241 research outputs found

    Lateral flow immunoassays with fluorescent reporter technologies

    Get PDF
    Lateral flow assays (LFAs) are user-friendly diagnostic test devices most commonly known from the home pregnancy tests. Since their appearance in the market in 1980’s, LFAs have become well-established and products have been developed for various applications, but the most commonly sold LFAs still have the same basic features as the early products. Compared to other rapid diagnostic test (RDT) platforms, the main benefits of LFAs include inexpensive manufacturing costs, relatively fast assay development process, and the stand-alone capability of the test to be used without any instrumentation. The analytical membrane that provides the solid support for the bioassay reagents and allows the liquids to migrate through the binder lines by capillary force is almost exclusively manufactured of nitrocellulose. As the nitrocellulose remains the most widely used material, its optical properties, mechanical robustness, and chemical stability are not optimal for the RDT development. However, the established status of the nitrocellulose membrane in the RDT industry and the continuous product development suggests that the material will remain in LFAs for years to come. Typically, in LFAs, the coloured reporter particles form visible lines on the analytical membrane depending on the presence or absence of the analyte of interest. The visible lines can be interpreted visually without any instrumentation. However, the visual assessment of the assay read-out is prone to subjectivity in interpretation and can be affected by poor lighting conditions. Moreover, the visual read-out can only be used to generate a qualitative or a semi-quantitative result. The versatility of the lateral flow technology can be improved by using efficiently quantifiable reporter technologies such as fluorescent nanoparticles. However, the drawback of pursuing high analytical sensitivity and quantitative results by fluorescent reporter is the apparent need for a reader instrument. With fluorescent reporters, the optical properties of the assay membranes and sample fluids must be considered in order to achieve minimal interference to the detection of the reporters. Autofluorescence originating from the assay materials can be avoided by using the upconverting nanoparticle (UCNP) detection technology. Nevertheless, the non-analyte specific background signal can still occur from non-specific binding of the reporter particles. The aim of the thesis is to explore the opportunities arising from the use of different fluorescent reporter particles to improve the analytical sensitivities of LFAs, and to evaluate the feasibility of fluorescent reporter particles as a substitute for common visually detectable reporters. Exploiting the increased detectability of the reporter particles to improve the assay sensitivity requires careful re-optimization of the assay conditions

    Workshop on Advanced Technologies for Planetary Instruments, part 1

    Get PDF
    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments

    Gated frequency-resolved optical imaging with an optical parametric amplifier for medical applications

    Full text link

    Innovative approaches to selective detection and remote analysis : developments in surface-enhanced raman scattering (sers)-based and separations-based fiberoptic chemical sensors

    Get PDF
    This two-part study investigates the feasibility of selective detection in remote analysis based on 1) surface-enhanced Raman scattering (SERS), and 2) separations-based fiberoptic sensing (SBFOS). For the first case, the extremely sharp spectral features of Raman scattering can sometimes allow the analysis of multicomponent samples without complicated sample pretreatment steps. Furthermore, the giant signal-enhancing effect of SERS can enable trace level detection. A solid, surface-based metallic substrate approach is taken for the development of a practical SERS technology. Various substrates are described, including silver-coated alumina, silver-coated Ti02, and silver islands. These substrates are economical and easy to fabricate with a high degree of reproducibility. Furthermore, they are readily integrated with fiberoptic sensors for remote SERS detection. Three fiberoptic SERS sensor systems are described in this work. The surface-based substrates are also applied to the detection of organic vapors. In the latter case, the high separation efficiency of capillary electrophoresis is coupled with laser-induced fluorescence (LIF) detection in the development of a fiberoptic sensor. Although LIF can offer exceptional detectability, its application to the analysis of complex samples can be difficult due to the broadband nature of fluorescence. It often requires sample pretreatment steps such as separations. In the SBFOS approach, separations can be performed remotely. Several complications are associated with the development of CE-based SBFOSs and are described in this work. Four SBFOS designs are described and applied to analysis environmentally and biomedically significant samples

    Development of a microfluidic device for gaseous formaldehyde sensing = Développement d\u27un dispositif microfluidique pour la détection de formaldéhyde à l\u27état gazeux

    Get PDF
    Formaldehyd (HCHO) ist eine chemische Verbindung, die bei der Herstellung einer großen Zahl von Haushaltsprodukten verwendet wird.Charakteristisch ist seine hohe FlĂŒchtigkeit aufgrund einer niedrigen Siedetemperatur (T=−19 ℃T = - 19\ ℃). Daher ist HCOH fast ĂŒberall als Luftschadstoff in InnenrĂ€umen vorhanden. Die Miniaturisierung analytischer Systeme zu Handheld-GerĂ€t hat das Potenzial, nicht nur effizientere, sondern auch empfindlichere Instrumente fĂŒr die EchtzeitĂŒberwachung dieses gefĂ€hrlichen Luftschadstoffs zu ermöglichen. Die vorliegende Doktorarbeit prĂ€sentiert die Entwicklung eines Mikrofluidik-GerĂ€ts fĂŒr die Erfassung von HCHO basierend auf der Hantzsch-Reaktion.Hierbei wurde der Schwerpunkt auf die Komponente fĂŒr Fluoreszenzdetektion gelegt. Es wurde eine umfangreiche Literaturrecherche durchgefĂŒhrt, die es erlaubt, den Stand der Technik auf dem Gebiet der Miniaturisierung des Fluoreszenzsensors zusammenzufassen. Auf Grund dieser Studie wurde ein modulares Fluoreszenzdetektionskonzept vorgeschlagen, das um einen CMOS-Bildsensor (CIS) herum entwickelt wurde. Zwei dreischichtige Fluidikzellenkonfigurationen (Konfiguration 1: Quarz - SU-8 3050 - Quarz und Konfiguration 2: Silizium - SU-8 3050 - Quarz) wurden in Betracht gezogen und parallel unter den gleichen experimentellen Bedingungen getestet. Die Verfahren der Mikrofabrikation der fluidischen Zellen wurden detailliert beschrieben, einschließlich des Integrationsprozesses der Standardkomponenten und der experimentellen Verfahren. Der CIS-basierte Fluoreszenzdetektor bewies seine LeistungsfĂ€higkeit, eine anfĂ€ngliche HCHO-Konzentration von 10 ”g/L vollstĂ€ndig in 3,5-Diacetyl-1,4-dihydrolutidin (DDL- derivatisiert) sowohl fĂŒr die Quarz- als auch fĂŒr die Silizium-Fluidikzellen zu detektieren. Beide Systemewiesenein Abfragevolumen von 3,5 ”L auf. Ein offensichtlich höheres Signal-Rausch-VerhĂ€ltnis (SNR) wurde fĂŒr die Silizium-Fluidzelle (SNRsilicon=6.1\text{SNR}_{\text{silicon}} = 6.1) im Vergleich zur Quarz-Fluidzelle (SNRquartz=4.9\text{SNR}_{\text{quartz}} = 4.9) beobachtet. Die VerstĂ€rkung der SignalintensitĂ€t in der Silizium-Fluidzelle ist wahrscheinlich auf den Silizium-Absorptionskoeffizienten bei der AnregungswellenlĂ€nge zurĂŒckzufĂŒhren,a(λabs=420 nm)=5∙104cm−1a\left( \lambda_{\text{abs}} = 420\ nm \right) = 5 \bullet 10^{4}\text{cm}^{- 1}. Dieser Koeffizient ist ungefĂ€hr fĂŒnfmal höher als der Absorptionskoeffizient bei der FluoreszenzemissionswellenlĂ€nge a(λem=515 nm)=9.25∙103cm−1a\left(\lambda_{\text{em}} = 515\ nm \right) = 9.25 \bullet 10^{3}\text{cm}^{- 1}. HCHO wird aufgrund seiner relativ hohen Konstanten fĂŒr das Henry-Gesetz sehr schnell in ein flĂŒssiges Reagenz aufgenommen. Somit hĂ€ngt die Auswahl des molekularen Einfangverfahrens (Schwallströmung, Ringströmung oder membranbasierte Strömungswechselwirkung) von derLeistungsfĂ€higkeit des Fluoreszenzdetektors ab. Ein vorlĂ€ufiges Konzept, das auf der Verwendung einer Gas-FlĂŒssigkeitsmembran-basierten Wechselwirkung zum stĂ€ndigen Abfangen des gasförmigen HCHO basiert, wurde eingefĂŒhrt. Hierzu wurden kompatible Materialien und Herstellungsmethoden identifiziert. DarĂŒber hinaus wurden CFD-Simulationen durchgefĂŒhrt, um die MikrokanallĂ€nge unter verschiedenen hydrodynamischen Bedingungen abzuschĂ€tzen, die fĂŒr eine vollstĂ€ndige HCHO-Derivatisierung erforderlich sind. Eine Verbesserung und Vereinfachung auf der Grundlage von sehrnempfindlichen Fluoreszenzdetektoren mit niedrigen Detektionsgrenzen könnte zukĂŒnftig basierend z. B. auf Schwallströmung oder Ringströmung möglich sein

    Advanced technologies for planetary instruments

    Get PDF
    The planetary science community described instrumentation needed for missions that may go into development during the next 5 to 10 years. Then the DoD community to informed their counterparts in planetary science about their interests and capabilities, and to described the BMDO technology base, flight programs, and future directions. The working group sessions and the panel discussion synthesized technical and programmatic issues from all the presentations, with a specific goal of assessing the applicability of BMDO technologies to science instrumentation for planetary exploration.edited by J. Appleby.Clementine II: A Double Asteroid Flyby and Impactor Mission / Boain, R.J. -- The APX Spectrometer for Martian Missions / Economou, T. -- Clementine Sensor Processing System / Feldstein, A.A. -- The Ultraviolet Plume Instrument (UVPI) / Horan, D.M. -- New Technologies for UV Detectors / Joseph, C.L

    Nevada Test Site-Directed Research and Development: FY 2006 Report

    Full text link

    Design and Characterization of a High-resolution Cardiovascular Imager

    Get PDF
    Fluoroscopic imaging devices for interventional radiology and cardiovascular applications have traditionally used image-intensifiers optically coupled to either charge-coupled devices (CCDs) or video pick-up tubes. While such devices provide image quality sufficient for most clinical applications, there are several limitations, such as loss of resolution in the fringes of the image-intensifier, veiling glare and associated contrast loss, distortion, size, and degradation with time. This work is aimed at overcoming these limitations posed by image-intensifiers, while improving on the image quality. System design parameters related to the development of a high-resolution CCD-based imager are presented. The proposed system uses four 8 x 8-cm three-side buttable CCDs tiled in a seamless fashion to achieve a field of view (FOV) of 16 x 16-cm. Larger FOVs can be achieved by tiling more CCDs in a similar manner. The system employs a thallium-doped cesium iodide (CsI:Tl) scintillator coupled to the CCDs by straight (non-tapering) fiberoptics and can be operated in 78, 156 or 234-microns pixel pitch modes. Design parameters such as quantum efficiency and scintillation yield of CsI:Tl, optical coupling efficiency and estimation of the thickness of fiberoptics to provide reasonable protection to the CCD, linearity, sensitivity, dynamic range, noise characteristics of the CCD, techniques for tiling the CCDs in a seamless fashion, and extending the field of view are addressed. The signal and noise propagation in the imager was modeled as a cascade of linear-systems and used to predict objective image quality parameters such as the spatial frequency-dependent modulation transfer function (MTF), noise power spectrum (NPS) and detective quantum efficiency (DQE). The theoretical predictions were compared with experimental measurements of the MTF, NPS and DQE of a single 8 x 8-cm module coupled to a 450-microns thick CsI:Tl at x-ray beam quality appropriate for cardiovascular fluoroscopy. The measured limiting spatial resolution (10% MTF) was 3.9 cy/mm and 3.6 cy/mm along the two orthogonal axes. The measured DQE(0) was ~0.62 and showed no dependence with incident exposure rate over the range of measurement. The experimental DQE measurements demonstrated good agreement with the theoretical estimate obtained using the parallel-cascaded linear-systems model. The temporal imaging properties were characterized in terms of image lag and showed a first frame image lag of 0.9%. The imager demonstrated the ability to provide images of high and uniform spatial resolution, while preserving and potentially improving on DQE performance at dose levels lower than that currently used in clinical practice. These results provide strong support for potential adaptation of this type of imager for cardiovascular and pediatric angiography
    • 

    corecore