4 research outputs found

    Evaluation of Carbon Fluxes and Trends (2000e2008) in the Greater Platte River Basin: A Sustainability Study for Potential Biofuel Feedstock Development

    Get PDF
    This study evaluates the carbon fluxes and trends and examines the environmental sustainability (e.g., carbon budget, source or sink) of the potential biofuel feedstock sites identified in the Greater Platte River Basin (GPRB). A 9-year (2000e2008) time series of net ecosystem production (NEP), a measure of net carbon absorption or emission by ecosystems, was used to assess the historical trends and budgets of carbon flux for grasslands in the GPRB. The spatially averaged annual NEP (ANEP) for grassland areas that are possibly suitable for biofuel expansion (productive grasslands) was 71e169 g C m2 year1 during 2000e2008, indicating a carbon sink (more carbon is absorbed than released) in these areas. The spatially averaged ANEP for areas not suitable for biofuel feedstock development (less productive or degraded grasslands) was 47 to 69 g C m2 year1 during 2000e2008, showing a weak carbon source or a weak carbon sink (carbon emitted is nearly equal to carbon absorbed). The 9-year pre-harvest cumulative ANEP was 1166 g C m2 for the suitable areas (a strong carbon sink) and 200 g C m2 for the non-suitable areas (a weak carbon sink). Results demonstrate and confirm that our method of dynamic modeling of ecosystem performance can successfully identify areas desirable and sustainable for future biofuel feedstock development. This study provides useful information for land managers and decision makers to make optimal land use decisions regarding biofuel feedstock development and sustainability

    Monitoring Drought Impact on Annual Forage Production in Semi-Arid Grasslands: A Case Study of Nebraska Sandhills

    Get PDF
    Land management practices and disturbances (e.g. overgrazing, fire) have substantial effects on grassland forage production. When using satellite remote sensing to monitor climate impacts, such as drought stress on annual forage production, minimizing land management practices and disturbance effects sends a clear climate signal to the productivity data. This study investigates the effect of this climate signal by: (1) providing spatial estimates of expected biomass under specific climate conditions, (2) determining which drought indices explain the majority of interannual variability in this biomass, and (3) developing a predictive model that estimates the annual biomass early in the growing season. To address objective 1, this study uses an established methodology to determine Expected Ecosystem Performance (EEP) in the Nebraska Sandhills, US, representing annual forage levels after accounting for non-climatic influences. Moderate Resolution Imaging Spectroradiometer (MODIS)-based Normalized Dierence Vegetation Index (NDVI) data were used to approximate actual ecosystem performance. Seventeen years (2000–2016) of annual EEP was calculated using piecewise regression tree models of site potential and climate data. Expected biomass (EB), EEP converted to biomass in kg*ha-1*yr-1, was then used to examine the predictive capacity of several drought indices and the onset date of the growing season. Subsets of these indices were used to monitor and predict annual expected grassland biomass. Independent field-based biomass production data available from two Sandhills locations were used for validation of the EEP model. The EB was related to field-based biomass production (R2 = 0.66 and 0.57) and regional rangeland productivity statistics of the Soil Survey Geographic Database (SSURGO) dataset. The Evaporative Stress Index (ESI), the 3- and 6-month Standardized Precipitation Index (SPI), and the U.S. Drought Monitor (USDM), which represented moisture conditions during May, June and July, explained the majority of the interannual biomass variability in this grassland system (three-month ESI explained roughly 72% of the interannual biomass variability). A new model was developed to use drought indices from early in the growing season to predict the total EB for the whole growing season. This unique approach considers only climate-related drought signal on productivity. The capability to estimate annual EB by the end of May will potentially enable land managers to make informed decisions about stocking rates, hay purchase needs, and other management issues early in the season, minimizing their potential drought losses

    Detecting Ecosystem Performance Anomalies for Land Management in the Upper Colorado River Basin Using Satellite Observations, Climate Data, and Ecosystem Models

    No full text
    This study identifies areas with ecosystem performance anomalies (EPA) within the Upper Colorado River Basin (UCRB) during 2005–2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions) at the 90% level of confidence. The EPA maps were validated using “percentage of bare soil” ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming) tended to have a higher (lower) percentage of bare soil, suggesting that our preliminary EPA maps are reliable and agree with ground-based observations. The 3-year (2005–2007) persistent EPA map from this study provides the first quantitative evaluation of ecosystem performance anomalies within the UCRB and will help the Bureau of Land Management (BLM) identify potentially degraded lands. Results from this study can be used as a prototype by BLM and other land managers for making optimal land management decisions

    Diseño y ensayos en tierra de paneles solares y baterías para un satélite de órbita baja = Design and testing procedures of a Low Earth Orbit (LEO) satellite power subsystem (solar panels and battery)

    Full text link
    Las principal conclusión que se puede obtener tras el estudio es que el satélite, tal y como se ha tenido en cuenta, es perfectamente funcional desde el punto de vista eléctrico. Por la parte de la generación de potencia, los paneles son capaces de ofreces una cantidad tal como para que aproximadamente la mitad (en el caso de funcionamiento normal) de esta potencia sea destinada a la carga útil. Además, incluso en los modos de fallo definidos, el valor de potencia dedicada a la carga útil, es suficientemente alta como para que merezca la pena mantener el satélite operativo. Respecto de las baterías, se puede observar por su comportamiento que están, sobredimensionadas y por ello actúan como un elemento regulador del sistema completo, ya que tiene un amplio margen de trabajo por el cual se puede modificar el funcionamiento general. Y esto se demuestra no sólo en cuanto al estado de carga, que para el perfil de consumo constante y el de cuatro pulsos de 120 W por día se mantiene siempre por encima del 99%, si no también en términos de charging rate, el cual se está siempre dentro de los límites establecidos por el fabricante, asegurando una vida operativa acorde con la nominal. Por último, sobre el propio método de simulación se puede extraer que aun no siendo la mejor plataforma donde estudiar estos comportamientos. Presenta el inconveniente de que, en ciertas partes, restringe la flexibilidad a la hora de cambiar múltiples condiciones al mismo tiempo, pero a cambio permite un estudio bastante amplio con un requisito de conocimientos y de complejidad bajo, de manera que habilita a cualquier estudiante a llevar a cabo estudios similares
    corecore