organized could



more have been said by the experts? How valid are the ratings the experts



did give?



Studies like this one appear to me to-be useful, but when one looks at



the bottom line, how the errors are described, the value seems to disappear.



The absence of a classification discipline and the imprecision of the terms





32



makes the whole effort a rather mysterious process. That is not to say that
 


the people involved in the study did not know what they were doing, but



only that an outsider does not know'what they were doing. I am simply trying



to point out why I have trouble understanding the study and what might have



been some of the problems they encountered during the study. If error



classification studies are ever to be valuable, they must be intelligible to a wide
 


range of people and they must be reproducable. The methodology used in the



study may be transferrable only down to the point where errors are actually



discussed which means that the results might not be reproducible.



We can analyze other classifications from other papers in similar fashion,



but-before doing so, it is worth re-examining our analysis questions:



What is the structure of the classification scheme in terms of the



section 2 of the present paper? Is there any clear structure? Can the structure



be improved?



Do we understand each of the class-defining properties? If so, how? By



context in the classification scheme, independent knowledge, context in the
 


problem area, example? Given an error which is possible in the context of the
 


known problem area, can we see where to place it in the classification scheme?



Can we go down the classification scheme and concoct errors which might fall



into each of the classes? That is, can we decide whether the classification



scheme has exclusivity, inclusivity, fullness?



What is the purpose of the classification scheme? How-did that influence



it? Was there some hypothesis to be proved? What characteristics should the



classification scheme have?



Another example of a classification scheme appears in "Toward a theory



of test data selection". (10) The purpose of classification is to get at the



types of errors that testing must deal with. Consider the subclassification of



control flow errors:



missing control flow paths



inappropriate path selection



inappropriate or missing action



If we dissect these terms, we find the following components: decisions



(selections) and actions, missing and wrong (inappropriate). This suggests



a little model based on the idea of a path of a program, viewed as a



sequence of decisions and actions with two things going wrong, missing
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and wrong. We might represent this formally by the following table



Action Decision



Missing PI,P2/P1,a,P2 Pl,P2/P1,a,P3



Wrong Pl,al,P2/Pl,a2,P2 Pl,dl,P2/Bl,d2,P3



where P, a, d denote paths, actions, and decisions and A/B means that A and



B show the form of the erroneous and correct paths.



We can go further with this model. We can add the idea of a state vector



and a state-transition function and look at the series of state vectors associated



with a computation, identifying errors as places where the state vector contains



wrong values. Or we can define a computation function Comp (program statement,



state vector) which shows how each -program statement defines a new state



vector. Then we can isolate points in the trace of Comp which correspond to



different types of errors. At another level, we can look at the program text



and correlate errors with the type of correction to be made to the text, e.g.



inserting statements for missing actions, changing decisions in if-then-else



and while statements for wrong decisions, etc. Of course, there are a vast



number-of models of computation more specific than these. It would be



interesting to interject an error aspect, i.e. to define what is meant by



error in each of these models and then see how much- is said.



The classification schemes Used in "Some experi'ence with automated aids



to the design of large-scale reliable software" (11) are generally well


structured. For example, Table 1 uses "design" and "coding" a good definition



of "design" and "coding" with a good definition of "design" so that "coding" is



implicitly defined as "non-design." Figure 2 uses a product kind of classification



design, x before acceptance testing,


coding during or after acceptance testing



Table 2 enumerates some error categories which are applied to both design



and coding errors with a classification into mostly one or the other. However,



the meaning of the class-defining properties is unclear, because the error



categories are so vastly different. A subclassification is apparent: interface



(user, hardware, data base, software), device handling (tape, disk, card),
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communication (output, error message), and computation (computation, bit



manipulation, indexing and subscripting, iterative procedure). Again these



are vaguely defined terms but some fnore thought might clarify their meaning.



The table must have a typographical error or the scheme is not inclusive



since the number of errors adds up to 220 but the total number of errors under



consideration is 224. Table 3 is a gross classification of error causes with



examples which help to clarify the meaning of the terms and tha nature of the



causes. It is a product type of classification. Once again in table 4, the



difficulty in defining errors is apparent. It looks like a quadruple product



{error typel x {software phasel x {origin-found} x {applicable tools} which



is useful but somewhat hard to decipher. For the error types, it looks like



there is a hierarchical classification something like behavior (first, later



cards processed right), relation to storage (internal, mass), data (range,



units, accuracy (range, units, values), program action (accept, reject)).



It seems to me that it should be possible to devise a clear set of terms and



a comprehensive classification scheme for errors like these. The data base



interface classification scheme discussed earlier suggests this to be common



and yet troublesome to discuss.



"An analysis of errors and their causes in system programs" (12) is an



interesting study; One of the first points of interest is the remark that



"although only the history of a single error (one discussed under T2 in the



appendix) is described, this type of investigation promises to be the most



successful." That may be interpreted as "gross collections of errors will be



less successful" or "investigations of single errors will provide the most



information". Another interesting point is the common-sense approach to



reporting errors: Who, Where, When, Why, and How. Again it is impossible to



report without classification. Who and When require information like



origination, propagation and detection of errors. Where involves classifi


cation into modules and statements. What is the general problem of error



classification seen so often. Why requires classifying factors, and How gets



into prevention and detection methods. The overall classification scheme is
I 

well-structured but again at the lowest level, the descriptions of the errors,



it becomes difficult both to understand the class-defining properties and to



determine exclusivity and inclusivity. For several parts of the classification



scheme, a little model of the machine language level with precise usage of terms



like addressing- would help.
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"Types, distribution, and test and correction times for programming errors"



(13) relates an extensive data collection effort. Again it is interesting to



look at :the wide range of descriptions of errors in Figure 3. One should
 


ask what it takes to use the TR/CR forms. Note that these are constructed to



be inclusive by using an "other" category and presumably only one box is



expected to be checked. Presumably the set of terms was predefined and maybe



illustrated by examples so that the originators could check the right boxes.



In summary, I have been trying to bring out some of the problems in



previous classification studies by use of the classification discipline and



to illustrate how that discipline can be applied. Another point is the difficulty



of definition and how that seems to be either unmastered or sometimes tolerated by



the use of context 'and classification assumptions. Finally, I have suggested



that there are several places where the definition and classification problems might



yield the building of small formal models.



This discussion is not intended to criticize authors of the papers for



something that they did not intend to do. Most of the studies are tentative



and the classification schemes were never intended to live up to the standards



we have applied to them. Nevertheless, I claim that had a classification discipline



been followed and-had more attention been paid to definitions, the results



might have been stronger. Viewed as experiments, we would like the reporting



to be such that the conclusions can be evaluated for how well they follow from



the data, but when we get down to the lowest level of defining errors we find



the imprecision troublesome. We would also like these experiments to be



repeatable, and this seems unlikely unless the definition problem is solved and



the same classification schemes apply in different situations. The class


defining properties were constructed bottom-up by generalizing from instances



of errors. My claim is that this doesn't work since the classification



schemes are ill-defined and unconvincing.
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6. TWO ABORTED STUDIES OF ERRORS IN SPECIFIC TASKS



As mentioned earlier, the proposed research included studies of the errors



in two specific tasks: synchronization of processes and queue data structure



management. These studies were not very successful except in causing us to



confront the difficulty of the problem and back off to attack the basic



principles of classification and definition which are discussed in the rest of



the paper. However, there are some more observations which are worth con

sidering.: 

a. A process is a sequence of operations carried out one at a time. 

Processes may be executed concurrently in a computing system, i.e. their 

executions may overlap in time. Concurrent processes introduce a host of 

problems: synchronization, whenever two process interact; deadlock,when two 

processes are waiting indefinitely for an event which can never occur; 

scheduling, so that work gets done in an orderly fashion; and protection of 

data of one process from the unrequired operations of another.



This is a subject where errors were recognized early as being of critical 

importance: the difficulty of reproducing time-dependent errors made testing as 

a means of verification unquestionably impossible. As a result of the error 

difficulty and the overall fascinating complexity of the subject, there is a 

vast amount of literature, perhaps best summarized in Brinch-Hansen (16 ). 

There is considerable work on language mechanisms to -facilitate e.rror-prevention 

and detection and mechanisms whose behavior can be provably determined and there

fore can be adopted as conventions. 

At an abstract level, these problems are well handled, although it is not 

yet totally understood. While errors may be well understood abstractly, there 

are few examples of actual errors in the literature and this tends to leave one 

hand hanging in limbo unless one has studied the problem for years and 

developed the necessary intuition. I have found this subject particularly difficult 

to understand and could not find a point at which to attack the problem. It 

seems that there is something different about this problem than just its 

complexity. Since the errors are so important, the biggest ammunition has been 

trained on them and, at least abstractly, adequate mechanisms have been devised 

for preventing these errors. At least, the difficulty is well enough recognized 

that extreme care is taken. However, that is not to say that the mechanisms are 

easy to use or-that they are used reliably in practice. It is at this-concrete,



mundane level that there is no data on errors: What mistakes do programmers 

usually make? I believe that this is a fruitful area for study, but that it must 

be undertaken by people more experienced in the area.
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b. A queue is a data structure which has a first-in-first-out behavior, (17).



The usual operations are insertion and removal and, perhaps scanning the elements



stored in the queue. For example, letting I n denote "insert n into the queue"



and R mean "remove the next from the queue," with the following sequence of



operations, the queue would have the contents:



Queue Element removed



I i 1 

R Empty 1 

R Error 

12 2 

1 3 2,3 

R 3 2 

1 4 3,4 

1 5 3,4,5 

R 4,5 3 

The programs are short and easily understood. gossible implementations
 


are (1) store the queue sequentially in a fixed sequence of locations and treat



these circularly, i.e. let the queue wrap around from the end; (2)Seqi.ntially as



in (1), except let the queue drift up to the end of storage, then move it back



to the front section; and (3) link the elements through some free area of



storage. In any case, one constant problem is finite storage, although in 

(1)-and (2) the sizes of the queues are fixed and in (3)they vary with the



amount of storage available. There are phenomena which we might call "overflow",



too many elements tried to put in the queue, and "underflow", calling for



removal when there are no elements in the queue. This suggests a classification



of calls on the queue handler by the program using



CI = (normal, underflow, overflow)



Underflow and overflow might be considered as errors, not of the queue handler,



-but of the calling program. However, there are possible errors by the queue



handler associated with calls. Suppose we construct a product kind of classifi


cation with the class-defining property:"the call is i, but the queue handler



reports J" where i and j are from Cl. Now we have a precise description of



some of the possible deviations from accuracy. Another classification scheme



applies to the removed elements (call this the output) relative to the



inserted elements (call this the input).



c="output elements are the same as input elements."



c defines errors where somehow the queue handler either inputs or outputs





wrong. c may be further refined into where elements are removed are



{lost, -duplicated, or reordered}



in the output.



What are we defining here? Our reference sets are calls and input-output 

lists of elements and we are using the classification discipline to generate 

classification schemes which we then re-interpret in terms of errors. So 

what we are doing is focusing on aspects of behavior and then working into 

defining classes of errors. Now, suppose we look at an actual program which 

we believe to be correct and inject errors into it. We might do so by systematically 

changing operators, say + to -, or identifier names; deleting statements, or 

otherwise altering the flow of control; and modifying various language aspects, 

such as changing declarations from integer to real. We might want to see how 

-the effects of each of these changes can be classified according to the above. 

We might ask: does the error manifest itself as an "incorrect report to a class



call" or as "an incorrect output" or "both" or "neither"? Neither" is quite 

possible since the program is likely to blow up. "Both" is alsopossible. One



problem is whether the effects are measured relative to a fixed input stream or



to any conceivable input stream. The latter is of more interest, but the former



can be experimented with. We can go on classifying into immediate vs. delayed



effects relative to the pattern of calls on the queue handler, detection by
 


testing and proof, and prevention by language features and conventions.



Our initial studies of this problem task were unsuccessful since we had
 


only the vaguest notion of the dlassification task and because error injection



was unenlightening. The programs are so simple and well understood that errors



were silly and we had no trouble devising assertions and test cases which would



immediately detect the errors. Furthermore, the injection of errors is



very tedious. However, that is not to say that any real insight was gained. We



had only the grossest classification scheme and little understanding as to why 

errors manifested certain behavior or why they were so easily detected. We



also had difficulty finding "devious" errors, ones that would be hard to



detect and prevent.



After-development of the classification discipline, it now seems like a



more feasible project to study the errors that could be injected into this



program. However, such a project would still take several days of work. But



its purpose is unclear, since natural errors are so much more interesting



than artifical ones. We did not have the time or sufficiently defined purpose



to carry on the study after development of the classification discipline.
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7. 	 SUMMARY



We took apart the problem of classification of errors. Looking at



classification abstractly, we devised some mathematical definitions and



operations which seemed to characterize the intuition used in classification



activities. We then turned to the subject of errors and showed that our



vocabulary is all-important and that it is very difficult to express what we



need 	 to say about errors. A kind of circularity arose: to discuss errors



we needed a classification scheme but to develop a classification scheme



we needed definitions of errors. We tried to find our way out of this cir


cularity by considering definitions of errors relative to formal models and



definition of errors by adjustment of their meanings to fit classification



notions, i.e. by context.



A number of examples of classifications were studied. The study of



observed errors on the fallibility of modern programming methodologies



suffered from an inconsistent error domain which caused several types of



classification schemes to be difficult to construct and to interpret.



Several papers from the literature had classification schemes with deficiencies



which we could diagnose in terms of our classification discipline. The



overall pattern there seems to be: given errors u,v,w,x,y,z, generalize to
 


say that u,v,w are a's; x,y,z are b's; and a's and b's are c's. At the
 


top-level, we may agree that a's and b's are c's but a and b describe different



kinds of properties of the errors. That is, the criteria for classifying the



errors, as expressed by the class-defining properties, are based on different



facets of the errors. This suggests that the errors could be better classified,
 


but for the purposes of the studies, it was sufficient to achieve classification



from the c level up. Our concern was the intelligibility and reproducability.



of the studies when the class-defining properties are ill-defined.



The problem when considering an individual error is that we want to say 

Iterror x is an a,b,c, ... " where a,b,c express specific aspects of different 

facets of x. But then we need a classification of,the facets and a further



classification of the aspects and of course this is a classification problem.



In our &lassification study the central point is seen as the class


defining property. In our error study, this translates into defining errors.



We claim that the problem must be approached top-down by defining terms



within the context of classification, bottom-up by testing the terms on



example errors and by generalization, and sideways by building formal models



which more precisely define the terms.
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8. 	 RECOMMENDATIONS



a.; Explore the classification terminology and discipline further.



It requires polishing of terminology and there are certainly more definitions



and theorems which would be useful. The classification concepts are really
 


quite simple and therefore it should be easy to teach them with some



examples appropriate to the students at hand. However, its simplicity



could cause the whole subject to be ignored. The terms and theorems are so



obviously just a formalization of intuition and normal practice that it is



tempting to simply bypass them and go on with normal practice. However, our



studies of the literature have shown that, in fact, classifications often



turn 	 out confused, perhaps because intuition gets overwhelmed with detail.



Our claim is that the mathematical formalization of intuition leads to a



discipline which thereafter guides intuition to better and more easily



achieve structures. The classification material may be further developed in



two ways. One is simply abstractly building on what is there and the other



is by applying it to several examples and extending and adjusting the definitions



and theorems until it fully explains these examples.



b. .Develop criteria for good classification schemes.



We have put forth two criteria



I. A classification scheme should have a clean, immediately discernible



structure expressible in our classification terminology.



II. It should be decidable whether a classification scheme has character


istics such as exclusivity, inclusivity, fullness.



We have also claimed that whether a classification scheme has these properties



depends on its intended use. Therefore, there should be additional



criteria specialized to usage.



c. Develop an exemplary classification scheme.



The size of the classification scheme need not be large. Its purpose is to



show the difficulties and benefits of a good scheme. We have suggested something



like the data accessing which appeared in two classification schemes discussed
 


in section 5. The idea is to get at all the different things that can go



wrong whenever a program calls for data, in both device-independent and



,dependent 	 terms. Another possibility is addressing errors at the machine



language level. Both of these can be tied to little formal models which should



be developed to test out and refine the classification.
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d. Develop an exemplary set of errors,



Explore possible statements about the errors: what should be said and how it



should be said. Experiment with different individuals with different orientations



and how they percieve and express the errors and how they understand and



react to perceptions and expressions of other orientations. The purpose would



be to obtain a complete analysis of a set of errors.



e, Decide whether to pursue errors individually or in collections.



It may well be more fruitful, at least initially, to study errors individually.



For example, suppose we take a single error and trace back all the ways it



could have been prevented and can be detected. This might well provide a



large number of specific recommendations that could then be generalized as the



same process is repeated with other errors. The alternative approach of



considering collections of errors might be less fruitful simply because there



is too much to consider at one time and/or classification does not help. In



other words, iterating on a set of data may be better than handling them in



parallel. However, the collection of error data probably would point to



the best errors to start with.



f. 	 If error data is going to be collected, this should be done under
 


some firm hypothesis. (15)



The problem is that there -is so-much data that can possibly be collected



that it is necessary to select in some fashion. A good selection procedure is



to adopt a relevant hypothesis. For example, Endres (12) observes that



many errors occur in "understanding the problem" which suggests collecting data



which traces all errors sufficiently far back that it can be determined whether



they are of this nature and also suggests predefining classifications under



this general rubric so that the errors can be meaningfully classified as they



occur. As another example, there is a vague feeling that structured programming



prevents errors, but there is little real data on what types of errors are



prevented. Perhaps the reason errors are prevented, if they are, has nothing



to do with the actual techniques, but instead is due to increased carefulness



or improved expectations. This might lead to collection of error data



which asks about the psychological reactions of persons associated with-the



error to it, as well as trying to pin down the exact cause of the error.



g. Interject error processes into formal models or re-examine formal



models from the standpoint of errors.



We mentioned the PL/I formal definition in section 4. While this formal



model of PL/I program execution is probably too complex, it might be



interesting to enumerate all it says about errors. We have also suggested that
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it might be possible, and it certainly would be usefulto build some small



specialized models of situations where errors occur, e.g, data accessing.



The goat would be to abstract away from languages, devices, and problems, to



get at the nature of data accessing errors and obtain a general classification.



That model might then be specialized for languages, devices and problems with



added clarity.



h. Construct probabilistic models based on the classification mathematics.



Section 2 provides a way of classifying classification schemes. This seems
 


like a good place to start building up a probabilistic structure. What type



of model corresponds to each kind of classification scheme? What kinds of



questions does each scheme suggest and answer? How much does the model depend



on the class-defining properties and their characteristics?



What kinds of schemes are best for developing probabilistic structures?



It seems unlikely that reliability assessment methods can ever be devised



unless they have some abstract structure related to the classification



structure.



i. 'Continue some of the studies described in section 5.



We suggested that some of the classifications given there could be redone using



our classification discipline. There are more specific continuations.



I. Helzel's errors could be classified and his data used to explore them.
 


II. The language features in the Goodenough study could be specialized to
 


a single language, evaluated, and studied with respect to actual



errors.



III. 	 The effectiveness of tools and techniques is a promising way of



getting at immediate gains. A much simpler study might be to



propose three modes of verification:



reading - superficial analysis for the purpose of finding



gross errors or inconsistencies,



testing-case analysis with detailed exploration at the case



level



proving-statement of conjectures followed by deductive reasoning,
 


either mathematical or argumentative



and three types of programming activities
 


specification, design, and construction of programs



and apply all three modes to all three activities, trying to determine what



types of errors are differently detected. Another question is what type of



errors are undetected in one activity, but detected by later activities



and how.





43



However, remarkably little is known about how well testing works for



different types of errors. Both formal and experimental analyses are called



for. A few examples are seen in references (10) and (14). It would seem best



to cast a critical eye on the most prevalent activity before looking at the others.
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ABSTRACT



Errors, inconsistencies, or confusing points are noted in a variety
 


of published algorithms, many of which are being used as examples in 

formulating or teaching principles of such modern programming methodo

logies as formal specification, systematic construction, and correctness



proving. Common properties of these points of contention are abstracted.



These properties are then used to pinpoint possible causes.of the errors



and to formulate general guidelines which might help to avoid future



errors. The comm6n characteristic of mathematical rigor and reasoning in



these examples is noted, leading to some discussion about fallibility in 

mathematics, and its relationship to fallibility in these ljrogramming



methodologies. The overriding goal is to cast a more realistic perspective 

on the methodologies, particularly with respect to older methodologies,


such as testing, and to provide constructive recommendations for their 

improvement. 

http:causes.of


1. INTRODUCTION 

:It is well-known that programming is an error-prone process. As a



result, the last decade has seen the development of new programming 

methodologies aimed at reducing the frequency and severity of errors dur


ing the progranming process. Briefly, we might label some of these newer 

methbodologies: 

Formal specification - Expression of program requirements in 

unambiguous and complete terms; 

Program structuring - Use of a restricted set of reliable con

trol and data structures; 

Systematic construction - Development of programs through 

successive refinements where correctness is argued infor

mally based on the simplicity of each step; 

Program proving - Development and use of mathematical systems 

for presenting proofs of program correctness. 

Common to all these methodologies is the application of mathematical 

reasoning to programming, the goal being a sufficiently high level of 

mathematical rigor so that errors will occur infrequently and be easily 

detected when they do occur.



In this paper, we show that the new programming methodologies are 

still quite fallible. Our approach is, in part, to point out errors,



inconsistencies, or confusing points in a variety of published algorithms. 

Many of these algorithms are being used as examples in teaching new pro

gramming methodologies, and it is important for such points of conten

tion to be discussed openly. We go beyond merely listing the points of



contention by trying to abstract common properties of them. These common



properties are used to help us conjecture some "reasons" for the errors 
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and to assist us in formulating general guidelines which might pre


vent reoccurrence of the errors. Our goal is to cast a more realistic



perspective on the methodologies and to make constructive recommenda


tions to improve them.



The errors are classified as:



l' Specification Errors, where something is wrong with the



specifications for a program, making the programming



and verification process fallacious;



2. Systematic Construction Errors, where errqrs contaminate
 


the process by which a program is developed and the
 


resulting programs are incorrect;



3. Proved Program Errors, where errors remain undetected



even though a "proof" has been given.



This tripartite categorization is largely a matter of convenience



in exposition and should not be construed too rigidly. Several of the



errors are, in fact, discussed in relation to more than one of the above



categories.



In the next three sections the error categories are discussed



individually. Each section begins with a short introduction, followed



by a listing of the points of contention, followed by a conclusion which



generalizes over the errors of each class and provides recommendations



for preventing -nd detecting errors of-the class. Each point of conten


tion is presented as a miniature case study, in which the following are



described: the context of the algorithm in.relation to the publication;



a description of the algorithm and its point of contention; and an analy


sis. Section 5 presents conclusions and recommendations generalized from



the three error classes. In Section 6, we discuss some relations between



fallibility in programming methodologies and fallibility in mathematics.



The errors are listed in a Table for reference.
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We realize that this paper deals with a sensitive subject and that 

the material can be interpreted in many ways. Therefore, we wish to pre

sent our views of the subject and to repeat our purpose: 

1. We did not search for these errors; once we became aware of 

the potential for error and developed some intuition about causes 

and effects of errors, the observations appeared naturally in the



,course of our normal reading and research. This is discouraging



in that it signals a lack of awareness and/or critical reading 

on the part of reviewers, but at the same time it is encouraging 

in that it shows that errors can be identified once awareness and 

critical reading skills have been developed.



2. We are convinced that the errors do not destroy credibility



of the modern programming methodologies. Perhaps we should split



the purpose of the methodologies into design and verification. 

a.) Design has been continually emphasized in the program

ming methodology literature. The programs mentioned in this 

paper are, for the most part, well-designed; that is, even



though errors are present, the programs are substantially 

correct. There should be little doubt of the value of the



methodologies for design.



b.) It is at the verification level that the methodology



failures have been observed. As mentioned above, the pro

grams are substantially correct through good design but still



contain errors, most of which are minor and easily fixed. 

However, even minor errors can have serious consequences
 


and be costly to fix. One of the most serious consequences



is to cast doubt on the usefulness of the methodologies.
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We believe that the analysis of errors and the recom


mendations we present can lead to prevention and early de


tection of most of the types of error that so frequently



occur.



3. We do not believe that the errors reflect negatively on the



skills of the persons who committed them. Instead,-mistakes are



inherent in the difficulty of the programming task and the early



stage of development of the methodologies. Each article mentioned



here makes a significant contribution to that development. Often 

the erroneous examples are tangential to the main point of the
 


paper. The errors may only increase that contribution, albeit in 

an-unplanned way. If blame is. to be laid anywhere, it should go 

to the reviewers of the papers and other readers who have missed 

the errors. We also believe that it is far healthier to discuss



these errors openly than to ignore or cover up their existence 

Perhaps what we need is more "egoless publishing." 

4. To some extent, we are playing the role of Monday morning 

quarterbacks. Many of the errors are "old" in the sense, that the 

papers are very early and much progress has been made since their 

appearance. However, many of the errors have only recently been 

detected and the errors are still occurring in contemporary papers. 

This forces us to conclude that the analysis is necessary. 

5. There is the additional aspect that the errors provide a way 

of studying the programming methodologies which yields unique in

sights into the processes. We have learned much about how to write 

specifications, assertions, and programs from our study of the



literature from the unique viewpoint of errors. Perhaps, others 

will, also..
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& That the testing methodology is fallible is so well known



that we did not attempt to include errors of this kind. Analyses of
 


testing fallibility are presented in (17) and (31), Examples occur



regularly in the algorithms section of the Communications of the ACM.



7. The common characteristic of mathematical rigor and reason


ing in these examples leads one to question the effectiveness of



"The Mathematical Approach", not only in Programming Methodology,
 


but in Mathematics itself. The frequency of errors in mathematical



theorems, proofs, and applications of theorems is well-recognized 

and documented. Mills (5) provides a cogent argument for the use of



mathematics in programming, a subject we will return to in section*



6.


Readers are, of course, free to draw their own conclusions about


the significance of the errors and the implications about modern pro

gramming methodologies. We only ask that the material be considered in 

the spirit in which it is offered.



2. ERRORS IN SPECIFICATIONS 

2.1 Introduction



An early stage of the program development process should involve the



rigorous specification of requirements for a program in terms of expected
 


input, required output, constraints on storage and time, and actions in



response to invalid inputs or run-time storage or time limitations. In



practice, it seems that such specifications are used more frequently in
 


large multi-person software projects and are often skipped in pedagogi-.



cal articles on the new programming methodologies. In articles on proving 

program correctness, however, at least formal input and output require

ments must be specified, although errors and algorithm constraints are 
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usually ignored. Our list of specification errors concentrates on



articles on program correctness, not necessarily because errors occur



more frequently here, but because there is a lack of other published



material on program specification.



Liskov and Zilles (1) discuss specifications as the media which



translate a concept in someone's mind of what a program should do to



solve a problem into a formal written statement of exactly what the 

program should do. One value of this step is that it becomes possible



to formally prove consistency of programs with such formal specifica


tions. However, the complementary step of verifying that a program



specification implements the underlying concept must necessarily remain

informal. Most -of the error observations relate to deficiencies in the 

concept-to-specification step. But we shall see that these errors sug


gest guidelines which can make this necessarily informal step more relia

ble. 

2.2 Examples of Specification Errors 

Sl: Prime Test



King (2) p. 190, Wegbreit (3) p. 106, Deutsch (4) 


Context: The example is used in [King] to show the power of a mechanical 


verifer using the inductive assertion method, and in [Wegbreit] to illus


trate a mechanical assertion generator.



Description: The informal specifications are "set the flag variable J 

to 0 or 1 as A is or is not a prime". The formal specifications are



Input: A > 2 

Output: [J=0 => Vk)(2 < k < A D A mod k # 0)] A 

[J=l => (A mod 1=0)] 

The program is (rewritten from flow charts to text):





1:=2; 

while (A mod I) 0 do I:=I+l;



if I=A then J:=0 else J:=1;



The formal specifications are inadequate, as shown by the following



programs which are equally "correct" with respect to these specifications. 

(1) 	 J:=2 

(2) 	 I:=; J:=l



(3) 	 I:=A; J:=l; 

(4) 	 J:=l; A:=0;.I:=l



(5) J:=0; A:=1 

Analysis: A source of difficulty is that neither I nor J is sufficiently 

constrained in the output specifications; also, A is not constrained to
 


have the same value it had upon input. More complete output specifications



are:



[J=0 	 => (Vk)(2 - k < A n A mod k#0)] .A 

[J=l 	 => Ck)(A mod k=0 A 2 < k < A)] A 

[J=0 	 V J=1] A [A = A01 

(where A0 denotes the input value of A). 

The error might have been detected by noting that the given program



can be proved without using the input specification. Such a phenomenon 

would probably be noticed by a person performing a hand proof but possi

bly not by a machine proof that was not carefully inspected. 

Comparing the informal and formal specifications, we see the" follow

ing inconsistencies: 

a. 	 Informally, J is to be set to either 0 or 1.



Formally, this is omitted.



b. 	 The condition for A being a prime is translated correctly in



the-implication for J=0, but the condition for A being a non
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prime is not. 	 This shows a failure to abstract the notion



"prime", such 	 as 

prime (A) A 	 (Vk)(2 < k < A n A mod kO 0)A A - 2 

'A is greater than I and has no divisors except 

I and itself' 

which may be 	 used to better express the formal specifications as



[J=O A prime(A) V J=2 A -"prime(A)] A [A=A 0 ] 

c. The informal specifications clearly refer to the input value
 


of A, but this is not reflected in the output specifications. 

S2: Sorting and Searching



King (2, p. 2 08), Deutsch (4), Mills (5), McGowan and Kelly (6, p. 33)



Context: The examples illustrate program proving techniques.



Description: Let A be a real-valued array indexed from I to N, N -> 0.



The output specification of a sorting-program is that:



Sorted(A,Ao)bPermutation (A,A0 ) and Ordered(A)



where Permutation formally expresses that A-is a permutation of A, (the 

input value of A) and Ordered expresses that A is in (usually nondescend


ing) order. In the examples, the Permutation conjunct is often omitted



and ordering alone is used as the specification.



As pointed out by London(7) and Hoare(8), if this occurs the follow


ing program may be said to "sort A into nondecreasing order". 

for I:=l to N 	 do A[I]:=O.



Specifications for the example searching programs usually look like:



Input: TAB(I::N) and KEY, where 1 < N declared subscript limit of TAB 

and TAB and KEY are of compatible types. 

Output: KEY = TAB(I) and 1 5 I N or KEY is not in TAB(::N). 
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The output specification should require TAB, N, KEY to be the



same as on entry. If this is not required the following programs may be 
I 

said to "search": 

(1) I:=l; TAB(I):=KEY 

(2) N:=O; 1:=O 

Analysis: The Permutation property is messy to state and prove, especi


ally using the inductive assertion method. A common, and certainly rea

sonable, proof technique is to use the fact that if the only operations 

performed on a vector are swaps of two elements, then the vector is al


ways a permutation of the input vector. The Ordered property is better



adapted to the inductive assertion method of proof. There is nothing 

wrong with splitting the proof into two parts as long as it is expli


citly stated that Ordered is only part of the specification and does



not correspond by itself to Sorted.



The following properties of Permutation are often used:



(i) Permutation (AA)



(ii) Permutation (A, swap (A,I,J))



(iii) Permutation (A,B) A Permutation (B,C) D Permutation CA,C) 

Notice, however, that it is insufficient to formally characterize Permu

tation by only these facts, which are also satisfied by 

Permutation (A,B) = "the sum of the elements of A= the sum of the 

elements of B" 

However, it is still fair to use these facts within a proof. 

We commonly understand that searching does not destroy the initial 

values of KEY, N, or TAB (l::N), although it might be that TAB(N+l) is 

used as a terminating value in a search loop. It is just a convention 

by which programmers abide when writing search algorithms. (Search and 
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insert algorithms are another matter, though). From the standpoint of



formal specifications, however, it is hard to argue that the programs



(1) and (2) are not "correct". Like the permutation property of sorting



algorithms, the fact that input variables retain their values at output



is more easily shown by simply inspecting the program for absence of 

.assignment or side effects in procedures than by the 6umbersome method



of incorporating these statements into inductive assertions. And again



this should either be adopted as a convention or explicitly stated as



a separate aspect of the specifications and proof.



S3: Magic Square Generator



Gerhart (9, p. 194)



Context: Proof techniques for APL programs are illustrated.



Description: The program, written in APL, is proved correct with res


pect to the specifications (informally stated.



Input: N 1 and N is an odd integer 

Output: M is an N x N matrix and the sums of the rows, 

columns, and main diagonals of M are the same. 

An equally correct program with these specifications sets every 

element of M equal to 0. The usual definition of a magic square adds the 

requirement that every element of the matrix M should be an element of 

the initial sequence of integers 1.. .N 2 , and that each element of that 

sequence is an element of M. Of course, N should not be changed by the



program. 

Analysis: Since the committer of this error is one of the present



authors, we can testify that the omitted requirement was simply forgotten.



The proof of a real magic square generator is difficult, using several



number theoretic results, and the author simply became absorbed in that
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proof and failed to complete the output specification. Once the example 

had made the point in the context of the thesis, it was considered com

plete. Like error S2, this implicit output condition is easily seen to 

be valid by inspection of the program. Nevertheless, it should be stated.
 


This error first came to our attention when a story was related to



the authors about a computer science professor who assigned the magic



square problem as a programming assignment and gave the incomplete speci


fications above as the problem requirements. One student submitted the



program which set every element of M to 0. The furious professor was then 

faced with the dilemma that the program was consistent with the given 

specifications, but not a magic square geherator. This characterizes



the problems described in the last errors: specifications must be com

plete enough to capture the concept involved, and sufficiently con

strained so as not to be satisfiable by trival programs like those we 

have been giving. 

S4: Assertions about data structures 

Oppen (10), Cook and Oppen (11), Knuth C13, Alg. 2.3.5D), Bertziss (14, 

Alg. 10.8) 

Note: These are points of contention, not necessarily errors.



Context: Two opposite approaches to discussing data structures are taken, 

formal in the first two and informal in the last two references above.



The purpose of the formal papers is to develop the theoretical notion of



expressibility of languages for stating assertions about programs. The



two well-known books are sources of algorithms and techniques for data



structures.



Description: The main example of the Oppen papers is reversal of a list



11





by reversal of pointers. The underlying notation of datagraphs is-too



complex to describe here. There are two difficulties in the output



assertion for the program: (1) existential quantification over nodes



and arcs leads to incomplete specification, as in previous examples and 

(2) the assertion seems inconsistent with respect to the last node of



the reversed list. 

The point of contention in the [Knuth] and [Bertziss] books is the 

precise specification of list structures, namely the constraints on how
 


nodes point to each other. The specific algorithms, which involve mark

ing in preparation for garbage collection, assume constraints on point

ers to list heads. It was difficult for us to elicit these assumptions



from the books. If the assumptions did not hold, some reachable cells



might be left unmarked.



Analysis: In private correspondence where we queried whether these errors



-exist, Knuth responded that "Rlinks never point to list heads" but the



algorithm itself makes a test to see if a node accessed by an Rlink 

is a list head. Several readings later we decided that this case occurred 

if the list was cirgular and that pg. 408 implied that heads of sublists 

were pointed to by special sublist nodes. Reference to similar algorithms



in [Bertziss] did not resolve the assumption. Similarly, private corres


pondence with Oppen did not resolve the question of whether the informal



statement "reverse a list" was faithfully described in assertions in his



assertion language.



These careful readings and correspondences arose from a research



effort on the development of formalisms for data structures which would 

support understandable and precise proofs of properties about data 

structures, Yelowitz (12). There are several possible explanations for 
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the contention over the possibility of error in these examples:



(1) We may not have read the material carefully enough or we may 

simply have confused ourselves.



(2) The articles and books may have left out critical assumptions 

which are only revealed when our attempts to state and prove correctness



placed higher demands on precision than the usual reader.



(3) There may actually be errors.



Two things are certain: it is difficult to develop complete, precise, and



readable notation for discussing data structures, but it must be done



before correctness proofs can be given for data structures.



Our claim is not that the cited papers are wrong and that we are



right, but that when it takes multiple rounds of correspondence to re


solve issues such as these there is clearly a failure in the specifica


tion process. It may well be that specifying data structures is so dif


ficult that we will have to get along for a while with unsatisfactory 

approaches. Our point is that we should be aware of this problem and 

emphasize specifications and verifications of specifications. Put another



way, we suggest that if it is not possible to determine whether a pro


gram or specification is wrong, then indeed something is wrong.



2.3 Conclusions About Specification Errors



There are several explanations for these errors:



1. In some of the examples, there was no intention of making the 

specifications complete. This occurs often in program proving where the 

output specification is split into two or more parts which are proved 

separately because different proof techniques or levels of detail in



proofs are applicable. Thus a proof that a program meets some given set
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of specifications is not meant to imply that the specifications are com

pleee. 'Correctness' in this case is a purely technical matter. 

2. There is often an implicit understanding in the use of some 

terms in specifications that constrains certain variables to be unal

tered in the program, and others to be created to report the result of



operating on the input. Examples are "searching", which implies that the 

table and the key are unaltered, and the "testing for a property, such 

as primeness", which says that the-variable being tested is unchanged. 

It is debatable whether specifications should be explicit on these 

points, but in the formal world which starts from a set of specifications 

it seems fair that anything not designated as unalterable should be 

treated as a program variable, Perhaps an explicit convention should be 

adopted for this situation.



3. Confusion as to context and assumptions does not explain errors 

S1 and S3; these are slips in translation from concepts to formal 

specifications. This points to failure to confirm that the specifications 

implement the concept completely and correctly, failure to recognize the 

need for and therefore to attempt such a confirmation, or lack of tools 

for verifying specifications. 

4. There are cases where specifications are exceedingly difficult, 

e.g., the line editor problem (16).to be discussed in T2. 

Perhaps it is useful to view specifications as consisting of the



following three components: relations between input and output, asser


tions about input (independently of output), and'assertions about output



(independently of input). There are several suggestions for -devising spec


ifications that arise from these observations.



1. Check that assumptions have been made explicit:
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a. If the specifications are not intended to be complete,



then state what is omitted, why it is omitted, and how 

it can be handled. 

b. 	 State which brand of correctness is being sought: "partial" 

where termination is. not considered; or "total" which, 

does 	 require termination, and state whether termination



includes eventually halting and/or halting "cleanly" (i.e. 

no run-time errors).



2. 	 Structure the specifications using abstraction to capture the 

important aspects of the concept and write the formal speci

fications to read like the informal specifications. 

3. 	 Apply some tests to the specifications: 

a. 	 (The absurd program test) Try to find the shortest program 

which satisfies the specifications, 

ing with a preconceived solution. If 

ously does not satisfy the informal 

specifications are inadequate.



b. 	 Break the spedifications into cases 

ther in each case the specifications 

con cep t. 

instead of start

the program obvi

concept, the formal 

and determine whe

match the informal 

c. Formulate the specifications in a different way or 

at a different point in time and prove consistency of



the two sets of specifications.



3. 	 Get an independent verifier for the specifications who will
 


be naive (with respect to the problem), critical, and know


ledgeable as to the above techniques for testing specifica

tions and eliciting assumptions. 
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)All in all, these errors point to the critical need for a better



specification methodology. Without proper specifications, the verifi


cation process is fallacious and program design is substantially more



difficult.



These examples clearly show that specifications niust be 'tested'



ini much the same way that programs are tested, by selecting data with 

the goal of revealing any errors that might exist.



3.. ERRORS IN SYSTEMATICALLY CONSTRUCTED PROGRAMS



3.1 Introduction



- The goal of the methodology which is called by the various names 

"structured programming", "systematic programming", "stepwise refine

ment", "topdown programming', etc. , is to factor the programming pro

cess into small enough steps and programs into small enough parts



so that each step or part can be seen to be "correct", and so that each step 

or part fits together with others to-give correctness at a higher level.



This is not an easy concept to describe, teach, or grasp, so examples



have been the main pedagogical vehicle.



.The examples cited here have errors which illuminate the fact that 

this methodology is not yet fully understood. We hope that the examples 

point out pitfalls where those learning to apply the methodology should 

be wary and where further development of the methodology is required. 
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3.2 Errors in Systematically Constructed Programs



Ti: Sequence Generation



Wirth (15)



Context: This is the culminating example in the chapter on stepwise 

program development. It is stressed as an example of a heuristic algori

thi, using the important technique of backtracking. 

Description: The specific problem is to "generate a sequence of N char


acters, chosen from an alphabet of three elements such that no two 

immediately adjacent subsequences are equal". The algorithm has three 

fundamental operations for extending, changing, and checking a candi

date sequence.



The error occurs in refining the statement


good := (Sm-2L+I...SmL) (S-L+l... sm)



The Boolean variable 'good' should be set to true if the two se

quences of length L >,0 differ in at least one pair of corresponding 

positions, false otherwise. 

The refinement is



i := 0; 

repeat 

good S(m-L-i) # S(m-i); i := i+l; 

until k good v i =L 
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The variable 'good' should-not be negated. As a counter example



consider m=4, 1=2,. and the sequence S=3,2,1,2. The above loop



forces 'good' to be false by finding the two 2's, but in fact the



sequence 3,2 is not equal to the sequence 1,2 so good should be



true.



Analysis: Since there is a difference of only one symbol, it might seem 

that this is simply a typographical error, but it is hard to interpret 

the insertion of the "0 character in that way. 

This error seem to indicate failure to check the final step of the



program construction. Here is where program proofs enter the picture



because in being forced to write down a definition of "good" and to check



the until test the error would probably be found. For example, an asser

tion to hold right before the until test is 

[good= (flj I 0 5 j < i)(S(m-Lj) # S(m-j))] A [l < i < L] 

and then it is easily seen that terminating with -vgoodwill not give 

the right result. The error was actually discovered while studying the 

program in preparation for proof. It was later discovered that 'good' 

is used elsewhere in the example with similar errors.



T2: A Line Editor



Naur (16)



Contest: The article presents a view of systematic construction based



on identifying important actions which are organized to meet the overall



requirements.



Description: The problem"requirements are "Given a text consisting of



words separated by BLANKS or by NL (new line) characters, convert it to
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a line-by-line form in accordance with the following rules: 1) line 

breaks must be made only where the given text has BLANK or NL; 2) each



line is filled as far as possible as long as 3) no line will contain



more than MAXPOS characters". There are numerous problems with the



specifications that lead to different interpretations of the problem,



e.gj. should two successive blanks be treated as ending one or two words?



How should the text end?



The program also has numerous problems: it doesn't show any expli


cit provision for termination; if the program does terminate, the last



word is left in the buffer unless followed by a BLANK or NL; there are 

conditions under which extra line breaks and blanks are output at the



beginning; there is confusion between the two symbols NL and LF repre


senting the line break or new line character. These errors have been



extensively discussed and analyzed in Goodenough and Gerhart (17) in



an example illustrating test data selection techniques.



.Analysis: At one point in the paper, there is an assertion "the input



character preceding the one held in BUFFER(l) was a BLANK or a NL. This 

has not been output." 

For this assertion to be true the first time it is reached, it is



necessary for the text to start with NL or BLANK, but the specifications



do not state this requirement.



The point is that the action cluster methodology appears systematic,



but the resulting program fails to accomplish even the ill-defined task.



However, we believe that this failure can be traced back to the speci


fications, which are definitely inadequate. The specifications were some


what elaborated on in Goodenough and Gerhart (18), retaining the prose
 


format, but the authors finally concluded that there was no way to ever
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get the full problem stated in English without some ambiguity or exces


sive length. A specification technique for this class of program has



been proposed by Noonan (18).



See also error P2.



T3: A Telegram Processor



Henderson and Snowden (19), Ledgard (20)



Context: Systematic development of a program to count words and format



a stream of telegrams is considered.



Description: [Henderson and Snowden] found when they ran their stepwise


constructed program that it miscounted words. They trace their error



history through the steps of the program development process. [Ledgard]



develops a new solution, which contains the following errors:



1. 	 Each output line of the program begins with a blank. There is



nothing in the specifications requiring or prohibiting this, but 

it effectively reduces the line length by 1 and seems to contradict 

the specification that'extra blanks should be removed from the tele

gram on output. Careful reading of the bottom-level program was 

needed for the present authors to determine this. 


2. 	 The instruction "CHAR next-char(BUFFER)" might lead to unpredic


table results. The meaning of this (predefined) instruction is not



given, but apparently is to set CHAR to A if there are no more 

characters in BUFFER, and otherwise to set CHAR to the next (possibly



blank) character in BUFFER and logically delete that character from 

BUFFER. Although Ledgard does not show the implementation of BUFFER,


a standard approach to implementing a buffer of length N is to


allocate an array A of length N+l, in which A[N+I] = A ; this 

N+lst 	 element is analogous to an "end-of-file" marker. The problem
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is that whenever the last word of the buffer is not followed by a blank, 

;it is possible to execute "CHAR -"next-char(BUFFER)" twice before re

filling the buffer. So the above common implementation will not



satisfy the assumptions on the behavior of next-char. Again, a 

careful reading at the bottom level is necessary to determine this.



Without knowing the behavior of next-char and the other primitives,



it is not possible to justify the correctness of the final program.



3. 	 Indentation is used as a bracketing device, rather than begin.



end. While not strictly an error, it may confuse other readers,



as it 	 did us. The use of two labels A also confused us at one 

point.



4. 	 Termination conditions differ between the Final Program in Figure



6 (containing gotos) and the Final Program in Figure 7 (without 

gotos). For the input stream "ZZZZ HELLO DOLLY ZZZZ ZZZZ", the



Figure 6 Program will print "HELLO DOLLY", whereas the Figure 7



Program will not print any telegram words. The specifications are 

vague on this point, which forces us to ask how the program could



have been proved correct at any level.



Analysis: This problem, like the line editor problem (T2) is hard to



specify completely. There are surprisingly many potential sources of



error, and Henderson and Snowden warn against being lulled into a false



sense of security based upon systematic program development. Ledgard



provides some general guidelines on a program development methodology



at the beginning of his paper, and cites the need for formalizing and



debugging each of the levels. The above points of confusion show that



there is still a gap in the guidelines which permits programs to be



implemented without precise specifications and therefore without the 
 4J 1 
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basis for insuring correctness at each level. In such cases, systematic



construction should be expected to be quite fallible.



T4: A Sorting Algorithm in PL360



Wirth (21, p. 53)



Context: The purpose of the PL360 language is to "...further the state of 

the art of programming by encouraging and even forcing the programmer



to improve his style of exposition and his principles and discipline 

in program organization" (from the abstract).



Description: The error is in procedure sort. The purpose of the



procedure apparently is to sort an array a, indexed from 0 to n in 

increments of 4, into decreasing order. The incrementation by 4 is due



to the IBM 360 architecture -- 4 bytes comprise a word, and incrementa

tion by 1 would simply be a byte at a time.



In an outer loop, RI goes from 0 to n in steps of 4.; In an inner



loop, the procedure checks if there is some index greater than Rl, say



R3, such that 

(1) a(R3) > a(Rl)



and (2) a(R3) = max {a(Rl+4), ... , a(n)}



If such an index R3 exists, then for definiteness let R3 be the 

smallest possible value satisfying (1) and (2). For such an R3, the 

appropriate logic is to swap a(R1) with a(R3) so that right after the 

swap ,a(Rl) = max {a(Rl), a(Rl+4), ..., a(n)}., Then the outer loop



should continue. If no such R3 exists, then a(Rl) is already the max

imum of A(RI), ..., a(n) and the outer loop can continue immediately.



The error is that the swap occurs even if no such R3 exists; thus R3 

might be undefined (if this is the first swap), or R3 might be "l.ft 

over" from a previous iteration. In programming terms, R3 is assigned P 
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a value in the then-part of an if-then, but at the conclusion of the if


then, it assumed that the then-part has been executed.



This error has continued to appear in later reports and manuals on 

PL360.



Analysis: Failure to initialize a variable is a common error, e.g., see 

error P4 below. One virtue of structured programming is that all paths



leading to a given statement can be discerned relatively easily, making



it routine to verify that every variable is initialized prior to being



ref&renced. Apparently, that verification was not performed. 

The error was discovered in a classroom exercise which involved 

reformatting the program text.



T5: The 8-Queens Problem 

Wirth (22)



Context: The "stepwise refinement" method is explained and illustrated. 

Description: The "8-queens" problem is "find a way of placing 8 hostile



queens on a standard 8 x 8 chessboard so that no queen may-attack an


other". The point of contention is one of programming style and ro

bustness rather that an actual error. When attention is restricted to



only the 8-queen problem, no error will arise. If, however, we wish to 

generalize the solution to the N-queens problem, for arbitrary N > 1, 

then an error will arise for each N in which there is no solution (e.g., 

N=2,3). Since it might not be known in advance of running the program 

if a solution exists for the 8-queens problem, it is fortuitous that 

the error does not occur here also. The same error occurs when all solu

tions to the,8-queens problem are sought.



The specific error is a possible out-of-boind array reference. The 

x-array is indexed from 1 to 8, and represents the current board con

figuration; x[p]=k if a queen is present in column p, row k, where
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1 < p < j (j is a variable used to move left or right across columns). 

When the program regresses out of the first column (as will occur when



no solution exists or all solutions have been produced) the following



code will be executed with j=l, (according to our interpretation dis


cussed below)



S j :=j-1; 

xtj]; 

Analysis: Actually, it is somewhat ambiguous what .the final program 

should be. After completing the stepwise refinement, Wirth observes



that x[j] can be replaced by a variable i, saving several subscript



computations. The proper modifications to coordinate i with xfjj are



mentioned and then'the affected procedures, except reconsiderprior



column, are rewritten. If one constructs the complete-concrete program



from the latest versions of the procedures, the adjustment for i does



not occur.because reconsidervriorcolumn is out of date. But if.one 

.constructs, as we did, the program with the obvious recommended change 

to reconsiderpriorcolumn 

j :=j-l; i-:=x[j ] 

the subscript error occurs. A third possibility is to rewrite regress to read 

begin J:=j

if ja:I 

then i:=x[j]; removequeen,....



but this is a major deviation from the preceding refinements. 

Our conclusion is that a seemingly safe optimization did not pre

serve correctness and should have been checked more carefully. We are 

not sure how this type of program rewriting fits into the stepwise re


finement method.
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3.3 	 Conclusions About Errors in Systematically Constructed Programs



It is hard to pinpoint the exact places of failure in the systema


tic constructions since there are always many assumptions in effect and



the reasoning is informal. Most errors seem to occur when the bottom


level 	 code is written. It is as if the systematic,construction is per


formed as a series of refinement steps where every step except the last, 

in which concrete code is produced, is carefully checked. This leads to



the obvious recommendations:



1. 	 Be especially careful to verify that the concrete program 

parts do exactly what the abstract parts intended. 

2. 	 After completing a systematid construction, put all of the 

pieces of program together and recheck, using standard 

methods of testing and/or proving, that the program does 

what was initially specified. 

Some amount of formalization would probably benefit the systematic



construction methodology. Care must be taken to avoid overformalization,



since a point of diminishing returns can easily be reached, and passed. 

For example, S4 and P4 (below) fail to detect errors despite a great 

deal of formalism. One practical approach is to treat data reference and 

program structure with more symmetry. In many articles, "structure" is



claimed for a program based upon the use of only well-known control 

structures, but mention is seldom made of the degree of locality or



globality of data reference. If a variable is referenced and modified



at every level of a program, then the di-fficulty in understanding the 

purpose of that variable might become inordinate, and the fact that



gotos have been avoided becomes somewhat academic. More recent work



( 23 ) concentrates on the data structure aspect of systematic con

25 



struction.



The following recommendations might be useful: 

In addition to the standard refinement process, keep a list of



important program variables (or more general data structures). The list



should explain the purpose of the variable at a problem-solving, or
 


goal-oriented level, including its initialization, updates, and rela


tion to other variables'; a check then can be made that the purpose of



the variable corresponds to the pattern of references and modifications



as used by the program. Such a list might have caught the errors in T4 

and P4. 

It is also important to note that some errors-were easily dis

covered by hand simulation on test values. Finally, we note an alterna


tive viewpoint; systematic construction should expose various facts 

about the program which then can serve as a basis for a proof, but the 

systematic construction alone is insufficient to guarantee correctness.



4. 	 ERRORS IN 'PROVED' PROGRAMS 

4.1 	 Introduction 

Testing cannot guarantee in a practical sense that a program is 

correct, although, in theory, testing can be viewed as a basis for an 

induction proof which does demonstrate correctness (17). However, program



proving based on testing is not yet well-understood. The approach to pro

gram proving which has been advocated over the past few years stresses 

the construction of theorems (verification conditions) to express program 

correctness, and various mechanical techniques for proving these theorems. 

Other work has concentrated on proof styles, ranging from the loose 

arguments for correctness seen in articles on stepwise refinement to



much more rigorous proofs, some of which have been mechanically produced.
 


26 



The overall goal of the work on proving program correctness is to



show Iconvincingly that programs do not contain errors. The following



examples demonstrate that proofs of correctness do not always discover



errors, even though the proofs may be persuasive, and perhaps even



"formalistic". We will have more to say about the nature of errors in



proofs in mathematics at the end of this article. For now, the reader
 


should bear in mind that there are two aspects to program proving: (1)



What to prove; and (2) How to prove it. Most of the errors are best



viewed as failures in defining what to prove.



4.2 Errors in Proved Programs



Pl: A Linear Search Program



McGowan and Kelly (6, p. 33)



Context: The example occurs in a section intended to help readers con


vince themselves "that careful reasoning about programs is a better



guide to correctness than extensive testing." (6, pg. 30).



Description: Suppose that a table TAB has been declared to have N ele

ments with 1-origin subscripting and that KEY and TAB are declared of



the same or compatible types. The language in use is PL/i. (The example 

in the book uses structures, but we are simplifying to arrays without



losing the general idea). The following program is given to search an



initialized TAB for an initialized value of KEY: 

I=1; 

DO WHILE (I <= N & KEY-%=TAB(I)) ; 

I=I+il; 

END;



with the loop invariant



KEY 4 TAB(j) for 1 j I-i 
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The claim is that on exiting the loop, either I N+l and KEY is not in 

TAB or KEY=TAB(I). (In fact, the invariant needs the conjunct I ! N+I 

in order to conclude I=N+l at loop exit, but that is not the main 

problem here.) 

The specific problem is that if KEY is not present in TAB, the final 

while test will be executed with the value I = N+Il, making the first con

junct false. In all but the optimizing PL/I compiler, however, the second 

conjunct is evaluated (even though it is logically superfluous), giving 

rise to DATA INTERRUPTS and SUBSCRIPT RANGE errors. (This experiment was 

performed on an IBM 370/168 with standard IBM software in December, 1975.) 

Analysis: The undefined order of evaluation of operands of logical oper

ators is a wellknown pitfall of PL/Il. Left-to-right, non-superfluous



evaluation is often assumed, but the P/I reference manual is vague on 

this point. Other languages, e.g. ALGOL W, make it explicit that the 

and operator in A and B is sequentially defined as if A then B else 

false.



The error shoiws that ignoring control within expressions and



inexecutable operations can invalidate a correctness argument or a care


ful reasoning process. Elsewhere in reference (6), attention is paid to



logical operators in assembly language macros. The authors point out 

that the pireferred code for this problem is



DO I=1 TO N WHILE (KEY-i=TAB(I)); 

END; 

which avoids the problem of order of evaluation of operands for this



program.28
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P2:: Line Editor



London (7) 

Context: The Line Editor program has been discussed in error T2. [London] 

corrected one error and proved several properties of the corrected program. 

The goal was to illustrate the methods and some results of the approach 

of proving programs correct and to suggest that the approach at least 

be considered as a means of attaining 'software reliability. 

Description The program provided by London has the following abstract



structure:



'initialize, program variables'; 

while 'more characters to be read' do 

begin 'input a character'; 

'process that character' (putting it in the buffer or out

putting the buffer with a preceding blank or line feed, 

as required by the line specifications)


end 

The 'more characters to be read' action is simply expressed as 'halt 

if no more characters'. The problem with this action is that when there 


are no more characters, there may still be a word in the buffer. In this 


version of the program, the buffer is not emptied. 


Analysis: Several lemmas for properties of the program are proved: Varia


ble types are consistent; subscript errors do not occur if the words are



not oversized; the buffer array contains only legal parts of words; and 

the words output on a line are done so correctly. The proof line 'the



output of each entire word (possibly null) after the first word must be



and is preceded either by a line feed...or a BLANK...' comes close to



hitting the point of error in the program, but it concentrates on showing
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that the words which are output are done so correctly)not that all the



words. are output (and in the same order). 

As in T2, tht proof missed a common and well-known pitfall of this



type of program, namely, failure to empty the buffer at the end of pro


cessing. The error probably was not caught because the program specifi


cations, and hence the correctness requirements, were .so loosely stated.



It should also be noted that this is one of the earliest published



attempts at proving a realistic program.



P3: Prime Sieve 

Wulf (23) 

Context: The language ALPHARD is being designed to provide, among other 

features, the facility for handling abstractions in both control and data 

structures. The prime sieve (sieve of Eratosthenes) program previously



developed and proved by Hoare (24) was reworked to display the abstrac


tions in the final text of the program. It is claimed that program prov


ing should be factored into proofs of high level algorithms (which may 


often be omitted when they are well known, as in this example, or obvious) 


and proofs that the representations correctly reflect the high level 


algorithm. The intended proof style is used on the example. 


Description: The high level algorithm is 


while ,.j empty(sieve) do 

(include(prime,rain(sieve)); removemultiples(sieve, in(sieve)))



where 'prime' is declared of type powerset of the integers 1..N and



initialized to empty and 'sieve' is declared of type powerset of the



integers 2..N and initialized to {2,... ,N}. The ultimate representation



of both is bits within an array of machine words.



The error is that the 'min' routine does not return the minimum
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element of the sieve, as specified by the algorithm, but instead returns 

the index of the minimum element as a pair of integers representing an



element in an array of words and a bit in that word. The index of the



least 	 possible element of 'sieve', that is, 2, corresponds to 0. There



,re two effects of this error:



(1) 	 'include (prime, min(sieve))' causes min(sieve)-l to be placed



in'prime'.



(2) 	 the operation removemultiples (sieve, min(sieve))' corresponds



to a 	 loop



for I 	 := X step X until N do 

'remove 
 the element with index I from sieve'



which is executed with X being the index of min(sieve) in



sieve, thus causing an infinite loop when X is 0.



Analysis: The proof shows that the bit-word pair and powerset forms are 

correctly defined and attempts to show that an integer-set form is correct. 

latter part of the proof states "removemultiples(n) removes the elements at 

indexes n, 2n, 3n, ... , size of powerset" but this cannot be true when 

n=0 and, even if that worked, the sieve would be emptied when n=-l. It is



not proved that the element which is included in 'prime' is actually the



minimum element of the sieve. The error seems to have occurred because



the data representations do not actually correspond to the algorithm,



with a resulting confusion between the minimum element of the sieve and



its index. Note that usually the initialization is stated in the algori


.thm but that in Alphard, initialization is distributed to the data



structure forms. 

The original claim that program proving can be factored



into 	 algorithm and data representation
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is probably justified, but that there is still a substantial proof step 

in, showing that the representations are faithful to the intent of the 

algorithm. It should be noted that this is the first description of



Alphard and a more recent description ( 30 ) uses better defined language



constructs and takes a more rigorous approach.



P4: Maximum of a Series of Powers and Matrices



Lanzarone and Ornaghi (25)



Context: The paper presents a variation of the usual correctness formalism



to describe the stepwise refinement method.



Description: The example is specified: 'A symmetric matrix with positive 

or null elements has to be multiplied by itself until the maximum of its 

elements is greater than or equal to an assigned positive real number 

alpha'. Let * represent matrix multiplication, jM11I represent the value 

of the maximum element of matrix M, and x denote the input matrix. 

The top level program is:



(a,b,c) (x,x,l xi) 

while c < alpha do



(a,c) + (a.b, lla.bl ) 

The error occurs in the concrete code refined from the body of the loop.



As each element, say e, of the new product matrix is computed, a variable



d is set to max(d,e). However, d is not initialized at the start of each



matrix product computation, but only at the beginning. This causes d to
 


contain not the maximum of the current matrix, but the maximum of all



matrices computed so far. It might be thought that the historical maximum 

always equals the current maximum, but for the matrix



.15 
= (.95x 

.15 .95
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the successive maxima are .95, .925, -.921, .936, -.969. Nevertheless, the



program will still work correctly because if the current maximum is less



than a previous maximum, and termination has not occurred, then the cur


rent maximum is less than alpha. 

Analysis: The point is that the final program is not a refinement of the 

topi level program because the variable -d is not reinitialized every time 

a new matrix is computed. The proof does not catch this discrepancy nor 

did the proof give any indication that the final result is correct never


theless. It is debatable whether this should be considered an error, since 

the final program is correct (assuming there are not other errors which 

we have not found). However, it could have just been fortuitous that 

everything worked out in this example, and in other examples the luck 

might give out. The overall flaw in the approach seems to be that the



interfaces between refinements were not carefully checked. For example,



the input assertion about the section in error permitted 'd' to be any 

real value, not necessarily 0. 

4.2 Conclusions about the errors in proved programs 

There are several common features of these four errors:



1. The inductive assertion method is used informally. It is diffi

cult to apply the assertion method to the line editor problem, lacking a 

suitable assertion language. We believe the assertion method could have 

caught the error in P4 since the property of d being the maximum of the 

current matrix would have been in the loop assertion, as well as the error in 

P3 since the relation between elements of prime and sieve must be stated. 

All of these programs have a loose notion of the required verifica

tion task. The presentation in [6] is deliberately informal in order to 
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introduce correctness concerns. P2 uses an informal approach which is 

dictated by the informal nature of the specifications. P3 skips a



crucial aspect of the proof,.namely that the representation corresponds to



the algorithm. P4 seems to skip the interface steps to concentrate on



proofs for the individudl refinements, although such interfaces play an



important role in the theory and practice of program develooment.



2. Three of the errors are related to proper termination: error P1



relates to the value of the conjunction at the time the loop exists;



error P2 occurs at the end of the text; error P3 results in a nontermina


ting loop; error P4 is related to initialization.



It is common in program proving to treat the termination task 

informally since termination in most of the examples is relatively obvi

ous and easily checked. These errors suggest that perhaps more effort 

should be concentrated on termination, especially since it is well known 

that many programming errors occur at boundary points, which includes 

initialization and termination. 

3. Ironically, each of the first three errors are easily discovered 

by the standard methods of hand simulation and testing. For example, test 

cases for P1 would undoubtedly include the two subcases of KEY present, 

and not present, in TAB, and the error would be revealed on any but the 

optimizing PL/l compiler. Testing of error P2 might show the last word 

left in the buffer, depending on type of input device. Hand simulation 

on the prime sieve program quickly revealed the problem at the first loop 

iteration when 2 is the minimum element of the sieve. (We had previ

ously been told that an error exists in this program, but we were not 

told the details.) 

Based on these generalizations, we make the following recommendations
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for increasing the value and ciedibility of program proofs:



aI. Do not ignore the "standard" methods of verification. London (7) 
gives the "hint that one should be fairly confident the program is cor

rect before starting to prove it so. This confidence may, for example, 

arise from the standard testing/debugging process." 

2. Check the proof and program especially closely at known pit


falls and problem areas of the programming language and the programming 

task. One goal of programming language design is to minimize the number 

of such trouble spots. There does not appear to exist a well-documented,



widely distributed and suitably general catalog of trouble spots in pro

gramming, but there is certainly informal 'communication of a large 

amount of bitter experience.



3. Adopt a cautiously skeptical attitude toward proofs, as one of



several possible means of persuasion, in which formalization and abstrac

tion might provide some new insights and documentation. Keep in mind, 

however, that there are usually at least some parts of the program that 

are better-explained informally, and it is pointless to attempt sub


verting these parts to fit a particular formalism. Formalism should



supplement, definitely not replace, common sense and programming experiZ 

ence and intuition. See Redish (26) for various types of common sense



questions to supplement the assertion method.



4. Even though a challenging aspect of a proof has been solved,



one should not let one's guard down on the more mundane aspects of the 

program.



5. First concentrate a large amount of effort on stating what



should be proved in order to guarantee the program is correct, and then 

set about proving it. It seems fair to say that in most of the above 

errors the proving task was not well-understood. Therefore some things 
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which should have been proved were ignored, resulting in failure to



catch!errors.



5. OVERALL CONCLUSIONS AND RECOMMENDATIONS 

Ike have identified and discussed some common features for each of the



three classes of errors. We can now elaborate on some common features of



all,three classes.



Observation 1: The tasks were not well defined: it was not recognized



that formal specification must be shown to capture the underlying infor


mal concept; there were gaps in the statements of what should be proved



about programs, especially proper termination; systematically constructed 

programs were not checked closely to confirm their correctness.



Recommendation 1: Identify more carefully the complete task, for example,



by including those parts which coyer the errors we have discussed here.



Make sure the task is well understood and precisely stated before un


dertaking the time consuming and absorbing process of verifying that



the task was accomplished.



Observation 2: The errors are not deep. The standard methodologies and



everyday programming knowledge are sufficient to reveal most of them. The



errors seem to have been overlooked because the authors were concentrating



on pedagogical points and therefore looking at the program from restricted



viewpoints.



Recommendation 2: Apply as many techniques as possible to the task:



perform testing as well as proving; look for known difficult and error



prone language constructs; obtain an independent verifier to read and



check the results. The greatest confidence arises from consistent posi


tive results from different methodologies applied to the same task,
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because different methodologies often have compensating strengths and



weaknesses.



Observation 3: There is a tendency to concentrate more effort on the



harder parts which require sophisticated techniques and less effort on



the "obvious" and easier parts. It is often claimed that the methodolo


gies are even more essential in multiprocessing programs than in sequen


tial programs. The errors show they do not yet work reliably for se


quential programs.



Recommendation 3: Do not bring to the task preconceived notions of hard



and easy, e.g. "termination is always trivial to prove" or "inductive



assertions are always hard to formulate". The apportionment of effort 

must be somewhat tailored to the specific task. Do not get so bogged



down in formal proofs that some aspects of the task are ignored complete


ly. 

Observation 4: Most of the erroneous programs were also well-structured, 

according to current criteria. It is often,claimed that good structure 

makes it easier to detect errors, but these errors sh6w that it is no 

guarantee. 

Recommendation 4: Do not confuse good structure with correctness. If 

the structure is good, then make use of the clarity thereby gained to 

verify the program, at least informally. 

Observation 5: The methodologies proposed to increase software relia

bility are still in their early stages of development: the tasks are 

not easily taught or learned ; old habits make it hard to take 

seriously the importance of some tasks, e.g. the common practice of writ

ing the specifications after writing the program, or worse, never 

writing the specifications at all; there is a tendency to believe that
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following the techniques will automatically bring favorable results,



e.g. systematic construction will lead to correct programs.



Recommendation 5: Do not view new methodologies as panaceas, especially



when one has little experience in applying the methodologies or is un


aware of the pitfalls. Just as with any other skill, it will take



considerable training and experience before the new programming methodo


logies are mastered. Part of that experience will undoubtedly be commit


ting and recovering from errors.



6. SOME RELATIONSHIPS BETWEEN MODERN PROGRAMMING METHODOLOGIES AND 
MATHEMATICS



Earlier we claimed that the common feature of the new methodologies



is the emphasis on the use of mathematical reasoning in programming. A



natural question to ask is, How well does mathematical reasoning work



in mathematics?



Here are a few documentations of error processes in mathematics.



1. The Mathematical Games section of- the December, 1975, issue of



Scientific American (27) reports an interesting instance of error. A 

proof had been submitted that a particular algorithm produced all solu


tions to a given problem. A counterexample in the form of a missed so


lution was later submitted. The nature of the proof error was not given. 

The author of the original "proof" was quozed from a book he had authored



to the effect that there is no "magic formula for a proof which makes it



immutable and unarguable henceforth and forevermore."



2. An interesting paper by an eminent mathematician P.J. Davis,



(28) relates many instances of errors in mathematics. It concludes that



"a derivation of a theorem or a verification of a proof has only probabi


listic validity" and that mathematics, as a somewhat experimental science,



is "saved from chaos
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by the stability of the universe... and the self-correcting features of



usage." 

3. Schwartz (29) relates the following anecdote: "I think here of



a case that became famous a few years ago, in which after certain state


ments in algebraic number theory had been proved by three independent



metiods in published papers (an algebraic proof; an analytic proof, and



an elementary proof), a counter-example was published."



Another point to consider is the purpose of a proof. In addition to 

the'obvious one of'certification, Davis also points out the "discovery" 

aspect of proofs. A mathematical proof of a giten statement helps to 

elicit the hypotheses under which the statement holds and perhaps induces 

minor alterations in the statement. Analogously, a program proof can help 

to discover conditions on input under which the program will or will not 

execute completely and provide the required output. These conditions may 

or may not be subsumed by the program specification, which may need to 

be altered. 

Yet another aspect is that'a proof should reveal clearly



why a theorem holds. Likewise, a program proof should reveal why the pro


gram works and thus serve as a form of documentation. All in all, mathe


matical reasoning leads to a deeper understanding of the subject being



studied, if not to certainty in manipulating the understanding.



The certification aspect of mathematical proofs has an obvious 

carryover to program proofs. It is recognized in mathematics that a proof



does not become a proof'until 'there has been a consensus of experts that



the proof is right' (28). In program proving, we would like one of our



experts to be mechanical proof checker, but of course this leads to



the question of correctness of the proof checker, as well as the immense
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difficulty of constructing and the expense of running such a checker.



It should be observed that many of the above errors occur in papers which



have undergone a supposedly rigorous review process before publication.
 


It is a reasonable expectation that each article which had not been 

reviewed had nevertheless been read by at least one other competent 

person. Yet the errors persist. The conviction from a proof that a state


r s ment or program is correct is only neaningful if the pe on being con

vinced is critical and. trained to detect proof failures. 

These are similarities between mathematical reasoning in mathematics 

and in programming. There are diffferences, also. 

1. Mathematical theorems are often stated and proved for their 

elegance or their role within a theory. It is not necessary that there 

be an immediate, or even an eventual, application of the theorem. In 

programming, we are more immediately concerned with correctness since 

program errors may be costly or dangerous. 

2. There is usually an established and well known theory in which



a mathematical theorem is embedded, wheras in!'programming, each program 

proof is usually isolated. A mathematician does not start from scratch-,
 


but instead builds upon a body of theorems with the result that the task 

is easier and the theorem can be shown to be consistent or inconsistent 

with other theorems in the theory. Currently, each program proof starts 

from scratch and must be examined in isolation. This state will probably



change as a more mathematical theory of programs is evolved from present 

work on program correctness and from the abstraction and organization of



programming knowledge.



3. Studies in the mathematical foundations of computer science



lead to advances in machine and language design. A current premise is
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that languages should facilitate mathematical reasoning in programming, 

be semantically defined in a mathematical fashion, and be sub

jected to rigorous mathematical analysis. 

This discussion leaves us with the fundamental question: 

What is the role of formalism and mathematical reasoning in pro


gramming methodologies? Based on our study of error6, we conclude that it



is one, but not the only, or necessarily best.tool for verifying programs.



It provides evidence of a logical nature that programs are substantially 

correct, the degree of certainty being somewhat related to the depth 

of logical analysis and the skills of the analyser(s), but never abso


lute. On the other hand, testing provides empirical certainty of at



least some correctness aspects of a program. Experience with both test


ing and mathematical reasoningshould convince us that neither type of



evidence is sufficient and that both types are necessary.



There are two important roles. other than verification, for formalism



in programming methodologies: (1) they provide the training in rigorous



thinking which is essential for good programming and (2) they provide 

the most effective language for organizing and expressing knowledge about 

programs. Of course, this is what the leading programming methodologists 

have been saying for years. We hope that this paper provides new, and 

more realistic, insight into the mathematical foundations of these methodo

logies. One unfortunate aspect of that reality is that "mathematics is a 

human activity subject to human fallibility." (5) This statement should not 

be interpreted to say that the mathematical approach should be abandoned,



for it will always be a necessary tool. Nor should it be construed to mean



that mechanical tools are the only solution, for these must ultimately be



evaluated by mathematical means. We simply must learn to live with falli


bility.
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TABLE OF ERRORS



Reference Name of Classification(s)


Code Program(s)



Si Prime Test Specifications & proofs


S2 Sorting and Searching Specifications & proofs


S3 Magic Square Generator Specifications & proofs


S4 Data structure algorithms Specifications & proofs



Ti Sequence Generation Systematic Construction


T2/P2 Line Editor Systematic Construction/proofs


T3 Telegram Processor Systematic Construction & proofs


T4 Sorting Algorithm Systematic Construction


T5 8-queens Systematic Construction



PI Linear Search Program Proof


P3 Prime Sieve Systematic Construction & proofs
 

P4 Powers of matrices Systematic Construction & proofs
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