5 research outputs found

    Video Inter-frame Forgery Detection Approach for Surveillance and Mobile Recorded Videos

    Get PDF
    We are living in an age where use of multimedia technologies like digital recorders and mobile phones is increasing rapidly. On the other hand, digital content manipulating softwares are also increasing making it easy for an individual to doctor the recorded content with trivial consumption of time and wealth. Digital multimedia forensics is gaining utmost importance to restrict unethical use of such easily available tampering techniques. These days, it is common for people to record videos using their smart phones. We have also witnessed a sudden growth in the use of surveillance cameras, which we see inhabiting almost every public location. Videos recorded using these devices usually contains crucial evidence of some event occurence and thereby most susceptible to inter-frame forgery which can be easily performed by insertion/removal/replication of frame(s). The proposed forensic technique enabled detection of inter-frame forgery in H.264 and MPEG-2 encoded videos especially mobile recorded and surveillance videos. This novel method introduced objectivity for automatic detection and localization of tampering by utilizing prediction residual gradient and optical flow gradient. Experimental results showed that this technique can detect tampering with 90% true positive rate, regardless of the video codec and recording device utilized and number of frames tampered

    Video Forgery Detection: A Comprehensive Study of Inter and Intra Frame Forgery With Comparison of State-Of-Art

    Get PDF
    Availability of sophisticated and low-cost smart phones, digital cameras, camcorders, surveillance CCTV cameras are extensively used to create videos in our daily life. The prevalence of video sharing techniques presently available in the market are: YouTube, Facebook, Instagram, snapchat and many more are in utilization to share the information related to videos. Besides this, there are many software which can edit the content of video: Window Movie Maker, Video Editor, Adobe Photoshop etc., with this available software anyone can edit the video content which is called as “Forgery” if edited content is harmful. Usually, videos play a vital role in terms of proof in crime scene. The Victim is judged by the proof submitted by the lawyer to the court. Many such cases have evidenced that the video being submitted as proof is been forged. Checking the authentication of the video is most important before submitting as proof. There has been a rapid development in deep learning techniques which have created deepfake videos where faces are replaced with other faces which strongly made a belief of saying “Seeing is no longer believing”. The available software which can morph the faces are FakeApp, FaceSwap etc., the increased technology really made the Authentication of proofs very doubtful and un-trusty which are not accepted as proof without proper validation of the video. The survey gives the methods that are capable of accurately computing the videos and analyses to detect different kinds of forgeries. It has revealed that most of the existing methods are relying on number of tampered frames. The proposed techniques are with compression, double compression codec videos where research is being carried out from 2016 to present. This paper gives the comprehensive study of techniques, algorithms and applications designed and developed to detect forgery in videos

    Detecting Frame Deletion in H.264 Video

    No full text

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity
    corecore