19 research outputs found

    Video Quality Metrics

    Get PDF

    No-reference video quality assessment model based on artifact metrics for digital transmission applications

    Get PDF
    Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2017.Um dos principais fatores para a redução da qualidade do conteúdo visual, em sistemas de imagem digital, são a presença de degradações introduzidas durante as etapas de processamento de sinais. Contudo, medir a qualidade de um vídeo implica em comparar direta ou indiretamente um vídeo de teste com o seu vídeo de referência. Na maioria das aplicações, os seres humanos são o meio mais confiável de estimar a qualidade de um vídeo. Embora mais confiáveis, estes métodos consomem tempo e são difíceis de incorporar em um serviço de controle de qualidade automatizado. Como alternativa, as métricas objectivas, ou seja, algoritmos, são geralmente usadas para estimar a qualidade de um vídeo automaticamente. Para desenvolver uma métrica objetiva é importante entender como as características perceptuais de um conjunto de artefatos estão relacionadas com suas forças físicas e com o incômodo percebido. Então, nós estudamos as características de diferentes tipos de artefatos comumente encontrados em vídeos comprimidos (ou seja, blocado, borrado e perda-de-pacotes) por meio de experimentos psicofísicos para medir independentemente a força e o incômodo desses artefatos, quando sozinhos ou combinados no vídeo. Nós analisamos os dados obtidos desses experimentos e propomos vários modelos de qualidade baseados nas combinações das forças perceptuais de artefatos individuais e suas interações. Inspirados pelos resultados experimentos, nós propomos uma métrica sem-referência baseada em características extraídas dos vídeos (por exemplo, informações DCT, a média da diferença absoluta entre blocos de uma imagem, variação da intensidade entre pixels vizinhos e atenção visual). Um modelo de regressão não-linear baseado em vetores de suporte (Support Vector Regression) é usado para combinar todas as características e estimar a qualidade do vídeo. Nossa métrica teve um desempenho muito melhor que as métricas de artefatos testadas e para algumas métricas com-referência (full-reference).The main causes for the reducing of visual quality in digital imaging systems are the unwanted presence of degradations introduced during processing and transmission steps. However, measuring the quality of a video implies in a direct or indirect comparison between test video and reference video. In most applications, psycho-physical experiments with human subjects are the most reliable means of determining the quality of a video. Although more reliable, these methods are time consuming and difficult to incorporate into an automated quality control service. As an alternative, objective metrics, i.e. algorithms, are generally used to estimate video quality quality automatically. To develop an objective metric, it is important understand how the perceptual characteristics of a set of artifacts are related to their physical strengths and to the perceived annoyance. Then, to study the characteristics of different types of artifacts commonly found in compressed videos (i.e. blockiness, blurriness, and packet-loss) we performed six psychophysical experiments to independently measure the strength and overall annoyance of these artifact signals when presented alone or in combination. We analyzed the data from these experiments and proposed several models for the overall annoyance based on combinations of the perceptual strengths of the individual artifact signals and their interactions. Inspired by experimental results, we proposed a no-reference video quality metric based in several features extracted from the videos (e.g. DCT information, cross-correlation of sub-sampled images, average absolute differences between block image pixels, intensity variation between neighbouring pixels, and visual attention). A non-linear regression model using a support vector (SVR) technique is used to combine all features to obtain an overall quality estimate. Our metric performed better than the tested artifact metrics and for some full-reference metrics

    30 Years of Video Coding Evolution - What Can We Learn from it in Terms of QoE?

    Get PDF
    From the beginnings of ITU-T H.261 to H.265 (HEVC), each new video coding standard has aimed at halving the bitrate at the same perceptual quality by redundancy and irrelevancy reduction. Each improvement has been explained by comparably small changes in the video coding toolset. This contribu- tion aims at starting the Quality of Experience (QoE) analysis of the accumulated improvements over the last thirty years. Based on an overview of the changes in the coding tools, we analyze the changes in the quan- tized residual information. Visual comparison and sta- tistical measures are performed and some interpreta- tions are provided towards explaining how irrelevancy reduction may have led to such a huge reduction in bitrate. The interpretation of the results in terms of QoE paves the way towards an understanding of the coding tools in terms of visual quality. It may help in understanding how the irrelevancy reduction has been improved over the decades. Understanding how the differences of the residuals relate to known or yet un- known properties of the human visual system, may en- able a closer collaboration between perception research and video compression research

    Computational inference and control of quality in multimedia services

    Get PDF
    Quality is the degree of excellence we expect of a service or a product. It is also one of the key factors that determine its value. For multimedia services, understanding the experienced quality means understanding how the delivered delity, precision and reliability correspond to the users' expectations. Yet the quality of multimedia services is inextricably linked to the underlying technology. It is developments in video recording, compression and transport as well as display technologies that enables high quality multimedia services to become ubiquitous. The constant evolution of these technologies delivers a steady increase in performance, but also a growing level of complexity. As new technologies stack on top of each other the interactions between them and their components become more intricate and obscure. In this environment optimizing the delivered quality of multimedia services becomes increasingly challenging. The factors that aect the experienced quality, or Quality of Experience (QoE), tend to have complex non-linear relationships. The subjectively perceived QoE is hard to measure directly and continuously evolves with the user's expectations. Faced with the diculty of designing an expert system for QoE management that relies on painstaking measurements and intricate heuristics, we turn to an approach based on learning or inference. The set of solutions presented in this work rely on computational intelligence techniques that do inference over the large set of signals coming from the system to deliver QoE models based on user feedback. We furthermore present solutions for inference of optimized control in systems with no guarantees for resource availability. This approach oers the opportunity to be more accurate in assessing the perceived quality, to incorporate more factors and to adapt as technology and user expectations evolve. In a similar fashion, the inferred control strategies can uncover more intricate patterns coming from the sensors and therefore implement farther-reaching decisions. Similarly to natural systems, this continuous adaptation and learning makes these systems more robust to perturbations in the environment, longer lasting accuracy and higher eciency in dealing with increased complexity. Overcoming this increasing complexity and diversity is crucial for addressing the challenges of future multimedia system. Through experiments and simulations this work demonstrates that adopting an approach of learning can improve the sub jective and objective QoE estimation, enable the implementation of ecient and scalable QoE management as well as ecient control mechanisms

    A variable passive low-frequency absorber

    Get PDF

    Towards an Understanding of Tinnitus Heterogeneity

    Get PDF
    corecore