15 research outputs found

    Proficiency-aware systems

    Get PDF
    In an increasingly digital world, technological developments such as data-driven algorithms and context-aware applications create opportunities for novel human-computer interaction (HCI). We argue that these systems have the latent potential to stimulate users and encourage personal growth. However, users increasingly rely on the intelligence of interactive systems. Thus, it remains a challenge to design for proficiency awareness, essentially demanding increased user attention whilst preserving user engagement. Designing and implementing systems that allow users to become aware of their own proficiency and encourage them to recognize learning benefits is the primary goal of this research. In this thesis, we introduce the concept of proficiency-aware systems as one solution. In our definition, proficiency-aware systems use estimates of the user's proficiency to tailor the interaction in a domain and facilitate a reflective understanding for this proficiency. We envision that proficiency-aware systems leverage collected data for learning benefit. Here, we see self-reflection as a key for users to become aware of necessary efforts to advance their proficiency. A key challenge for proficiency-aware systems is the fact that users often have a different self-perception of their proficiency. The benefits of personal growth and advancing one's repertoire might not necessarily be apparent to users, alienating them, and possibly leading to abandoning the system. To tackle this challenge, this work does not rely on learning strategies but rather focuses on the capabilities of interactive systems to provide users with the necessary means to reflect on their proficiency, such as showing calculated text difficulty to a newspaper editor or visualizing muscle activity to a passionate sportsperson. We first elaborate on how proficiency can be detected and quantified in the context of interactive systems using physiological sensing technologies. Through developing interaction scenarios, we demonstrate the feasibility of gaze- and electromyography-based proficiency-aware systems by utilizing machine learning algorithms that can estimate users' proficiency levels for stationary vision-dominant tasks (reading, information intake) and dynamic manual tasks (playing instruments, fitness exercises). Secondly, we show how to facilitate proficiency awareness for users, including design challenges on when and how to communicate proficiency. We complement this second part by highlighting the necessity of toolkits for sensing modalities to enable the implementation of proficiency-aware systems for a wide audience. In this thesis, we contribute a definition of proficiency-aware systems, which we illustrate by designing and implementing interactive systems. We derive technical requirements for real-time, objective proficiency assessment and identify design qualities of communicating proficiency through user reflection. We summarize our findings in a set of design and engineering guidelines for proficiency awareness in interactive systems, highlighting that proficiency feedback makes performance interpretable for the user.In einer zunehmend digitalen Welt schaffen technologische Entwicklungen - wie datengesteuerte Algorithmen und kontextabhängige Anwendungen - neuartige Interaktionsmöglichkeiten mit digitalen Geräten. Jedoch verlassen sich Nutzer oftmals auf die Intelligenz dieser Systeme, ohne dabei selbst auf eine persönliche Weiterentwicklung hinzuwirken. Wird ein solches Vorgehen angestrebt, verlangt dies seitens der Anwender eine erhöhte Aufmerksamkeit. Es ist daher herausfordernd, ein entsprechendes Design für Kompetenzbewusstsein (Proficiency Awareness) zu etablieren. Das primäre Ziel dieser Arbeit ist es, eine Methodik für das Design und die Implementierung von interaktiven Systemen aufzustellen, die Nutzer dabei unterstützen über ihre eigene Kompetenz zu reflektieren, um dadurch Lerneffekte implizit wahrnehmen können. Diese Arbeit stellt ein Konzept für fähigkeitsbewusste Systeme (proficiency-aware systems) vor, welche die Fähigkeiten von Nutzern abschätzen, die Interaktion entsprechend anpassen sowie das Bewusstsein der Nutzer über deren Fähigkeiten fördern. Hierzu sollten die Systeme gesammelte Daten von Nutzern einsetzen, um Lerneffekte sichtbar zu machen. Die Möglichkeit der Anwender zur Selbstreflexion ist hierbei als entscheidend anzusehen, um als Motivation zur Verbesserung der eigenen Fähigkeiten zu dienen. Eine zentrale Herausforderung solcher Systeme ist die Tatsache, dass Nutzer - im Vergleich zur Abschätzung des Systems - oft eine divergierende Selbstwahrnehmung ihrer Kompetenz haben. Im ersten Moment sind daher die Vorteile einer persönlichen Weiterentwicklung nicht unbedingt ersichtlich. Daher baut diese Forschungsarbeit nicht darauf auf, Nutzer über vorgegebene Lernstrategien zu unterrichten, sondern sie bedient sich der Möglichkeiten interaktiver Systeme, die Anwendern die notwendigen Hilfsmittel zur Verfügung stellen, damit diese selbst über ihre Fähigkeiten reflektieren können. Einem Zeitungseditor könnte beispielsweise die aktuelle Textschwierigkeit angezeigt werden, während einem passionierten Sportler dessen Muskelaktivität veranschaulicht wird. Zunächst wird herausgearbeitet, wie sich die Fähigkeiten der Nutzer mittels physiologischer Sensortechnologien erkennen und quantifizieren lassen. Die Evaluation von Interaktionsszenarien demonstriert die Umsetzbarkeit fähigkeitsbewusster Systeme, basierend auf der Analyse von Blickbewegungen und Muskelaktivität. Hierbei kommen Algorithmen des maschinellen Lernens zum Einsatz, die das Leistungsniveau der Anwender für verschiedene Tätigkeiten berechnen. Im Besonderen analysieren wir stationäre Aktivitäten, die hauptsächlich den Sehsinn ansprechen (Lesen, Aufnahme von Informationen), sowie dynamische Betätigungen, die die Motorik der Nutzer fordern (Spielen von Instrumenten, Fitnessübungen). Der zweite Teil zeigt auf, wie Systeme das Bewusstsein der Anwender für deren eigene Fähigkeiten fördern können, einschließlich der Designherausforderungen , wann und wie das System erkannte Fähigkeiten kommunizieren sollte. Abschließend wird die Notwendigkeit von Toolkits für Sensortechnologien hervorgehoben, um die Implementierung derartiger Systeme für ein breites Publikum zu ermöglichen. Die Forschungsarbeit beinhaltet eine Definition für fähigkeitsbewusste Systeme und veranschaulicht dieses Konzept durch den Entwurf und die Implementierung interaktiver Systeme. Ferner werden technische Anforderungen objektiver Echtzeitabschätzung von Nutzerfähigkeiten erforscht und Designqualitäten für die Kommunikation dieser Abschätzungen mittels Selbstreflexion identifiziert. Zusammengefasst sind die Erkenntnisse in einer Reihe von Design- und Entwicklungsrichtlinien für derartige Systeme. Insbesondere die Kommunikation, der vom System erkannten Kompetenz, hilft Anwendern, die eigene Leistung zu interpretieren

    Spatial Cognition in Children With Physical Disability; What Is the Impact of Restricted Independent Exploration?

    Get PDF
    Given the developmental inter-relationship between motor ability and spatial skills, we investigated the impact of physical disability (PD) on spatial cognition. Fifty-three children with special educational needs including PD were divided into those who were wheelchair users (n = 34) and those with independent locomotion ability (n = 19). This division additionally enabled us to determine the impact of limited independent physical exploration (i.e., required wheelchair use) on spatial competence. We compared the spatial performance of children in these two PD groups to that of typically developing (TD) children who spanned the range of non-verbal ability of the PD groups. Participants completed three spatial tasks; a mental rotation task, a spatial programming task and a desktop virtual reality (VR) navigation task. Levels of impairment of the PD groups were broadly commensurate with their overall level of non-verbal ability. The exception to this was the performance of the PD wheelchair group on the mental rotation task, which was below that expected for their level of non-verbal ability. Group differences in approach to the spatial programming task were evident in that both PD groups showed a different error pattern from the TD group. These findings suggested that for children with both learning difficulties and PD, the unique developmental impact on spatial ability of having physical disabilities, over and above the impact of any learning difficulties, is minimal

    Proceedings of the Scientific-Practical Conference "Research and Development - 2016"

    Get PDF
    talent management; sensor arrays; automatic speech recognition; dry separation technology; oil production; oil waste; laser technolog

    Practising Comparison: Logics, Relations, Collaborations

    Get PDF
    This book compares things, objects, concepts, and ideas. It is also about the practical acts of doing comparison. Comparison is not something that exists in the world, but a particular kind of activity. Agents of various kinds compare by placing things next to one another, by using software programs and other tools, and by simply looking in certain ways. Comparing like this is an everyday practice. But in the social sciences, comparing often becomes more burdensome, more complex, and more questions are asked of it. How, then, do social scientists compare? What role do funders, their tools and databases play in social scientific comparisons? Which sorts of objects do they choose to compare and how do they decide which comparisons are meaningful? Doing comparison in the social sciences, it emerges, is a practice weighed down by a history in which comparison was seen as problematic. As it plays out in the present, this history encounters a range of other agents also involved in doing comparison,who may challenge the comparisons of social scientists themselves. This book introduces these questions through a varied range of reports, auto-ethnographies, and theoretical interventions that compare, and analyse these different and often intersecting comparisons. Its goal is to begin a move away from the critique of comparison and towards a better comparative practice, guided not by abstract principles, but a deeper understanding of the challenges of practising comparison

    WEHST: Wearable Engine for Human-Mediated Telepresence

    Get PDF
    This dissertation reports on the industrial design of a wearable computational device created to enable better emergency medical intervention for situations where electronic remote assistance is necessary. The design created for this doctoral project, which assists practices by paramedics with mandates for search-and-rescue (SAR) in hazardous environments, contributes to the field of human-mediated teleparamedicine (HMTPM). Ethnographic and industrial design aspects of this research considered the intricate relationships at play in search-and-rescue operations, which lead to the design of the system created for this project known as WEHST: Wearable Engine for Human-Mediated Telepresence. Three case studies of different teams were carried out, each focusing on making improvements to the practices of teams of paramedics and search-and-rescue technicians who use combinations of ambulance, airplane, and helicopter transport in specific chemical, biological, radioactive, nuclear and explosive (CBRNE) scenarios. The three paramedicine groups included are the Canadian Air Force 442 Rescue Squadron, Nelson Search and Rescue, and the British Columbia Ambulance Service Infant Transport Team. Data was gathered over a seven-year period through a variety of methods including observation, interviews, examination of documents, and industrial design. The data collected included physiological, social, technical, and ecological information about the rescuers. Actor-network theory guided the research design, data analysis, and design synthesis. All of this leads to the creation of the WEHST system. As identified, the WEHST design created in this dissertation project addresses the difficulty case-study participants found in using their radios in hazardous settings. As the research identified, a means of controlling these radios without depending on hands, voice, or speech would greatly improve communication, as would wearing sensors and other computing resources better linking operators, radios, and environments. WEHST responds to this need. WEHST is an instance of industrial design for a wearable “engine” for human-situated telepresence that includes eight interoperable families of wearable electronic modules and accompanying textiles. These make up a platform technology for modular, scalable and adaptable toolsets for field practice, pedagogy, or research. This document details the considerations that went into the creation of the WEHST design

    Spatial cognition in virtual environments

    Get PDF
    Since the last decades of the past century, Virtual Reality (VR) has been developed also as a methodology in research, besides a set of helpful applications in medical field (trainings for surgeons, but also rehabilitation tools). In science, there is still no agreement if the use of this technology in research on cognitive processes allows us to generalize results found in a Virtual Environment (VE) to the human behavior or cognition in the real world. This happens because of a series of differences found in basic perceptual processes (for example, depth perception) suggest a big difference in visual environmental representation capabilities of Virtual scenarios. On the other side, in literature quite a lot of studies can be found, which give a proof of VEs reliability in more than one field (trainings and rehabilitation, but also in some research paradigms). The main aim of this thesis is to investigate if, and in which cases, these two different views can be integrated and shed a new light and insights on the use of VR in research. Through the many experiments conducted in the "Virtual Development and Training Center" of the Fraunhofer Institute in Magdeburg, we addressed both low-level spatial processes (within an "evaluation of distances paradigm") and high-level spatial cognition (using a navigation and visuospatial planning task, called "3D Maps"), trying to address, at the same time, also practical problems as, for example, the use of stereoscopy in VEs or the problem of "Simulator Sickness" during navigation in immersive VEs. The results obtained with our research fill some gaps in literature about spatial cognition in VR and allow us to suggest that the use of VEs in research is quite reliable, mainly if the investigated processes are from the higher level of complexity. In this case, in fact, human brain "adapts" pretty well even to a "new" reality like the one offered by the VR, providing of course a familiarization period and the possibility to interact with the environment; the behavior will then be “like if” the environment was real: what is strongly lacking, at the moment, is the possibility to give a completely multisensorial experience, which is a very important issue in order to get the best from this kind of “visualization” of an artificial world. From a low-level point of view, we can confirm what already found in literature, that there are some basic differences in how our visual system perceives important spatial cues as depth and relationships between objects, and, therefore, we cannot talk about "similar environments" talking about VR and reality. The idea that VR is a "different" reality, offering potentially unlimited possibilities of use, even overcoming some physical limits of the real world, in which this "new" reality can be acquired by our cognitive system just by interacting with it, is therefore discussed in the conclusions of this work
    corecore