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a b s t r a c t

This study evaluates the carbon fluxes and trends and examines the environmental

sustainability (e.g., carbon budget, source or sink) of the potential biofuel feedstock sites

identified in the Greater Platte River Basin (GPRB). A 9-year (2000e2008) time series of net

ecosystem production (NEP), a measure of net carbon absorption or emission by ecosys-

tems, was used to assess the historical trends and budgets of carbon flux for grasslands in

the GPRB. The spatially averaged annual NEP (ANEP) for grassland areas that are possibly

suitable for biofuel expansion (productive grasslands) was 71e169 g C m�2 year�1 during

2000e2008, indicating a carbon sink (more carbon is absorbed than released) in these areas.

The spatially averaged ANEP for areas not suitable for biofuel feedstock development (less

productive or degraded grasslands) was �47 to 69 g C m�2 year�1 during 2000e2008,

showing a weak carbon source or a weak carbon sink (carbon emitted is nearly equal to

carbon absorbed). The 9-year pre-harvest cumulative ANEP was 1166 g C m�2 for the

suitable areas (a strong carbon sink) and 200 g C m�2 for the non-suitable areas (a weak

carbon sink). Results demonstrate and confirm that our method of dynamic modeling of

ecosystem performance can successfully identify areas desirable and sustainable for future

biofuel feedstock development. This study provides useful information for land managers

and decision makers to make optimal land use decisions regarding biofuel feedstock

development and sustainability.

ª 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Development of corn-based ethanol is limited because of

concerns about world food shortages, livestock and food price

increases, and negative environmental effects such as soil

erosion and increased demand for water for irrigation [1e7].

As a result, cultivation of cellulosic feedstock crops, such as

switchgrass (Panicum virgatum) [8e13], is expected to increase

in the near future [5,8,9]. In a previous study, we identified

grasslands potentially suitable for cellulosic feedstock

production (e.g., switchgrass) within the Greater Platte River

Basin (GPRB) based on a dynamic modeling of ecosystem
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performance (DMEP) approach [14]. This previous study

provided a new monitoring and modeling method that can

help land managers and decision makers make optimal land

use decisions regarding cellulosic feedstock development.

However, this previous study only represents the first step in

identifying grassland areas suitable for cellulosic feedstock

development. Further evaluating and examining environ-

mental and ecological sustainability (e.g., carbon budgets and

carbon trends) of these identified biofuel feedstock areas is

important and necessary.

Several studies have been conducted to assess the climate

and environmental impacts caused by biofuel feedstock

development (e.g., effects on water resources, soil organic

carbon, and greenhouse gas emissions) [15e20]. Investigations

on the carbon dioxide exchanges at biofuel experimental sites

carried out recently [21,22] indicated the potential of perennial

biofuel crops to sustainably maintain CO2-sink activity, but

there still is a need to scale-up these observations from

experimental sites to large geographic areas.

The main objective of this study is to evaluate the carbon

fluxes and carbon trends of the potential biofuel feedstock

areas identified by Gu et al. [14] in the GPRB using 9-year time

series of net ecosystem production (NEP) data developed by

Zhang et al. [23]. NEP is an important ecosystem-scale char-

acteristic for assessing and understanding terrestrial carbon

cycles, ecosystem services, and global climate changes

[24e31]. In this study, NEP (a comprehensive measure of

carbon accumulation [32]) is used as a proxy for long-term

environmental sustainability.

This study fills gaps in the previous research to assess the

environmental sustainability of the potential biofuel feed-

stock areas in the GPRB. Results from this study help better

understand the terrestrial carbon budget and carbon cycle in

the GPRB. This study will further validate that our method of

dynamic modeling of ecosystem performance, which uses

readily available data and requires much less processing

procedures, can successfully identify areas sustainable for

biofuel feedstock development. Results from this study will

provide useful information to land managers and decision

makers to make optimal land use decisions regarding biofuel

feedstock development and sustainability.

2. Materials and methods

2.1. Study area

This research is a continuation of our previous study of the

Greater Platte River Basin (Fig. 1, within the blue outline). The

GPRB is located in the heartland of the United States and

covers parts of Wyoming, Colorado, South Dakota, Kansas,

and most of Nebraska. The GPRB contains three river basins:

the Platte River Basin, the Niobrara River Basin, and the

Republican River Basin. The western part of the GPRB

(southeastern Wyoming and northeastern Colorado) has very

low rangeland productivity because of the unfavorable

conditions for vegetation growth (e.g., shallow or rocky soils,

low annual precipitation). The annual precipitation in the

GPRB increases from west to east from less than 250 mm to

greater than 600 mm. The eastern part of the GPRB has high

rangeland productivity because of the favorable vegetation

growth conditions (e.g., good soil and climate conditions) [14].

Fig. 1 is the National Land Cover Database (NLCD) map for the

GPRB [33]. The main vegetation cover types in the GPRB are

grassland (w50%) and cultivated crops (w30%). Other land

cover types include shrubs, evergreen and deciduous forests,

and pasture/hay.

2.2. Potential grassland biofuel feedstock sites

In a previous study, we used biophysical information in the

archival records of satellite data (i.e., a 9-year (2000e2008)

time series of the Normalized Difference Vegetation Index

(NDVI) data with a 250-m spatial resolution), site geophysical

and biophysical features (elevation, slope and aspect, and

soils), and weather and climate drivers to build ecosystem

performance models [14,34,35]. We identified grasslands

potentially suitable for cellulosic feedstock production (e.g.,

switchgrass) within the GPRB. We presumed that areas with

consistently high grassland productivity and with fair to good

range condition (lack of severe ecological disturbances such as

land fire and insect infestation) are potentially suitable for

cellulosic feedstock development. Unproductive grasslands

(grasslands with poor soils, steeper slopes, dry climate

conditions, or other conditions not conducive to vegetation

growth), degraded grasslands (multi-year persistent

ecosystem underperformance with poor range condition

caused by wildfire, insect infestation, or heavy grazing), or

grasslands with high vulnerability to erosion (e.g., the Sand

Hills ecoregion in Nebraska where removal of biomass may

lead to sand dune activation) are not appropriate for cellulosic

feedstock development.

Fig. 2 delineates grassland areas that are potentially suit-

able for cellulosic biofuel feedstock development within the

GPRB identified by Gu et al. (2012); the spatial resolution of the

map is 250 m. Pixels in green or blue represent productive

grasslands and where, according to our model, ecosystems

have consistently overperformed or normally performed (lack

of severe ecological disturbances with good and healthy

vegetation conditions) relative to weather and site condition

expectations. The growing season (from early April to late

October) averaged NDVIs (GSN) are 0.43e0.52 for the green

areas and are greater than 0.52 for the blue areas. The areas

identified as suitable for cellulosic biofuel feedstock develop-

ment are mainly located in the eastern section of the GPRB

(Fig. 2). Pixels in tan represent unproductive grasslands

(GSN � 0.43), grasslands with high vulnerability to erosion

(Sand Hills ecoregion), or degraded grasslands that are not

appropriate for biofuel feedstock development [14]. The non-

suitable areas are mainly located in the western and central

parts of the GPRB.

2.3. 9-Year (2000e2008) time series of NEP data

NEP, calculated as the difference between gross photosyn-

thetic assimilation and total ecosystem respiration, is

a measure of net carbon absorption or emission by ecosys-

tems [32,36,37]. The data-driven rule-based piecewise regres-

sion NEPmodels developed by Zhang et al. (2011) were derived

from multiple flux tower sites and years (2000e2008), satellite
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vegetation index (NDVI), phenological metrics, precipitation

and temperature, photosynthetically active radiation, and soil

water holding capacity (WHC) [23]. The locations and the

detailed site characteristic information of the flux towerswere

fully described by Zhang et al. [23]. These NEP models were

used to map the 9-year weekly time series of NEP for the Great

Plains grasslands. The annual NEPs (ANEP, total cumulative

NEP for a certain year) for 2000e2008 within the GPRB were

then calculated. The 2000e2008 time integrated ANEP (i.e.,

cumulative ANEP for the whole period) for the GPRB were also

computed for evaluation. Since the NEP models did not take

into account biomass removalwith harvest, the NEP data used

in this study are referred to as “pre-harvest” NEP.

2.4. Extracting time series ANEP data for individual
biofuel and non-biofuel sites

As the first step of this study, we evaluated the carbon budgets

and carbon trends for six individual sites within the GPRB,

shownwith red stars in Fig. 2.We arbitrarily selected two non-

biofuel sites (“Non-biofuel site 1” and “Non-biofuel site 2”) that

represent dry climate condition and unproductive or degraded

grassland: one is located in the western part of the GPRB

(southeastern Wyoming), and the other one is located in the

central part of the GPRB (central Nebraska). Subsequently, we

selected two moderate-biofuel sites (“Moderate-biofuel site 1”

and “Moderate-biofuel site 2”) that represent moderate

productive grasslands: one is located in the northern part of

the GPRB (southern South Dakota), and the other one is

located in the central part of the GPRB (central Nebraska).

Finally, we selected two high-biofuel sites (“High-biofuel site

1” and “High-biofuel site 2”) that represent high productive

grasslands with favorable soil, climate, and biophysical

conditions for vegetation growth: both are located in the

eastern part of the GPRB (central Nebraska). The 9-year time

series of ANEP and the cumulative ANEP data for the above six

sites were extracted from the ANEP maps. The 9-year ANEP

and the cumulative ANEP time series plots for the six sites

were then generated for evaluating carbon trends and

assessing carbon budgets (source or sink).

2.5. Spatially averaged ANEP data for the biofuel and
the non-biofuel areas

In order to evaluate and assess the overall carbon budgets and

trends for the entire biofuel and non-biofuel areas, we

computed the 2000e2008 time series spatially averaged ANEP

and the spatially averaged 9-year cumulative ANEP for the all-

(includes both high- and moderate-biofuel areas), the high-,

the moderate-, and the non-biofuel areas. These 9-year time

series data and plots will be used to evaluate the overall

carbon trends and carbon budgets (source or sink) of the

identified biofuel and non-biofuel feedstock areas and to

assess the environmental sustainability of these potential

biofuel feedstock areas within the GPRB.

2.6. Criteria for environment sustainability

As discussed in the previous section, NEP is a measure of net

carbon absorption or emission by ecosystems. Long-term

positive NEP (i.e., carbon sink, more carbon is absorbed from

the atmosphere than returned to the atmosphere) means an

Fig. 1 e Location of the Greater Platte River Basin (inside the blue outline) and the land cover types as identified in the

National Land Cover Database (NLCD). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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increase in the total carbon storage in the ecosystem including

soil organic carbon (SOC) and soil organicmatter (SOM), which

indicatesmore essential plant nutrients are stored and held in

the soil [38]. SOM helps maintain healthy soil by improving

soilWHC and protecting the soil fromwater andwind erosion.

Low WHC with limited soil moisture will decrease plant

production and increase overland flow of water, which is

associated with topsoil erosion. An increasing trend of SOM

(long-term carbon sinks) implies that an ecosystem is

improving in productivity or recovering or climbing to a newer

SOM equilibrium. On the other hand, long-term negative NEP

(i.e., carbon source, more carbon is released with respiration

than is taken up with photosynthesis) means a probable

decline in SOC and SOM, which negatively impacts the ability

of soil to retain both nutrients and minerals (since SOM

increases soil cation exchange capacity) [38]. Therefore,

consistent carbon sinks are a much better indicator of

a sustainable system than consistent carbon sources; NEP can

be used as a proxy for long-term environmental sustainability.

Previous studies indicated that grasslandsaregenerallyanet

sink for atmospheric CO2, and growing perennial grass can

provide great litter and root biomass for carbon storage [39e44].

Switchgrass is a perennial grass that does not need annual

tillage or annual planting after establishment (which can

increase SOM and retain a healthy soil condition) [38].

Switchgrass has an extensive deep root system and requires

a relatively small amount of fertilization and water (irrigation)

[10,39,45e48].Manystudiesshowedthatcultivatingswitchgrass

could lead to a carbon sink (especially 2 years after it is estab-

lished) [21,39,47,49,50]. Harvesting switchgrass for biofuels is

often done after senescence of the vegetation (i.e., plant carbo-

hydrates and nutrients have already been translocated to the

roots and basal shoots of the vegetation) and therefore would

have minimal impact on plant vigor. Furthermore, native

grasses usually store most of their carbon belowground [48];

therefore, removal of senesced switchgrass with appropriate

management (e.g., fertilization)willhaveminimal impactonthe

SOM and SOC. In summary, we presume that cultivating

switchgrass under a goodmanagement practice for biofuel will

potentially lead to a long-term carbon sink and be environ-

mentally sustainable. The current existing non-irrigated

productive grasslandsare a goodproxy for switchgrass biofuels.

Based on the above discussions, we presume that areas

with multi-year persistent positive NEP values (long-term

carbon absorption by ecosystem) are environmentally

sustainable for future biofuel feedstock development. In

contrast, areas with multi-year negative or near zero NEP

values (carbon emission exceeds or is nearly equal to carbon

absorption) are environmentally unsustainable for future

biofuel feedstock development.

Fig. 2 e Grassland areas that are potentially suitable for cellulosic biofuel feedstock development (green and blue) within the

GPRB identified by Gu et al. (2011). Pixels in green and blue represent areas that either overperformed or normally performed

for seven of nine years from 2000 to 2008 and withmoderate (the averaged GSN are 0.43e0.52) or high (the averaged GSN are

greater than 0.52) ecosystem site potential. Grassland areas that are not suitable for biofuel feedstock development are in

tan. Locations of the six representative sites are also shown in the figure (red stars).
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3. Results and discussion

3.1. ANEP and cumulative ANEP time series plots for the
six selected sites

Fig. 3a and b are the 2000e2008 ANEP and cumulative ANEP

time series plots for the six selected sites. Strong carbon sinks

(high positive ANEP and high positive cumulative ANEP, more

carbon is absorbed than emitted, 9-year accumulated

ANEP > 2000 g C m�2) can be found for the two high-biofuel

sites and one moderate-biofuel site (“Moderate-biofuel site

2” located in the central part of the GPRB), indicating these

sites are environmentally sustainable for future biofuel feed-

stock development. A moderate carbon sink (positive ANEP

and positive cumulative ANEP, 9-year accumulated

ANEP > 850 g Cm�2) is shown in Fig. 3 for the other moderate-

biofuel site (“Moderate-biofuel site 1” in southern South

Dakota). Although the ANEPs were near equilibrium for 2000

and 2002 because of drought conditions in these two years for

“Moderate-biofuel site 1” (Fig. 3a; http://droughtmonitor.unl.

edu/archive.html), the cumulative ANEP still showed a gener-

ally increasing trend (an overall moderate carbon sink) for this

site (Fig. 3b). Therefore, “Moderate-biofuel site 1” is also

environmentally sustainable for future biofuel feedstock

development.

Strong carbon sources (negative ANEP and negative

cumulative ANEP, more carbon is released than absorbed, 9-

year accumulated ANEP < �1040 g C m�2) are found for

“Non-biofuel site 1” (Fig. 3a and b), which is located in the

western part of the GPRB (southeastern Wyoming) with a dry

climate condition and unproductive or degraded grassland.

The environmental condition (carbon budget and trend)

indicates that this site would be unsustainable for future

biofuel feedstock development. Despite the fact that strong

carbon sinks occurred in several years (e.g., 2005, 2008) for

“Non-biofuel site 2,” which is located in the central part of the

GPRB (central Nebraska), the cumulative ANEPs were near

zero during 2000e2008, indicating that carbon flux (NEP) was

consistently near equilibrium for this site. Based on the

criteria (Section 2.6) for determining the environmental

sustainability of a site for future biofuel feedstock develop-

ment (i.e., long-term carbon absorptions with multi-year

persistent positive NEP values), “Non-biofuel site 2” would

be environmentally unsustainable for future biofuel feedstock

development.

These evaluations of the carbon fluxes and trends for the

six representative sites indicate that the potential biofuel

areas identified by Gu et al. (2012) are environmentally

sustainable for future biofuel development. These results

demonstrate that our DMEP method can successfully identify

and separate areas that are desirable (environmentally

sustainable) or undesirable (environmentally unsustainable)

for future biofuel feedstock development.

3.2. Carbon fluxes and trends for the all-biofuel areas
and the non-biofuel areas in the GPRB

In order to understand the general carbon trends and budgets

in the GPRB, we calculated the spatially averaged ANEP and

the spatially averaged cumulative ANEP for 2000e2008 for four

categories of biofuel suitability: all-, high-, moderate-, and

non-biofuels. The all-biofuels category combines the high-

and moderate-biofuels categories. Fig. 4a and b show the 9-

year time series spatially averaged ANEP and cumulative

ANEP plots for the four categories. During 2000e2008, the

spatially averaged ANEP for the all-, the high-, and the

moderate-biofuel areas were from 71 to 169 g C m�2 year�1,

99e161 g C m�2 year�1, and 18e177 g C m�2 year�1 (Fig. 4a),

respectively, indicating carbon sinks in these areas. The

spatially averaged ANEP for the non-biofuel areas was from

�47 to 69 g C m�2 year�1 during 2000e2008 (Fig. 4a), showing

aweak carbon source or aweak carbon sink (near equilibrium)

in these areas. The 9-year averaged ANEP were 130 g C m�2,

136 g C m�2, and 124 g C m�2 for the all-, the high-, and the

moderate-biofuel areas (strong carbon sinks) and 22 g C m�2

for the non-biofuel areas (near equilibrium). Fig. 4b also

exhibits significant cumulative ANEP increasing trends for the

three biofuel categories and a near zero trend for the non-

biofuel category. The 9-year cumulative ANEP for the all-,

the high-, themoderate-, and the non-biofuel areaswere 1166,

1225, 1117, and 200 g C m�2, respectively.

In summary, these overall NEP assessment results further

support the previous ANEP budget and trend results from the

Fig. 3 e 2000e2008 Time series plots for the six

representative sites. (a). ANEP, (b). Cumulative ANEP.

Locations of the six sites are shown in Fig. 2 (red stars).
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six individual sites and demonstrate again that our DMEP

method can successfully identify areas desirable (environ-

mentally sustainable) or unsuitable (environmentally unsus-

tainable) for biofuel feedstock development.

3.3. Discussion of the carbon budgets and trends

Previous studies have indicated that drought can significantly

influence terrestrial carbon sequestration [51e53]. Grassland

ecosystems shifted between a carbon sink in a normal year to

a carbon source in a drought year [23,51,54e56]. In this study,

we found that there are significant ANEP decreases in 2002 for

the moderate-biofuel and the non-biofuel areas (Fig. 4a).

These decreases are due to the severe-extreme drought that

occurred in the moderate-biofuel and the non-biofuel areas

during 2002 [23,57]. On the other hand, there was nearly no

ANEP decrease in 2002 for the high-biofuel areas. Based on the

historical drought condition maps derived from the National

Drought Monitor Data Archives [57], we found that there were

no severe droughts that affected the high-biofuel areas during

2002 and therefore led to no significant ANEP decrease in 2002.

Additionally, the 9-year spatially averaged cumulative

carbon flux (ANEP) for the all-biofuel areas (Fig. 4b) is

1166 g C m�2, indicating large amounts of carbon were

absorbed in these areas during 2000e2008. In reality, these

grassland ecosystems would not likely store such large

amounts of carbon. Therefore, it is important to understand

how the carbon is removed and transferred. As we previously

mentioned, the NEP data used in this study do not consider

biomass removalwith harvesting. Therefore, we presume that

in addition to possible sequestration of carbon in soil organic

matter, the following actions would remove the carbon (e.g.,

grass): (1) harvesting and transporting (selling) the grass to

other regions, (2) animal grazing, and (3) prairie fires (natural

or managed by ranchers). Animal grazing would remove

carbon from a site, but it would largely be returned eventually

by animal manure and decomposition. All thesemanagement

practices, combined with most carbon storage being below-

ground for native perennial grass, shouldmaintain the carbon

balance for the GPRB grassland biofuel areas.

The identified biofuel feedstock areas with long-term

persistent carbon sink have stored more essential plant

nutrients and maintained a healthy soil condition. This

implies that these areas are improving in productivity or

recovering or climbing to a newer SOC equilibrium, which

means they are suitable and sustainable for future biofuel

development. Moreover, genetic modification of biofuel crops

(e.g., switchgrass or other species) may improve future yields.

4. Conclusions

This study extends our previous research to evaluate the

carbon flux and examine the environmental sustainability

(e.g., carbon source or sink) of the potential biofuel feedstock

sites identified by Gu et al. (2012) in the GPRB. We used the 9-

year time series of NEP data thatwas developed by Zhang et al.

(2011) to assess the historical carbon budgets and trends for

the sites suitable (or unsuitable) for biofuel feedstock devel-

opment in the GPRB.

The spatially averaged ANEP for the all-biofuel areas was

from 71 to 169 g C m�2 year�1 during 2000e2008, indicating

persistent carbon sinks (more carbon was absorbed than

emitted) in these areas. The spatially averaged ANEP for the

non-biofuel areas was from �47 to 69 g C m�2 year�1 during

2000e2008, showing a weak carbon source or a weak carbon

sink (carbon input and output is near equilibrium) in these

areas. The 9-year averaged ANEPs for the all- and the non-

biofuel areas were 130 g C m�2 (a strong carbon sink) and

22 g C m�2 (carbon input and output is near equilibrium),

respectively. The 9-year cumulative ANEP plots illustrate the

notable increasing trends for the three biofuel categorical

areas and a near zero trend for the non-biofuel areas. The 9-

year pre-harvest cumulative ANEP was 1166 g C m�2 (a strong

carbon sink) for the all-biofuel areas and 200 g C m�2 (a weak

carbon sink) for the non-biofuel areas.

These results further improve our understanding of the

environmental sustainability conditions of the potential bio-

fuel feedstock areas previously identified in the GPRB. This

study confirms that our DMEP method, which uses readily

available data and requires much less processing procedures

and could therefore be more available as a tool for land

managers, can successfully identify areas that are desirable

and sustainable for future biofuel feedstock development.

Fig. 4 e 2000e2008 Spatially averaged time series plots for

the non-, the moderate-, the high-, and the all-biofuel

grasslands. (a) Spatially averaged ANEP, (b) Cumulative

spatially averaged ANEP.
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Results from this study provide useful information for land

managers and decision makers to make optimal land use

decisions regarding biofuel feedstock development and

sustainability.
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