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Summary

Quality is the degree of excellence we expect of a service or a product.
It is also one of the key factors that determine its value. For multimedia
services, understanding the experienced quality means understanding how
the delivered fidelity, precision and reliability correspond to the users’ ex-
pectations. Yet the quality of multimedia services is inextricably linked to
the underlying technology. It is developments in video recording, compres-
sion and transport as well as display technologies that enables high quality
multimedia services to become ubiquitous. The constant evolution of these
technologies delivers a steady increase in performance, but also a growing
level of complexity. As new technologies stack on top of each other the in-
teractions between them and their components become more intricate and
obscure. In this environment optimizing the delivered quality of multime-
dia services becomes increasingly challenging. The factors that affect the
experienced quality, or Quality of Experience (QoE), tend to have complex
non-linear relationships. The subjectively perceived QoE is hard to mea-
sure directly and continuously evolves with the user’s expectations. Faced
with the difficulty of designing an expert system for QoE management that
relies on painstaking measurements and intricate heuristics, we turn to an
approach based on learning or inference. The set of solutions presented in
this work rely on computational intelligence techniques that do inference
over the large set of signals coming from the system to deliver QoE models
based on user feedback. We furthermore present solutions for inference of
optimized control in systems with no guarantees for resource availability.
This approach offers the opportunity to be more accurate in assessing the
perceived quality, to incorporate more factors and to adapt as technology
and user expectations evolve. In a similar fashion, the inferred control
strategies can uncover more intricate patterns coming from the sensors and
therefore implement farther-reaching decisions. Similarly to natural sys-
tems, this continuous adaptation and learning makes these systems more
robust to perturbations in the environment, longer lasting accuracy and
higher efficiency in dealing with increased complexity. Overcoming this in-
creasing complexity and diversity is crucial for addressing the challenges of
future multimedia system. Through experiments and simulations this work
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demonstrates that adopting an approach of learning can improve the sub-
jective and objective QoE estimation, enable the implementation of efficient
and scalable QoE management as well as efficient control mechanisms.
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Introduction

We perceive the environment through our senses. Between the different
senses, the visual dominates the sensory input accounting for 80% of the
received information. Accordingly, the neural system has evolved to effi-
ciently process this incoming data. Approximately 50% of the posterior
cerebral cortex is dedicated to visual information processing [1]. We per-
ceive the details in the visual information directly and rapidly [2]. Com-
parably, people retain 10% of what they hear, 30% of what they read and
80% of what they see and do [3]. Video utilizes these mechanisms to deliver
high density of information. It is therefore a very attractive medium for
a growing number of digital services. Whether it is a simple animation
that illustrates the distance to the next turn on our navigation device or a
video enabled group teleconferencing that delivers visual contact with our
peers, video delivers more information faster than other media. As video
enabled services become more present in our lives, our expectations about
their performance and reliability is being set. In order to meet customer’s
expectations, service providers need to be able to deliver increasingly more
demanding services with higher quality standards. This development de-
livers a high toll on maintenance costs and requires frequent upgrades of
available resources. Moreover, the upgrade of some wired and wireless
transmission technologies is becoming more challenging as technologies are
reaching some physical limits. In this situation the need for smarter man-
agement strategies is evident as traditional management approaches such
as over-provisioning offer little to improve the utilization of the resources.

Efficient management of networked services requires understanding of
the relationship between different available resources, i.e. computational,
storage, network throughput and the delivered quality. However, video-
enabled services are operating on a vast diversity of terminal devices, en-
coding and transmission systems. Video is practically being watched on
devices of all shapes and sizes, and over many different wired and wireless
network systems. Each of them delivers slightly different experience to the
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user, as their performance and characteristics varies.

Another dimension of complexity is added by the interactions between
different parts of the system. As stacks of technologies work together to
deliver the services, the complex interdependencies between them and the
effect on the perceived quality is often not fully understood. In addition,
service providers rarely have control over all the components of the video
delivery system, and have to rely on the quality of supporting services.

On top of all, there is no established method for estimating the quality
of video-enabled services. The perceived quality is highly subjective and
depends on many external factors, such as the environment, user expec-
tations and the type of content. Existing methods for subjective quality
estimation are complex and costly to implement and present high variance
in the results.

Motivated by these challenges, this thesis proposes an approach for effi-
cient management of multimedia services. It presents a QoE aware frame-
work for network management that incorporates computational intelligence
methods to deal with the evolving complexities in the multimedia systems,
and introduces a novel psychometric method that deals with the difficulties
of subjective measurements. The framework is designed as a control loop
over a general-purpose multimedia system.

As illustrated in Figure 1.1, a negative feedback control loop consists of
three units: the controller, the sensor and the system under control. The
sensor measures the system output and compares it with the desired one.
The difference is fed into the controller that inputs a control strategy to
the system in order to minimize the measured difference. Similarly, the
multimedia system controller issues different management strategies based
on the measured performance of the system (Figure 1.2). The measured
value is the subjective QoE perceived by the user and the objectively mea-
sured performance by the system components. This value is compared with
the desired level of performance and the difference is sent to the controller.
The controller can then manage the different system components, allocate
necessary resources, execute admission control, or implement other control
strategies to achieve the desired level of performance.

This approach offers a viable way to incorporate the large number of
factors that affect the quality into the decision process of the controller.
It provides for a way to continuously learn and improve the management
process based on measurements of the performance and subjective user
feedback. In this manner the system maintains a high level of performance



1.1 QoE Definition 3

9
(%]
—+
c
=
o
o
S
o
™

System input System output

v

<
'~

Measured
output

Error

Desired output

Figure 1.1: A feedback loop in a control system

with minimum cost in the changing environment. This results in a better
utilization of the available resources and a user-centric based management.

1.1 QoE Definition

In the framework presented here, the system output (or the main per-
formance metric) is the subjectively perceived quality. But how do we
understand the term ’quality’ in regards to multimedia services?
According to the dictionary, the meaning of quality is: "The degree of
excellence’ [4] (of a product, service or activity). Quality as a phenomenon
has been examined in many disciplines such as philosophy, business and en-
gineering. More specifically quality involves perception, but also expecta-
tions. Some definitions refer to it as a subjective phenomenon: ” The feeling
of high quality occurs when perception exceeds expectation; the feeling of
low quality occurs when perception does not meet expectation.” [5]. Other
definitions focus on more objective, measurable factors: ”Degree to which
a set of inherent characteristics fulfils requirements.” where requirement
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Figure 1.2: Control loop in a multimedia system

is defined as need or expectation [6]. In any case, quality is connected
with either objective or subjective expectations. More precisely quality is
evaluated in regards to the objectively measured or subjective perceived
performance.

For services such as telephony, computer networks, and including voice
services built on top of them a commonly used metric for quality is the
Quality of Service (QoS). QoS defines a set of requirements that need to
be met in order for the service to be considered of high quality. These
requirements are objectively measurable values and consider performance
factors, such as latency and errors in the network. The possibility to set
these well defined QoS requirements is enabled by the good understanding
of the compression and transmission factors and the subjective perception
of speech. However, with the introduction of new types services and var-
ied content, all delivered on a plethora of different devices, understanding
‘subjective’ perception becomes challenging.
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The need to better communicate the service quality has created a need
for a precise quality metric. However, instead of continuously expanding
and adapting the QoS requirements, the choice was made to introduced a
new metric: the Quality of Experience (QoE) [7]. This metric is better
suited for the task, because it is a subjective metric, which captures the
effect of all the factors that contribute to the subjective experience.

QoE appears in the literature by different definitions, but generally
it is agreed that ”QoE measures the quality experienced while using a
service” [8]. However, other definitions, such as the one from the ITU-T
Focus Group on IPTV (FG IPTV) [9] avoid using the term quality. The FG
IPTV defines QoE as the overall acceptability of an application or service,
as perceived subjectively by the end-user. The definition of the European
Network on QoE in multimedia systems and services is "QoF is the degree of
delight or annoyance of the user of an application or service. It results from
the fulfilment of his or her expectations with respect to the utility and/or
enjoyment of the application or service in the light of the user’s personality
and current state’ [7]. The relation to the subjective perception of the user
and its expectations is clearly evident as the defining characteristic of the
metric.

Defining QoE is the initial step. In order to successfully build an efficient
management system we need to first understand which factors affect it and
how. Next we need to understand the relationship between the available
resources in the system and those factors. Finally we need to know how
to develop control strategies that utilize the available resources in such a
manner as to maximize the delivered QoE.

1.2 Factors that affect QoE

QoE is a metric that captures the degree to which our expectations about
the service have been met. But, how do we form expectations of a video
service and which are the factors that affect it?

We perceive multimedia stimuli first with our senses, and ultimately
through the cognitive processes in the brain. Naturally, the characteristics
of the human visual and auditory systems are intrinsically linked to the
expectations from multimedia services. The auditory system can detect
sound in a specific range of frequencies. The typical hearing range for
a human is between 20Hz and 20KHz [10]. Therefore, reproduction of
sound outside of this range will add no additional quality or value to the
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service; it will only spend more resources. The visual system has elevated
sensitivity to contrast in the range of 0.5 to 16 cycles per degree of visual
angle and drops of abruptly on higher frequency [11]. This means that a
1080p HDTYV reproduction viewed at a distance between 3 and 4 screen
heights can generate patterns on our retina with up to 28 and 37 cycles per
degree respectively. This is significantly above the threshold limit for most
viewers [12], so increasing the resolution more at this distance will be of
little utility.

These examples demonstrate that even though we intuitively consider
fidelity of the video and audio as the most significant factor in quality,
this has to be taken into the context of the characteristics of the HVS.
Improving certain aspects of fidelity could be without any benefit. On the
other hand, limited loss of fidelity can be just as imperceptible as a flaw-
less reproduction, while delivering significant benefits in terms of resource
utilization.

The Human visual and auditory system is not only characterized by a
hearing range and a contrast sensitivity range. It is actually very complex
and not fully understood. As more characteristics are being discovered the
more we can use this knowledge to optimize multimedia services. Some
of these limitations are commonly used to improve coding efficiency. For
example high spatial frequencies are perceived achromatic [13]. So the
amount of data that conveys the colour of the image can be safely reduced
in respect to the amount of data that carries the luminance of the image.
Other characteristics, such as the masking effects can be used to cover noise
in images. If the noise is superimposed over a region of patterns with high
contrast, it is significantly less perceptible than over a uniformly coloured
region.

Video compression techniques benefit from the varying sensitivity to
different ranges of spatial frequency. The video is first transformed into
the frequency domain using a discrete cosine transform (DCT) [14]. Then
different parts of the image can be encoded with different precision. The
last step is known as quantization, whereby high-frequency coefficients are
more coarsely quantized than low-frequency coefficients. This is referred to
as a lossy compression method. Even though lossy compression can deliver
significant benefits in reducing the size of the video, it also causes loss in
quality. Quantization causes artefacts such as blockiness, particularly in
heavily compressed video, which degrade the QoE.

Further artefacts appear in a video due to modern compression tech-
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niques, such as blur, colour bleeding, ringing, false edges and jagged mo-
tion [12]. Some of them are present due to spatial compression techniques,
which compress individual images. Others are present due to temporal
compression method, which reduces the redundancy over multiple images.

Another factor that introduces artefacts is transmission errors [15, 16].
When a packet of video data is lost, has errors or does not arrive on time the
video decoder can freeze the video playback or compensate by using some
concealment method. Usually this means interpolating neighbouring pixels
in space and in time [17]. However, this often results in very noticeable
artefacts.

When transmission protocols are used to guarantee delivery via retrans-
mission, the lack of network resources leads to delays and freezes in play-
back. This is a very important factor in the overall experience of the service
and can have the most significant impact [18]. It is also established that
impairments such as freezes and errors have higher impact on the QoE as
their amplitude and frequency increase [19].

Adaptive video streaming technologies allow for reducing the fidelity of
the signal in order to avoid freezes. This technique attempts to improve
the delivered QoE in cases of restricted resources by downloading the video
at lower bit-rates. In this case predicting the right bit-rate level is impor-
tant as the changes of bit-rate levels during playback have shown to be an
impairment on its own. The size of the impairment is proportional to the
frequency and amplitude of the change [20].

Naturally, the audio quality is a key factor in the QoE of multimedia
services. In fact, audio quality is even more important factor than video
quality [12]. Audio compression also benefits from the characteristics of the
auditory system. Lossy audio compression methods cause audio artefacts
in a similar fashion to the video compression methods. However, audio
compression and encoding requires significantly less resources than video
and, because of its importance, its resources are rarely restricted. This
often shifts the management focus on the video aspect.

Nevertheless, other more general aspects are also important factors.
One such example is the audio and video synchronization. The investigation
of media synchronization in [21] concludes that the effect of unsynchronized
audio on the QoE depends on the type of content. For some types of content
as head and shoulders news broadcast, it has a massive effect. However,
for other content the viewers can demonstrate more tolerance. In another
investigation of audio and video correlation and lip synchronization Mued
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et al. conclude that the effects on the perceived quality from audio-video
misalignment are different when the content is of a passive or an active
communication [22] .

Depending on the type of service, there could be other types of impair-
ments such as start-up delays or loss in responsiveness. Overall the factors
that affect the QoE are noticeable and are not expected by the viewer. We
use our eyes and ears to collect the information from the outside world,
but it is the brain that forms our perceptions [23]. The cognition process
in the human brain is not understood well, however we know that we do
not need all the details to recognize a pattern. Our sensors are designed
in this manner, working in restricted ranges. The rest of the details are
conceptualized by the cognition process. Nevertheless, with fewer details,
the brain needs to work harder to compensate. Sometimes we are willing
to do that, because we are watching an old family movie on an outdated
technology. But, other times, when we are watching a video on our new
and costly mobile device our expectations are high, so the delivered QoE
needs to reflect that. As this might be an insurmountable task, measuring
QoE in relative terms can be a better solution than attempting to make an
inaccurate absolute metric. Pursuing this approach we have developed a
method for measuring subjective video quality, which estimates the utility
of the system resources in terms of the delivered QoE [24, 25].

1.3 Resources vs. Quality

We have seen that a significant amount of factors contribute to the QoE.
However, there is also a clear relationship between these factors and the
available resources. Most types of artefacts can be efficiently masked if we
can encode the video with enough bits, which also need to be transported by
the network accurately and on time. Unfortunately, in any real engineered
system the available resources are limited. We can only serve a limited
number of users, the network can only transport a limited number of bits
per second, and finally storage space and computational power are equally
limited. So in order to efficiently manage the system we need to understand
the relationship between the allocated resources and the resulting QoE.
The audio and video fidelity have a clear relationship with the avail-
able resources. The more bits are used in the encoding process the more
accurate the decoded audio and video will be. Uncompressed video con-
tains no encoding degradation, but it requires very large storage space and
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is not suitable for transmission over a restricted network channel. Com-
pression can be ’lossless’ where the signal can be exactly reproduced or
"lossy’ that introduces loss in the fidelity of the signal. Since high defini-
tion multimedia content requires significant compression rates (50:1 [26]),
lossy encoding techniques present an attractive choice. This is further sup-
ported by the leniency of the human visual and auditory system to certain
type of distortions. So, the optimal quality is usually achieved in a bal-
anced combination of the parameter values that results in minimal use of
resources and a satisfactory level of accuracy.

Each digital video encoding process produces video streams with spe-
cific bit-rates. The bit-rate is directly linked to the quality of the video
stream and most encoders accept a bit-rate setting as input. It can be ei-
ther set as a soft (indication) or as a hard (constraint) limit on the encoder
in constant bit-rate encoding. In variable bit-rate encoding (VBR), the in-
dicator is usually a quality setting. Therefore, the stream is with constant
quality rather than having a constant bit-rate. Based on this setting and
the complexity of the video, the encoder compresses the video with a cer-
tain average bit-rate. Therefore the bit-rate required to encode the video
depends on the type of encoding algorithm, the complexity of the video and
the desired quality. Since transport throughput is also a limited resource,
the video bit-rate needs to be adjusted accordingly in order to meet the
transport network constraints. This is commonly achieved by compressing
the video with constant bit-rate encoding (CBR). Typically, MPEG-like
algorithms will introduce increasingly larger amounts of artifacts (such as
blockiness and blurriness) as the bit-rate is reduced [12]. In other words the
video data will be more coarsely quantized in the frequency domain, which
will lead to blockiness in the decoded video. The encoder attempts to limit
the blockiness effect on low spatial frequencies of the video, which are less
perceptible to the viewers. However, very constrained compressions result
in highly visible artefacts. Another type of artifact due to encoding is blur-
riness. This one arises from inadequate temporal fidelity of the encoded
video [27].

The loss of fidelity can originate from the pre-encoding process as well.
The spatial resolution of the digital video is one of the key factors for
the size of the video after encoding. The recording equipment usually has
much higher resolution that what can be practically used in video streaming
applications. Particularly for mobile devices the resolution needs to be ad-
justed to the limitations of the devices in screen resolution, computational
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power or network throughput. It is common to downscale the resolution of
the original video before encoding, because it reduces the encoding com-
putation time as well as the size of the resulting video. In cases where
the target screen resolution is lower than the input video this pre-encoding
process is only beneficial. On the other hand, restricting only the bit-rate
can degrade the video more, add more computational on the encoder and
on the decoder for downscaling.

In addition to the spatial resolution decrease, there is temporal resolu-
tion decrease, or decrease in frame-rate. Frame-rate is usually kept to less
than 30 frames per second due to the characteristics of the human visual
systems. However frame-rate acceptability depends on the type of con-
tent [28]. Certain types of content that have low mobility and small spatial
resolution, frame-rates as low as 10 frames per second can be acceptable.
This is particularly useful for very low bit-rate channels in mobile environ-
ments where lower frame-rates help achieve the required low throughput.
Similar pre-encoding can be implemented in the audio, when sampling rate
and sampling frequency are downscaled.

Making the right decisions during the encoding process is key to mini-
mizing the amount of delivered artifacts. Rate distortion theory provides a
the theoretical foundation for this problem. The theory is a branch of in-
formation theory and deals with lossy data-compression [29]. Based on this
theory many rate distortion optimization (RDO) methods have been devel-
oped and are commonly incorporated in the decision process of multimedia
encoders [30].

Another reason for occurrence of artefacts is errors incurred during
transmission. The amount of degradation in quality due to such errors
is not easy to estimate due to the very nature of video compression [31].
The removal of temporal redundancy in the video leads to propagation of
the errors in multiple frames. This can be constrained by adding more
I-frames or reference frames that do not require frame from other data
to be compressed. However, increasing the frequency of the I-frames de-
creases the efficiency of the compression. Another approach to protect the
data stream is to use forward error correction techniques [32]. These tech-
niques add redundant data to the stream, which allows recovery of a limited
number of bits in case of errors or loss during transmission. Selecting the
appropriate amount of redundant data can be achieved by applying RDO
to this problem as well [33].

When transport protocols ensure delivery via packet retransmission the
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same mechanisms can cause delays and hence lower throughput. The net-
work throughput can also fluctuate, causing jitter in the arrival time of the
packets. This can result in difficulties for streaming of video as the decoder
cannot wait for late video packets. Buffering is used to compensate for
the effects of delay and jitter. However, in order to compensate for high
variation in packet arrival time significantly large buffer is necessary. This
imposes high memory requirements on the client but it also has a direct
effect on QoE, because it increases the start-up time of the playback. This
effect can be sometimes more damaging to QoE than lowering the bit-rate.

In this thesis we demonstrate a number of objective and subjective QoE
measurement techniques applied on a limited range of factors. We have
developed implementations on existing techniques and certain extensions
where the state-of-the art did not produce desired results. The results from
these measurements deliver valuable information on the effects of these
factors on QoE.

Nevertheless, in the effort to capture a fuller picture of the QoE of an
operating multimedia system, it becomes evident that there are a large
number of factors in play and there are an equally large number of parame-
ters in the system that contribute to this factors. The relationship between
the parameters, resources and technology in the system can be complex and
highly non-linear. So, there is a clear need to deal with this complexity and
uncover the relationship between the system intricacies and the QoE.

1.4 Handling the complexity of QoE modelling

Our ambition is to create a framework for QoE-aware management of mul-
timedia services. In order to do that we need to be able to understand
how our management decisions are affecting the QoE. Yet, as QoE is mul-
tifaceted and has complex relationships with the available resources in the
system, its modelling presents a challenge.

Many subjective studies of certain aspects of QoE (including our own)
have been executed. Most of them are focused on the efficiency of the
encoding [34], while others on the effects of specific errors on the quality.
However, considering all the factors that affect quality in a subjective study
would be an insurmountable task.

A more tractable way to deal with the multitude of factors that affect
QokE is to use computational techniques. Computational intelligence and,
more concretely, Machine Learning techniques offer the ability to correlate
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a vast amount of parameters with each output metric. They can discover
complex interdependencies and detect non-obvious patterns. QoE models
developed by combining objectively and subjectively measurable factors
can deliver much better understanding of the delivered QoE to the viewer
than by just looking at individual parameters such as bit-rate or video
resolution.

In this thesis we present a system that collects a multitude of mea-
surements from a multimedia system and correlates this information with
subjective feedback from the users. The models delivered from the corre-
lation can be further used to estimate the performance of the system over
a longer period of time.

On-line learning techniques can be used to continuously adapt these
models and deliver an accurate estimation of QoE, even in a continuously
changing environment. The understanding of QoE can deliver an efficient
longer term management cycle of monitoring, evaluation and provisioning.
Despite that, when faced with active control or short-term management
decisions we need to understand the effect of each decision on the QoE.
For this type of management instead of inference and modelling we need to
move on to optimal control strategies.

In the following chapters we present description of a QoE management
framework that addresses the challenge of complexity and adapts in an on-
line fashion. We also present an approach of QoE-aware active control of
multimedia systems, where short term decisions are made in correspondence
with the fluctuations in the available resource.

1.5 Learning vs. Deterministic Design

Management of networked services typically means provisioning enough
resources and allocating them appropriately. However, as certain resources
are shared over the systems their availability varies over time. For many
applications, making real-time decisions on the available resources makes
the difference between delivering high quality service and failing to do so.

The usual approach in developing an efficient controller for real-time
management is to design a suitable heuristic (or a rule based system) that
will take appropriate decisions based on the state of the system. This
approach requires a thorough understanding of the effects of the decisions
on the performance of the system. As complexity in the system grows the
design of efficient heuristics becomes more challenging and more expensive.
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As the system evolves rules become outdated.

In some areas, such as video encoding and video streaming RDO meth-
ods have been implemented to optimize the trade-off between quality and
resources. Even though these methods have sufficient theoretical basis,
practically the models that they rely on to calculate the rate and distor-
tion do not fully capture the complexity of different video sources [26].
Furthermore, with the growth in the complexity of the systems, the inter-
dependencies between the decision are not fully taken into account [35].

In contrast to this methodology, in this thesis we present an approach of
"learning’ optimal strategies rather than 'designing’ them. A computational
intelligence technique based on reinforcement learning is used to discover
the longer term utility of the decision, given the state of the system, and
develop an optimal strategy.

This technique relies on previous techniques for modelling QoE and on
well-established methods for reinforcement learning, offering an approach
for designing system control that is scalable and adaptable to the changes
in the environment.

1.6 Main contributions

The focus of this work is developing methods for efficient management and
control of delivered quality in multimedia services.

The main challenges facing this goal are understanding the different
factors that affect the quality, the growing complexity in the interaction of
those factors and the effect of the management decision on the quality.

In order to understand the delivered quality, we have defined QoE as its
metric, discussed the factors that affected it and the resources that relate
to these factors.

In Chapter 2 we continue to present a discussion on objective QoE
methods and our implementations and developments of supporting tech-
niques. Objective QoE methods are a cost effective way to measure the
factors the contribute to the delivered quality. Their use is widespread,
and they correlate in varying degree with the subjective QoE.

To understand the delivered QoE thoroughly, we turn to the subjec-
tive QoE methods in Chapter 3. This chapter presents a discussion on the
existing subjective QoE methods and their drawbacks. Furthermore, it in-
troduce a novel video subjective method based on psychometric evaluation
that addresses many of these challenges.
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Multimedia delivery systems are typically complex and their successful
management requires a broader approach. In Chapter 4 we present our
framework for QoE monitoring and provisioning that learns how to model
all available measurements into a QoE value. Moreover, we provide a solu-
tion for calculating the remedies in systems where the measured values are
not satisfactory.

In following chapter (Chapter 5) we present our approach for real-time
management or control of a multimedia system that infers the control logic
based on the measured QoE.

The work on objective and subjective QoE models builds a basis for
the QoE management and the QoE active control framework. These two
frameworks offer a method for efficient management and control of the qual-
ity in multimedia services faced with growing complexity and continuous
evolution of both the user expectations and the underlying technologies.
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Objective QoE Models

We have seen how QoE is a metric that relates to our subjective expec-
tations. Even though these expectations are not objectively measurable,
many factors that contribute to them are. For example we can measure
the loss of IP packets in the network and make an estimation on the effect
that this will have on QoE. Similarly, we can measure the amount of signal
degradation that a lossy compression process inflicts on the content. These
measurements do not convey the exact difference between the expected and
the delivered quality in a general case, but for more specific uses they can
provide a good indication. The models that contain objectively collected
measurements of factors that affect QoE are referred to as objective QoE
models.

The main motivation for the use of the objective methods is that the
objective factors can be measured precisely and at a lower cost than sub-
jective assessment. Furthermore, many such methods can be deployed on
a wide range of systems and their operation can be efficiently automated.
Due to this, objective methods are frequently used for modelling the system
quality and in-turn optimizing multimedia services.

Since video quality has such a significant importance on the overall
QoE management of multimedia streaming services [36], this section is
dedicated to a review of a range of methods for objective video quality
assessment (VQA). VQA has been of significant importance since the early
days of digital video, so many methods have been devised. The objective
quality methods are further divided into three groups based on the level
of involvement of the original reference signal in the estimation. The Full-
reference (FR) methods require the original material in its entirety. They
operate by comparing the original with the impaired material to calculate
the degradation. The calculation ranges from simple algorithms, such as
signal error estimates, to very complex ones that incorporate many HVS
characteristics in the estimation. The Reduced-reference (RR) methods
use parts or digests of the original material for the comparison calculation.
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They are better suited for situation where the original content is difficult
to store or transport to the place of estimation or computational power is
limited. Finally, No-reference (NR) methods do not use any part of the
original content. They do not rely on comparisons but on measurements of
external factors to model the QoE. The NR methods often are significantly
restricted for specific applications and are not applicable for general use,
but require the least resources and are useful for cases where the original
content is not available.

As the goal of this thesis is to develop efficient methods for managing
QoE of multimedia services, first we need to understand how to measure
it. In light of this, we present an overview on the most commonly used
objective QoE metrics as well as our experimental analysis of them in the
rest of this chapter.

2.1 State of the art

There are a vast number of objective video quality assessment methods [37,
38]. Some have evolved from image quality assessment, others have been
particularly designed for video. They range in complexity from simple and
easy to implement to very complex and computationally expensive. They
also vary in performance, some are very restricted with limited correlation
with the subjective QoE, and others are much better correlated. The rest
of this section presents a set of representative objective metrics, from very
simple with low correlation to very complex with high correlation with
subjective QoE.

2.1.1 PSNR

Peak signal to noise ratio (PSNR) is one of the most commonly used FR
VQA. The method is designed for a more general use, as it computes errors
in any type of signal, and is also intensely used for image quality assessment
(IQA) and VQA due to its simplicity.

PSNR estimates the difference between the original image and the dis-
torted one by calculating the mean squared error (MSE) (Equation 2.1)
between the two signals and giving the ratio between the maximum of the
signal and the MSE (Equation 2.2), where x;; is the value of the pixel in
the original image at coordinates (i, j); y;; is the value of the pixel at the
same coordinates in the impaired image; and where M A X7 is the maximum
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amplitude of the pixel values in the image.
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Regardless of its significant drawbacks (mainly its low correlation with
subjective estimations) [39-43], PSNR is still very present in video quality
analysis. It is easy to compute and provides a first impression on the quality
achieved.

Different studies in VQA have shown that PSNR shows certain level of
correlation to subjective quality when small number of factors is considered
[44]. Typical example is the quantization level effect on quality during the
compression of video. When all other factors are constant the effect of the
quantization in the encoder tends to correlate well with PSNR. In fact,
PSNR is also used for quality decisions in the encoder [45].

2.1.2 SSIM

The structural similarity index (SSIM) is a method that was originally
developed for IQA [46], but is widely used for VQA as well. SSIM does not
purely focus on bit-errors, but more on the changes in the structure of the
image. In this way it addresses some of the drawbacks of PSNR, such as
susceptibility to changes in brightness and contrast. The HVS demonstrates
luminance and contrast masking, which SSIM takes into account while
PSNR does not. The HVS demonstrates light adaptation characteristics
and as a consequence of that it is sensitive to relative changes in brightness.
This effect is referred to as luminance masking. On the other hand, changes
in contrast are less noticeable when the base contrast is high than when it
is low. This effect is referred to as contrast masking.

The SSIM index executes three comparisons, in terms of luminance,
contrast and structure. The output value is a combination of these three
comparisons as given in Equation 2.3, where x and y are vectors containing
the pixel values of the original and the impaired image, respectively.

SSIM([I},y) :f(l(.%',y),C(JZ',y),S(CC,y)) (23)
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For the luminance comparison, first the mean luminance is calculated
(Equation 2.4).

| N
i=1
Then a luminance comparison is executed as in Equation 2.5.

2ugpy + C1
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The value of the parameters C1 is set to (K1L)?%, where K7 << 1 is

a small constant and L is the dynamic range of the pixel values. The

average luminance is removed from the signal amplitude and a contrast

comparison is computed. The base contrast of each signal is computed
using its standard deviation (Equation 2.6).
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The contrast comparison is computed as given in Equation 2.7.
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c(z,y) =
For the structure comparison, the average luminance is subtracted and
is divided by its base contrast to normalize it. A Pearson correlation coef-

ficient is calculated as a measure of structural similarity (Equation 2.8 &
2.9).
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The SSIM output is a combination of all three components (Equation
2.10).

SSIM (z,y) = [l(z,y]*[c(z,y)]’[s(z,y)]” (2.10)
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This SSIM model is parameterized by «,3, v where typically the pa-
rameter values are «, 8 and v = 1. In order to simplify the expression the
parameter Cs5 is set to C3 = C2/2 (Equation 2.11.

(2papty + C1)(204y + C2)
(12 + p2 + Cr) (02 + 02 + C2

SSIM(x,y) = (2.11)
Since the luminance calculation 2.6 and the contrast calculation 2.7 are

consistent with the luminance and contrast masking effects respectively, the

SSIM metric performance is better correlated with subjective QoE [43].

2.1.3 VQM

Methods developed for IQA can deliver some level of indication as to the
degradation of video quality. However, these methods are not designed for
video and omit the temporal factors’ effects on the quality. One such exam-
ple is the motion masking effects, where high motion in the video decreases
the effect of loss of structure on the quality [47]. A model that addresses the
quality of video, taking into account the structural and temporal aspects,
is the video quality model (VQM) [48].

Because of its good correlation with subjective values, VQM is com-
monly used as a FR method. However, VQM does not compare the original
to the impaired video directly. It extracts features from the original and
the impaired video separately, and then compares those features to calcu-
late quality. This makes the method applicable for RR use as well. The
features that are extracted from the original video account for 9.3% of the
uncompressed size of the video. Additionally another 4.5% of data needs
to be transmitted for the initial pre-processing step of VQM where both
videos are calibrated in space and in time.

VQM is implemented by first applying a perceptual filter to the video
stream. This enhances some properties of perceived video quality, such as
the edge information. After this perceptual filtering, the video is segmented
in space and time into spatial-temporal (S-T) subregions. Next the features
are extracted from these S-T subregions. Finally, a perceptibility threshold
is applied to the extracted features, so that only impairments above this
threshold are considered.

The masking effects in the HVS imply that impairment perception is
inversely proportional to the amount of localized spatial or temporal ac-
tivity that is present. In other words, spatial impairments become less
visible as the spatial activity increases, and temporal impairments become
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less visible as the temporal activity increases. Furthermore, these masking
effects interact with each other, so spatial masking has effect on temporal
quality perception and vice versa. To account for these effects, in VQM the
perceptual impairment at each S-T region is calculated using comparison
functions. Some features use a comparison function that performs a simple
Euclidean distance between two original and two processed feature streams.
But more commonly, features use either the ratio comparison function or
the log comparison function.

After different impairment parameters have been calculated in different
spatial and temporal regions, these values need to be collapsed into a sin-
gle value for the quality index. Optimal spatial collapsing function often
involves some form of worst case processing, such as taking the average
of the worst 5% of the distortions observed at a particular point in time.
Because localized impairments tend to draw the focus of the viewer, mak-
ing the worst part of the picture the predominant factor in the subjective
quality decision is a good strategy. Finally spatial and temporal collapsing
functions are used to produce a single objective quality value for the video
sequence.

The parameters included in the VQM model are the following:

e siloss: detects a decrease or loss of spatial information (e.g., blur-
ring);

e hv_loss: detects a shift of edges from horizontal & vertical orienta-
tion to diagonal orientation; this might be the case if horizontal and
vertical edges suffer more from blurring than diagonal edges;

e hv_gain: detects a shift of edges from diagonal to horizontal & ver-
tical; this might be the case if the processed video contains tiling or
blocking artefacts;

e chroma_spread: detects changes in the spread of the distribution of
two-dimensional colour samples;

e si_gain: measures improvements to quality that result from edge
sharpening enhancements;

e ct_ati_gain: accounts for the interactions between the amount of spa-
tial detail and motion on the perceived of spatial and temporal im-
pairments (spatial and temporal masking);
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e chroma_extreme: detects severe localized colour impairments, such as
those produced by digital transmission errors.

The General Model is a weighted linear combination of these param-
eters (equation 2.12). The weights given in equation 2.12 are selected to
achieve maximum objective to subjective correlation for a wide range of
video quality and bit rates .

VM —0.2097 * si_loss

0.5969 * hv_loss

0.2483 x hv_gain

0.0192 * chroma_spread
2.4316 * si_gain

0.0431 * ct_ati_gain

0.0076 * chroma_extreme (2.12)
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2.1.4 MOVIE

MOtion-based Video Integrity Evaluation (MOVIE) is another VQA index
that integrates both spatial and temporal aspects [49]. It implements a
spatio-temporally localized, multi-scale decomposition of the reference and
test videos using a set of spatio-temporal Gabor filters [50]. The MOVIE
index is composed of two components. The first one is the spatial MOVIE
index, which uses the output of the multi-scale decomposition of the refer-
ence and test videos to measure spatial distortions in the video. The second
one is the temporal MOVIE index, which captures temporal degradations.
The Temporal MOVIE index first computes the motion information from
the reference video to generate motion trajectories. Then it evaluates the
temporal quality of the test video along the computed motion trajectories
of the reference video. In this way MOVIE attempts to account for the
motion processing of the HVS and capture the intensity of the temporal
distortions as would be perceived by the viewer.

Both MOVIE components work together. The spatial quality map gen-
erated by the spatial MOVIE, responds to the blur in the test video. The
temporal quality generated by the temporal MOVIE, maps motion com-
pensation mismatches on the edges.

The maps are then collapsed into two indexes. This is done by calcu-
lating the ratio of the standard deviation to the mean of the values in the
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map. This statistics is known as a coeflicient of variation, and is a good
predictor of the subjective quality of a video.

Even though, MOVIE is an objective method that correlates well with
subjective feedback from viewers, its high cost in computational power and
memory limits its implementation in real-time systems.

2.1.5 Reduced and no reference methods

A more suitable alternative for real-time quality estimation in content de-
livery systems is given by the RR and NR methods. These methods are also
applicable when the original content is not available, e.g. when different
video filtering is applied (denoiseing, deinterlacing, resolution upscaling or
due to storage restrictions). These methods, or models, are usually much
more restricted than the FR methods. Particularly the NR methods, only
deal with specific types of impairments and are not very accurate for general
use.

Gunawan and Ghanbari have developed a RR method that uses local
harmonic strength features from the original video to calculate the amount
of impairments or quality of the affected video [51]. Harmonic gains and loss
correlate well with two very common types of impairment present in MPEG
encoded video, i.e. blockiness and blurriness. The features (harmonic data)
in this RR method have a very low overhead of only 160 to 400 bits per
second, which is a negligible amount compared to the size of the video.

Ma et al, present a RR method that generates both spatial and tem-
poral features [52]. From the spatial perspective they define an energy
variant descriptor (EVD) to measure the energy change in each individual
encoded frame, which results from the quantization process. The EVD is
calculated as the proportion of the medium plus high frequencies in the
image to low frequencies. The EVD of the original video is then compared
to the EVD of the compressed video. Due to the fact that different fre-
quencies are quantized with different fidelity in a lossy compression process,
the EVD difference will indicate a level of impairment. The temporal fea-
tures are collected from the difference between two adjacent frames. On
these computed difference frames, a generalized Gaussian density function
is employed to extract these features. Then a city block distance is used
to calculate the distance between the features of the original video and the
impaired one. Finally all of the distances are combined to produce the
quality index. The authors claim that even though this is a RR method it
outperforms simpler FR methods such as PSNR and SSIM.
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NR methods are even more flexible than RR because they are applica-
ble to any video environment, even ones that do not have any information
on the original source of the video. Naturally their accuracy and general-
ity is highly constrained. NR models are frequently used to calculate the
impact of transport errors on the delivered video. In [16] authors present a
model for estimating MSE caused by packet loss, by examining the video
bit-stream. A single packet loss does not affect only the pixels of the video
frame that lost information in that packet but, due to the temporal com-
pression mechanisms of MPEG videos, these errors are propagated by the
motion vectors in the subsequent frames. The location of the packet is
of significant importance, because different types of frames carry informa-
tion of different nature. A similar approach for MPEG2 video is presented
in [15]. This method uses different machine learning (ML) algorithms to
predict the visibility of the lost packet on the presented video. The addi-
tional complexity that these NR methods face is that they are not aware
of the decoder’s approach to conceal the error. A typical concealment ap-
proach is zero-motion concealment, in which a lost macro-block is concealed
by a macro-block in the same location from a previous frame. However,
the visibility of this concealment depends on the content at this position,
size of the screen and many other factors that are generally related to the
overall QoE.

2.2 Models for JPEG2000 and MPEG4/AVC

During the encoding process of multimedia content the encoder continually
makes decision that the delivered bit-rate as well as the fidelity of the
compressed signal. Many optimization techniques are developed to help
make the most efficient decisions. These optimization techniques commonly
rely on objective quality models to evaluate the effect of different decisions.
In this section we present a discussion on objective models used in the
encoding process of images in JPEG2000 [53] and for video in MPEG4/AVC
[54].

Commonly JPEG2000 implementations adopt the rate-based distortion
minimization encoding approach that requires the user to specify the de-
sired bit-rate or the desired quality level. The encoder then needs to match
the desired bit-rate, while minimizing the loss of quality in the image or
provide a standardized level of quality for the minimum bit-rate. For both
of these modes the encoders need to understand the relationship between
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the bit-rate and the quality.

The simplest models for distortion are based on the MSE calculation
(e.g. PSNR). Even though these objective metrics do not correlate well with
the perception of the HVS their simplicity makes them an attractive option
for many encoder implementations. However, in other implementations
some characteristics of the HVS are used to improve the accuracy of the
MSE based models. The basic idea is to remove perceptually irrelevant
information, that is, information when removed introduce artifacts that
are imperceptible or bellow the threshold of detection by the receiver. In
the bit-rate mode that would mean eliminating all artifacts up to the point
that produces the desired size of image, while ordering the artifacts based
on their how sensitive the viewers is to them. And in the constant quality
mode, eliminating all the artifacts that create a distortion above the desired
level.

One of the better understood aspects of HVS is the contrast sensitiv-
ity [565]. The contrast sensitivity function (CSF) describes the sensitivity
of the human eye to different spatial frequencies. Instead of using MSE a
CSF weighted MSE function is introduced, which more efficiently reports
the quality [55]. Artifacts that are superimposed on a non uniform back-
ground with similar spatial frequency are much less noticeable. This type
of masking effect is exploited to improve the efficiency of RDO. Further-
more, an improvement in encoding efficiency in JPEG2000 is introduced by
adjusting the quantization step for each spatial frequency band individually
and in accordance with the CSF. In other words, the degradation will be
calculated higher per bit for spatial frequencies, for which the human eye
is more sensitive to.

The perceptual distortion coding presented in [56] attempts to discrim-
inate between signal components which are detected and are not detected
by the HVS. The models approach is to "hide’ the coding distortion beneath
the detection threshold and to remove perceptually irrelevant signal infor-
mation. In this method three visual phenomenon are used to calculate the
thresholds: contrast sensitivity, luminance masking and contrast masking.
The thresholds are defined by the smallest contrast that yields a visible
signal over background of uniform intensity. Constant a key factor because
the HVS perception depends much less on the absolute luminance per-
ceived, but rather on the variation in the signal relative to its surrounding
background. This phenomena is known as Weber-Fechner’s law [57]. After
calculating the localized thresholds the method uses a probability spectral
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and spatial summation model to develop an overall perceptual distortion
metric. The method is suitable for generating consistent quality images at
lower bit-rates.

A particular type of encoding, referred to as Embedded coding [58],
is designed for sending images over a network. The images encoded with
Embedded encoding if truncated are decoded into a visible image. This
type of images can also be decoded progressively, improving the overall
experience of the user. The image is encoded from the most significant
bit-plane to the least significant bit-plane. A RDO strategy adapted to the
embedded approach is the visual progressive weighting approach. In this
approach much more aggressive weighting strategy is implemented in the
beginning of the bit-stream with the more significant bit-planes and a less
aggressive as decoding proceeds and quality improves [59].

In video coding the RDO is further complicated by the temporal com-
ponent. The temporal aspect introduces additional masking effects that
can be leveraged for reduction of bit-rate. However, in video coding the
complexity of maintaining constant level of quality over the different frames
is is much higher [54].

One of the most commonly used video coding standards now is H.264
(MPEG-4 Part 10). H.264 as other standards before (H.263 and MPEG-2)
uses translational block-based motion compensation and transform based
residual coding [54]. The output bit-rate can be controlled by several coding
parameters the quantization scale and the coding mode. Large quantiza-
tion scale reduces the bit-rate, but also the fidelity of the compressed video.
The RDO problem is typically divided into three subproblems: Group of
pictures (GOP) bit allocation; frame bit allocation; and macroblock quan-
tization parameter (@) selection. For CBR allocation, first the GOP is
allocated the selected amount of bits, than this amount is distributed to
all the frames in the GOP. The distribution is made in such manner that
the quality of the frames is kept as constant as possible. Finally, a simi-
lar approach is taken to redistribute the allotted bits within the frame to
the macroblocks [60]. Measuring the quality or the distortion is commonly
done using PSNR of the compressed against the original signal.

The specification of H.264 does not define the way that the encoder is
implementing the RDO, this is left to the developers. The reference H.264
software uses RDO in which the Lagrangian multiplier A of the cost func-
tion J = D+ AR is selected taking into account the quantization value. An
optimal solution for this optimization would require perfect understanding
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of the characteristics of the video content and the effects on the encoder
parameters on it. Since this understanding is not available, the parameters
are either selected by executing several encoding passes and observing the
results [61] or using models for the rate-distortion effects based on differ-
ent parameter values [62]. The later approach is more favorable in many
approaches where the encoding process is time sensitive.

In the transform based coding approaches the macroblock data is trans-
formed into a set of coefficients using DCT (Discrete cosine transform).
The coefficients are than quantized and encoded with a variable-lenght
coding [62]. Due to this number of bits and the distortion for a given
macroblock depend on the quantization parameter and the entropy of the
coeflicients.

R(Q)~ H(Q) (2.13)

where H(Q) is the entropy of the DCT coefficients. The entoropy of
the coefficients is typically described by a Laplacian distribution [62] and
the rate function is modeled as given in 2.14.
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The distortion in the ;5 macroblock is introduced by uniformly quan-
tizing the DCT coefficients with a step size @Q;. This model defines the
distortion model as given in 2.15.
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In another model He et al, present the R-D model based on the fractions
of zeros among the quantized DCT coefficients p [63]. This model also
make the assumption that the coefficients are distributed with a Laplacian
distribution. The model represents the rate with a linear dependency from
p (Equation 2.16).

R=0(1-p) (2.16)

and the distrtion as given in Equation 2.17.

D = g% o=0) (2.17)
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where 6 and « are model parameters. The authors claim that this model
improves the delivered quality by an average 0.3dB [64].

Even though, most commonly generalized Gaussian or Laplacian distri-
bution is assumed for the DCT coefficients, methods exist that use other
distributions have also been proposed (Cauchy [60], however more complex
distribution lead to increased complexity in the models.

RDO optimization offers a key powerful mechanisms for optimizing the
trade-off between the bit-rate and quality. However, these sophisticated the
optimization models still rely on the simple objective quality (distortion)
measures due to the strict restrictions in computational complexity in the
domain of multimedia encoding.

2.2.1 Characterizing the video content

The perceived QoE depends on the type of video content as well [24]. In
order to build a more comprehensive QoE model we need to incorporate
information about the video content. Defining features that can be auto-
matically extracted from the video and that will carry information about
the type of content is not straight forward.

Two features that are expected to correlate well with the difficulty in
compressing videos are the Spatial Information (SI) and Temporal infor-
mation (TI) indexes. These can also to a certain extent correlate with the
type of the content [25].

The SI index carries the amount of spatial information in each frame of
the video. The more structural details or edges are present in the video the
higher the SI index will be. The SI is calculated as the standard deviation
over both the x and y directions of the frame (spatial standard deviation)
after the frame data has been put through a Sobel filter [65].

SI[Fy] = STDypace|Sobel(F,)] (2.18)

The Sobel function given in equation 2.18 implements the Sobel filter,
which is used to extract the edge structure information from the image [66].
The F,, variable refers to the nt" frame of the video.

The TI index carries information about the amount of temporal infor-
mation in the video, or the intensity of changes in the video over time. This
is proportional to the amount of movement in the video.

The TT is calculated as the difference between two frames and a spatial
standard deviation on that difference (Equations 2.19 & 2.20).
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AF, =F, — F,_, (2.19)

TI[F,] = STDspace|AF,] (2.20)

Videos with similar SI, T1 values tend to contain similar type of content
or have similar characteristics. For example ’head and shoulders’ videos,
which are common for news broadcast, tend to have low SI and TI. On the
other, hand videos with complex scenes and high amount of movement such
as action movies will have high SI and TI. In a similar fashion, different
types of content such as football matches, documentaries or music videos
tend to make separate clusters of SI and TI combinations. For this reason
ST and TT can be useful features to convey the type of content for the QoE
modelling.

Qualitatively similar types of features can be collected as a by product
from the encoding process itself [67]. In this case no additional calculation
is necessary to obtain these features. Hu and Wildfeuer define two indexes,
one for scene complexity C and one for level of motion M that can be
computed based on the amount of data in the I frames and the P frames
of the encoded video.

With a typical Group of Pictures type encoding (such as the H.264)
the amount of data in the I-frame corresponds to the level of complexity
in the image [67] (equation 2.21). This is due to the fact that the more
low frequency components there are in the image the more bits the encoder
needs to use in the I-frame to encode the frame if the encoding is set to a
constant quality mode. Similarly the P-frame corresponds to the amount
of changes that happened since the last I-frame, so it correlates well with
the amount of movement in the video (equation 2.22).

By

C= 570 oo1am (2.21)
Bp

M= 50 o.87ar (2.22)

In equations 2.21 & 2.22, By and Bp correspond to the number of
bytes in the I-frames and P-frames respectively and QP and QPp is the
quantization parameter for the I-frames and the P-frames (measured across
the whole frame-set of the coded sequences).
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Figure 2.1: Snapshots from 4 of the used videos. Starting from top left image in clockwise
order: river bed, park run, sunflower, mobile and calendar.

2.3 Experimental analysis of objective QoE

VQA indexes vary in complexity and how in accurately they correlate with
subjective estimations. However, in specifically constrained conditions their
evaluations can bring valuable information for the delivered quality. Un-
derstanding these constraints can deliver a useful tool for a more general
QoE model.

To explore this, we implement an experiment where the content is im-
paired only with lossy compression. The level of impairment is controlled
with a constant bit-rate (CBR) level of encoding. In this setting we observe
how the output of different objective VQA metrics changes with the type
of content.

The raw video samples we used for this assessment are part of the Live
Video Quality Database [34,68]. The description of each video is given in
table 2.1. Snaphots of four videos from the database are given in Figure
2.1.

The ten different videos were compressed with H.264 compression [69].
The PSNR index was calculated against the original uncompressed se-
quences. The videos native resolution is 768x432 at 25 frames per second.
The videos were compressed with bit-rate settings ranging from 64kb/s
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bs

Blue Sky

Circular camera motion showing a blue
sky and some trees

rb

River Bed

Still camera, shows a river bed contain-
ing some pebbles in the water

pPa

Pedestrian Area

Still camera, shows some people walk-
ing about in a street intersection

tr

Tractor

Camera pan shows a tractor moving
across some fields

sf

Sunflower

Still camera, shows a bee moving over
a sun-flower in close-up

rh

Rush hour

Still camera, shows rush hour traffic on
a street

st

Station

Still camera, shows railway track, a
train and some people walking across
the track

sh

Shields

Camera pans at first, then becomes still
and zooms in; shows a person walking
across a display pointing at it

Mobile & Calendar

Camera pan, tor train moving horizon-
tally with a calendar moving vertically
in the background

pr

Park run

Camera pan, a person running across a
park

Table 2.1: Description of the Live videos
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Figure 2.2: PSNR calculated quality degradation from CBR compression over different
bit-rates

to 2Mb/s. To achieve the very low bit-rate of 64kb/s, the video had to
be spatially and temporally sub-sampled to 384x216, at 12.5 frames per
second.

2.3.1 PSNR Results

The PSNR calculations were executed (frame-by-frame) as defined in equa-
tion 2.2, on the luminance (Y) component of the raw original sequence and
the sequence impaired with compression. The mean values for the calcula-
tions over all the frames in the figure are given in Figure 2.2

2.3.2 SSIM Results

The SSIM calculations were executed in a similar manner as the PSNR.
Videos are impaired with different level of compression and on each pair
of frames (original and impaired) SSIM is calculated. The mean values for
each sequence are given in Figure 2.3

2.3.3 VQM Results

The VQM calculations were implemented using the VQM reference software
[70]. The VQM was executed again on pairs of original and impaired videos,
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for each level of impairment. The results of the VQM calculations are given
in Figure 2.4.
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Figure 2.5: MOVIE calculated quality degradation from CBR compression over different
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2.3.4 MOVIE Results

Finally we executed the MOVIE index on the database of videos we de-
veloped for this experiment. The MOVIE reference software was received
courtesy of the authors [71]. The results are shown in Figure 2.5.

2.3.5 SI, TI, C and M Results

The description of each type of video can be obtained from the Live database.
However, in order to objectively generalize on the types of video we set out
to compute the spatial and temporal features of the videos. In this way
we can analyze if there is any correlation between the spatial and temporal
features of the video and the VQA indexes output. The results of the SI,
TI, C and M estimation are given in Figure 2.6 and Figure 2.7 respectively.

2.4 Discussion and conclusions

The results from the objective VQA show that the PSNR index seems
linearly proportional with the selected rate of bit-rate increase (Figure 2.2).
In contrast, SSIM shows more nonlinear drop in estimations (Figure 2.3).
This is more akin to what would be expected from a subjective evaluation.
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It is perceptually evident that the videos in the lower bit-rate range are
significantly more degraded than in the higher range. The VQM results
present an inversely proportional quality index to the level of bit-rate. But
the values do not demonstrate the level of nonlinearity that one would
expect for this set of bit-rate levels (Figure 2.4). Finally, the MOVIE index
demonstrates a clearly emphasized non-linear response (Figure 2.5). Above
256kb/s the quality index drops to much lower values (lower is better).
This indicates that MOVIE finds the improvement in quality with much
higher gradient in the lower bit-rate region than in the higher region. These
results are better correlated with the measured subjective perception of
quality both by the authors [34] and our own measurements discussed in
the following chapter [72].

The evaluation of the SI and TI does not show a clear representation
why certain videos are compressed with less quality than others using the
same bit-rate. However, there are some indications. The videos that have
both low SI and high TT demonstrate worse VQA indexes than the others
(Figure 2.6). On the other hand from the results of the ’scene complexity’
(C) and ’level of motion’ (M) indexes (Figure 2.7) the relationship to the
performances is much more evident. Clearly the worse performing videos
'river-bed’ (rb) and ’park run’ (pr) stand out with exaggeratedly higher C
and M values. This high correlation is to be expected since the C and M
values are derived from the encoder directly. Nevertheless, this presents a
good indication of the quality of these features for characterizing the type
of content in QoE models.
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Subjective QoE Models

The subjective QoE methods are concerned with quantifying the experi-
enced quality of the users. Because these methods measure the subjective
quality in an unmediated manner, their measurements are commonly used
as ’ground truth’ for evaluation of other methods [36].

There are different approaches to subjective evaluation. The most direct
technique is the rating approach, where the participants are asked to rate
the quality of the content on different scales. The motivation here is that
the participants can directly report the level to which their expectations
have been met. However, research in psychophysics on measurements of
subjective values demonstrates that the rating approach has significant
drawbacks [73], mainly due to the high bias and variability in the results.

Other subjective evaluation methods such as the Just Noticeable Dif-
ferences (JND) and the method of limits focus on estimating the parameter
value for which the impairment becomes perceptible. The quality can be
considered as acceptable as long as the change in parameters results in no
perceivable difference using the method of limits [74]. In JND the smallest
change in a parameter that results in detection is defined as 1 JND. Then
the amplitude of the subjective value is measured using this unit, the JND.
In this manner JND quantifies the amount the degradation of quality.

On the other hand, more recent research in psychophysical methods in-
dicate that difference scaling methods show the best performance [75]. These
methods can deliver the relative differences in quality between different
video samples and quantify the quality in a relative way [73].

The reason for the many different approaches in subjective quality mea-
surements is mainly due to the difficulties associated with accurate mea-
surement of subjective values. In the following section we will examine
the commonly used methods and present a more detailed discussion on the
advancements we have made in this area.
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3.1 State of the art

In this section we present a discussion on existing methods for video quality
estimation. The second is divided in two sub-sections, the first one focuses
on methods that use rating, and the second focuses on the estimations with
limits and noticeable differences.

3.1.1 Rating the quality

The method most commonly encountered in the literature for subjective
video quality evaluation is the rating method. This method has been stan-
dardized by the International Telecommunication Union (ITU) in [76]. In
the recommended setup for a subjective study the viewing conditions are
strictly controlled, 15 or more non-expert participants are selected and
trained for the exercise. The grading scale for absolute category rating
(ACR) is defined as Mean Opinion Score (MOS) and it has five values: 1
- 'Bad’, 2 - "Poor’, 3 - 'Fair’, 4 - ’Good’, 5 - ’Excellent’. Similarly for im-
pairments: ’Very annoying’, ’Annoying’, 'Slightly annoying’, "Perceptible’
and ‘Imperceptible’. There is also a comparisons scale for Differential MOS
(DMOS) going from 'Much worse’ to "Much better’ with an additional value
in the middle "The same’.

A typical example of a subjective assessment using ACR has been ex-
ecuted in [77]. The assessment is on quality degradation of error-prone
network transmission. The subjective study was executed on 40 subjects
in order to provide for a database for further evaluation of FR, RR and NR
objective VQA.

The effect of interactions between bit-rate levels and temporal freezes
in video playback on the quality have been evaluated in [78] also by means
of an ACR subjective study. They concluded that the video quality is af-
fected by both types of impairments, however the temporal impairment
have a more intensive effect. Furthermore, introducing the second im-
pairment affects the effect on the perceived quality from the first. They
developed a non-linear model integrating both impairments to predict the
overall quality.

The Live video database [68] contains a set of test sequences impaired
with two types of compression methods and two types of transports errors.
In this study the subjective test was implemented using the DMOS [79]
scale. The study was executed to evaluate the performance of many ob-
jective VQA methods, using subjective data as benchmark. Thus, the



3.1 State of the art 39

objective methods (PSRN, SSIM, MS-SSIM, ... , MOVIE) were evaluated
by their correlation with the subjective data. The results indicate that the
MOVIE VQA index delivers the best performance overall.

The Video Quality Experts Group (VQEG) reports the results of their
recent subjective study of High Definition Television (HDTV) in [80]. They
explored the effects that compression quantization level, bit-rate, transmis-
sion errors and different concealment strategies have on the perceived qual-
ity. They produced a linear model of the video quality and the impairment
factors using two or ten parameters.

Evidently the rating method is widely used. Even though, the method
gives a sense of direct measurement of the human perceived quality, it is
based on a flawed concept. This type of ’direct’ psychophysical measure-
ments dates back to the work of Stevens (1957) [81]. Stevens claims that
there are internal psychological scales that can be empirically measured by
directly inquiring the '’how much’ question. However, later work in psy-
chophysics uncovered that such direct methods are inheritably biased due
to the qualitative nature of the scale ("Poor’, 'Bad’, ’Fair) and present a
high level of variance [82] [83] [84] [85]. In fact, Shepard continues states
that: ” Although the (human) subject himself can tell us that one such in-
ner magnitude is greater than another, the psychophysical operations that
we have considered are powerless to tell us anything further about "how
much’ greater one is than the other.” [86].

In much later work, similar conclusions have been reached by video
quality experts. Watson concurs that that the brain perceptual system is
more accurate at grasping ’differences’ rather than giving absolute rating
values [87]. In his analysis of the properties of subjective rating, Winkler
discusses the MOS variability and standard deviation in a set of subjective
databases [88]. The analysis shows that the standard deviation of MOS
for the midrange is between 15 — 20% of the scale, although it decreases
at the edges. This is confirmed also by a recent study by the video quality
experts group [72,89]. The diagrams depict the standard deviation for
Mean Opinion Score (MOS) rating tests and Differential Mean Opinion
Score (DMOS) tests (Figure 3.1). The variance is presented on the vertical
axis as a percentage of the rating scale.

It is evident that the variance of the results is in the range of 15—20% of
the scale. Particularly the middle range of the scale has variance reaching
20% and above. Thus, if we aimed to map the MOS scale to quality labels
such as "Poor’ (lower end of the x scale), 'Fair’ (on the middle) and 'Good’
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(high end of the scale); the results would hardly be reliable. These diagrams
give a general feel as to the actual perceived quality but cannot be used to
directly map quality labels onto a continuous axis or to draw any conclusive
results [90]. Furthermore, the question remains as to whether the distance
between the "Poor’ and "Fair’ value on the x-axis is the same as the distance
between the ’Fair’ and ’Good’ perception of the participant.
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Figure 3.1: Subjective Variability [72]

An analysis of the subjective scales in [91] presents more interesting
perspectives on the rating method. A striking one is that because the MOS
scale is an ordinal qualitative scale it should not be used as a quantitative
scale. The authors present an argument that the commonly used mapping
in the literature from qualitative to a quantitative scale in rating is not
justified. Therefore analysis of MOS in decimal values would be invalid as
well as its variability calculated to less than one single ordinal steps in the
scale. In other words, numbers associated with the 5 labels do not represent
actual distance between them. To avoid these issues with the scales, the
authors propose a label-free scale or labels only at the end of the scale.
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This approach, however convenient for the analysis of the results, opens
the question as to how people would map their internal representation of
'Good’ and ’Bad’ on this label-free scale. After all the main goal of the
rating is to deliver a qualitatively measurable result such as ’Good’ or
'Bad’.

3.1.2 Limits and noticeable differences

Due to the limitations of rating, other approaches have been developed for
measuring the quality or degradation in video services.

The method of limits is a psychometric approach proposed by Fech-
ner [92]. The method is designed to determine threshold level of stimuli
by introducing a gradual increase until the stimulus becomes detectable.
The procedure can also be run in reverse (until the stimulus becomes un-
detectable). The participant gives a ‘Yes‘ or ‘No‘ response at each level of
intensity according to whether the change has been detected.

The method has been also used for determining the acceptability of
video quality. In [93], MecCarthy et al. use the method of limits to ex-
plore the effects of encoding quantization and changes in frame-rate on the
acceptability of video quality. They implemented the study on two de-
vices, a desktop computer and a hand held palmtop computer. The study
collected data consisting of acceptability ratings for the different test con-
ditions. These acceptability ratings were transformed into ratio measures
by calculating the proportion of time during each 30-second period that
the quality was rated as acceptable. The study was implemented on sports
coverage videos with 41 participants on the first type of device and 37 on
the second. The results of this study indicate that the participants are
more sensitive to reduction in frame quality (quantization) than to changes
in frame-rate. The authors claim that the results challenge the conven-
tional wisdom that for sport events with high amount of movement, high
frame-rate is necessary for high level of quality.

In a subjective study addressing the user expectations in mobile content
delivery [74] the authors examined the acceptability of QoE, for different
types of content and on three different devices, using the method of limits.
Content types included: news broadcast, sports, video game animations,
music videos and movies. They repeated the experiment in an ascending
and descending order. In this study they evaluated the quality based on
the video encoding bit-rate and the frame-rate of the video. The results
collected from 96 participants varied significantly over different types of
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content. On the mobile phone terminal, the mean acceptability thresholds
for football were found to be 128kb/s with 15 frames/s, while for the Ro-
mance movie is 32kb/s with 10 frames/s. Even though, this finding about
the big difference in quality vs. resources for different types of content is
most interesting, the results bring light to one of the main pitfalls of this
method. The method of limits presents a significant histeresis in the results,
the finding on the ascending order vary significantly from the finding on
the descending order evaluation. Because of this effect, accurate estimation
of the acceptability is not clear for the values within the hysteresis. This is
the main drawback of this method.

The JND as introduced by Weber [94] is defined as the smallest de-
tectable difference between two intensities of a sensory stimulus. It is a
statistical value usually defined as the level detectable in 50% of the tested
cases. The concept of JND was re-introduced for scaling video quality by
Watson in a proposal for a new quality scaling method [87]. In [95], Watson
and Kreslake execute a subjective study by asking the participants which
of two presented videos is more impaired. This is called 'pair comparison’.
From the responses to that simple question, they measure the observer’s
internal ’perceptual scale’ for visual impairments. This method relies on
Thurstone’s ‘Law of comparative judgment* [96]. Thurstone proposes that
physical stimuli give rise to perceived magnitudes on a one-dimensional in-
ternal psychological scale. He continues to include an inevitable variability
in the neural system. In ’Case five’ of the law, the stimuli are perceived
with a normal distribution with a standard deviation of 1. So if two stimuli
are presented and the participant is asked to discriminate between the two,
the probability of giving the right question is a function of the distance
between the mean values of both probability distributions on the internal
scale. In this manner by acquiring enough data the most likely values for
different stimuli can be inferred statistically.

However, when participants are presented with a two different levels of
quality in video, they will discriminate between two points on the internal
scale. If the two points are not close enough, discriminating becomes too
easy and leads to results that tend to sort this points on the intensity scale,
but not scale them. In other words results from pair-wise comparison do
not yield information about the distance between the points, only their
order on the scale. Relying on the probability of incorrectly responding to
the levels of quality is challenging and requires the ability to very finely
tune the parameters of the video. This is not trivial, as encoding param-
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eters usually change in discrete steps. Furthermore, subjective methods
are commonly used to estimate the quality of a predetermined set allowed
(or favorauble) parameter values. For example 10 different levels between
64kb/s and 2Mb/s of constant bit-rate encoding, cannot be directly scaled
by the proposed method without some kind of interpolation between the
samples. However, the effects of the interpolation on the perceived quality
in light of the complex masking effects of the HVS are not analyzed.

On the other hand if the participants are presented with two ranges
of quality (such as in two pairs of videos) and asked to discriminate be-
tween the two ranges, then the intensity of quality is actually scaled. This
approach is discussed in more detail in the following section.

3.2 Maximum likelihood difference scaling

The Maximum Likelihood Difference Scaling method (MLDS) is a psy-
chophysical method that scales the relative differences perceived psycho-
logically between physical stimuli [97]. In other words by executing a 2-
alternative forced choice (2AFC) subjective study and statistical analysis,
the method will output a relative scale of the difference between stimuli with
increasing or decreasing intensities. The MLDS method has been used by
Maloney and Yang as a tool for subjective analysis of image quality [97].
Furthermore, Charrier et al. show how to use MLDS to achieve difference
scaling of compressed images with lossy image compression techniques us-
ing MLDS [98]. They implement a comparison of image compression in two
different colour spaces, and conclude that in the CIE 1976 L*a*b* colour
space the images can be compressed by 32% more, without additional loss
in perceived quality. Their results and discussion clearly show the applica-
bility of MLLDS and the ease of collecting data with it.

The image quality study clearly presents the advantages of using differ-
ence scaling methods for applications where quality is the target measure-
ment. Motivated by the advantages of this approach, we have developed
the appropriate tools for implementation of difference scaling for estimation
of quality in video.

We carry out a subjective study to estimate the quality scale for a range
of videos with different spatial and temporal characteristics. The results
presented demonstrate that MLDS can be used for estimating quality of
video with higher accuracy and significantly lower testing costs than sub-
jective rating.
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Figure 3.2: Psychometric function

As discussed above, the goal of the MLDS method is to map the objec-
tively measurable scale of video quality to the internal psychological scale
of the viewers. The output is a quantitative model for this relationship
based on a psychometric function [75] as depicted in Figure 3.2.

The horizontal axis of the Figure 3.2 represents the physical intensity of
the stimuli - in our study this will be the video bit-rate. The vertical axis
represents the psychological scale of perceived difference in signal strength
- for our purpose the difference in video quality. The perceptual intensity
of the first (or reference) sample ; is 0 and the last sample perceptual
difference ;0 is fixed to 1 without the loss in generality [99]. The MLDS
produced model is an estimate of the rest of the amplitudes of the stimuli
on viewers’ internal quality scale.

The 2AFC test is designed in the following manner. Two pairs of videos
are presented to the viewers (13, ¢; and 1y, 1;). The intensity of the
physical stimuli is always in the following manner ¢ < j and k£ < [. The
method needs to compare sizes of distances between the qualities of videos
so that the results can directly let us build a model of the quality distance
between all of the presented videos.

The viewer needs to select the pair of videos that have bigger difference
in quality between them. In other words if the expression [¢; — ;| — | —
Y| > 0 is true the viewer selects the first pair, otherwise he or she will
choose the second.

Because the stimuli are ordered as ¢ < j and k < [ we can safely assume
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due to the monotonicity of the psychometric curve that in the psychological
domain also v; > v; and 1; > 9}, and we drop the absolute values. The
decision variable used by the observer is the following:

A, g, k1) = —vi =i+ + e (3.1)

where € is the error or noise produced by the viewers visual and cognitive
processing. As defined in 3.1 the observer will select the first pair when
A(i, j, k,1) > 0 or the second one when A(z, j, k,1) < 0.

In order to use the maximum likelihood method to determine the ¥ =
(11, ...,110) parameters, we need to define the likelihood (probability given
the parameters) that the viewer will find the first pair with larger difference
than the second pair. For this the method models the perceived distances
using signal detection theory (SDT) [100].

The equal variance Gaussian model defined in the SDT is used to model
the process of selection that the user is executing for each presented pair.
This model assumes that the signal is contaminated with €, a Gaussian
noise with zero mean and standard deviation of o (Figure 3.3). Each time
the observer is presented with a pair of videos, the perceived difference is a
value of the random variable X drawn from the distribution given in Figure
3.3. The distribution in Figure 3.3 is with arbitrary signal strength of 1.

The probability that A(é, 7, k,l) > 0 is given by the surface under the
Gaussian from zero to plus infinity (Figure 3.4). For reasons of mathemat-
ical simplicity it is better to represent the surface under the curve with a
cumulative Gaussian function. The inverse portion of the surface (Figure
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Figure 3.4: The shaded area corresponds to the probability that the signal is positive
3.5) is as in equation 3.2.

T — 1 T —@-w?
Fla;p,0%) = = / e 2 dt 3.2
@ty = (“0) = | (32

Looking at the inverse part of the surface under the Gaussian the prob-
ability of detecting the signal would be:

g g

P(R:1;u5,a2)=1—<b<0_“s>:cb(“s) (3.3)

and
P(R=0;p5,0%) =1 P(R=1;p5,0%) =1 — @ (%) (3.4)
where s is the mean or the intensity of the signal, o is the standard
deviation of the noise and R is 1 when the first pair is selected and 0 when
the second pair is selected. The likelihood for the whole set of responses in a
test is the product of all of the individual probabilities where (i, j, k, 1), =
Vi, — Vi, — Y1, + P,

The Maximum Likelihood method estimates the parameters, such that
the given likelihood is maximized. For example, if we have z = {z'}(t =
1..N) instances drawn from some probability density family p(x|0) defined
up to parameters 6 (Equation 3.5).

2 ~ p(al9) (3.5)

If the 2! samples are independent, the likelihood parameter @ given a
sample set x is the product of the likelihood of individual points ( Equation
3.6).
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Figure 3.5: The shaded area corresponds to the probability that the signal is negative

t=1
L(0]z) = p(e10) = [T ol'10) (36)
N

There is no closed form for such a solution, so a direct numerical op-

timization method needs to be used to compute the estimates (Equation
3.7).

8 = argmazgl(6|z) (3.7)

3.2.1 The video subjective study

The experimental setup consists of a web application that displays two
pairs of videos to the viewer as shown in Figure 3.6. The user response
is recorded in the application database. The web application is developed
using the java server pages technology [101]. The videos are displayed using
the JW player [102], which is a Flash 5 web player capable of displaying
H.264 encoded videos. The videos are encoded using the X264 library [103]
and saved in mp4 file format.

The raw videos are the unimpaired samples of the Live video database
used in the objective VQA.

Ten different videos (Table 2.1, Figure 2.1) are encoded at constant bit-
rate, each one at different values ranging from 2Mbps to 64kbps. The frame-
rate is 25 and the spatial resolution is 768 by 432 pixels. The video player
is configured to pre-buffer the full content before playing, so additional
impairments such as freezes during the playback are avoided.

The results are collected in a database in the format:
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Figure 3.6: Video display layout in MLDS Application

bit-rate 1 | bit-rate 2 ‘ bit-rate 3 ‘ bit-rate 4 ‘ R (index bigger pair) ‘

For computing the difference scales (U = (¢1,...,910)), we used the
MLDS implementation [99] in R programming language [104]. The output
1 values are fitted to a psychometric curve using a probit regression fit with
variable upper/lower asymptotes using the 'psyphy’ package in R [105].

The results of the subjective study are the parameters p and o of a
cumulative Gaussian (psychometric) curve that describes dependency be-
tween the QoE and bit-rate. This curve is calculated for each type of video
assesed during the study.

3.2.2 MLDS subjective results

The MLDS experiment with 10 levels of stimuli requires 210 responses to
cover all possible combinations for a single video. We have done three
rounds per video sample or 630 tests for each video; in total we have col-
lected 6300 responses. The videos are displayed one at the time or in pairs.
They are 10 seconds long, so to view a single test up to 40 seconds are
needed, but in most cases the larger difference is evident much sooner to
most observers.

To calculate the standard error we executed a bootstrap [106] fitting
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Figure 3.7: Results of the MLDS experiment by video type

procedure with 10,000 rounds. The mean values are given in Figure 3.7
and the standard deviation for each point in Figure 3.8.

The results in Figure 3.7 show that most of the videos follow a similar
trajectory of the difference in quality. There is little perceived difference
down to 512kbps and then a rapid rise appears. The difference is not zero
in the high range, as we can also see from the standard error on the points
from 1536kbps to 512kbps, but it is very low relative to the lower bit-
rate samples. This means it is safe to say that there is little benefit from
increasing the bit-rate above 512kbps. The exception is the 'rb’ video and
somewhat the pr’ video. The 'rb’ video displays a surface of water, which
shows significantly different compression characteristics than the rest of the
videos.

To quantitatively analyze the characteristics of each model we fitted
a cumulative Gaussian curve to each difference model as demonstrated in
Figure 3.9, which represents the psychometric curve [107]. There is high
goodness of fit to the curve with small residuals. This further demonstrates
the success of this subjective study to model the quality difference percep-
tion with a psychometric curve.

For each video the p and o of the fitted curve are given in Figure 3.1. A
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plot of each of the fitted models is given in Figure 3.10. The plotted curves

model a smooth quality distance for different bit-rates from the reference
2Mbps video.

bs mc pa pr rb rh sf sh st tr
| -5.43 | -5.07 | -5.08 | -4.57 | -4.09 | -5.22 | -5.54 | -5.13 | -5.00 | -4.94
ol 024 ] 020 | 0.20 | 0.15 | 0.11 | 0.22 | 0.25 | 0.21 | 0.20 | 0.19

Table 3.1: The p and o of the cumulative Gaussian

Observing the parameter values in Table 3.1 we can draw the same
conclusions as above, in a quantitative form. The mean value of the psy-
chometric curve of the 'rb’ video is noticeably lower than the rest of the
videos, so its curve gradient increases earlier than the other video types.
The remaining psychometric curves cluster together and confirm that most
of these videos difference in quality is negligible to the reference, down to
512kbps, while the bit-rate between 256 and 128kbps is half way to the per-
ceived distance between the reference and the 64kbps video. The results
accurately capture the nonlinearity in the perceived quality by the viewers.
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3.3 Adaptive MLDS

The MLDS method is appealing for its simplicity and efficiency, but is
intrinsically not scalable as it considers all combinations of the samples.
For instance, one full round of tests for ten levels of stimuli (i.e. video
qualities) requires 210 individual tests. We developed an optimized version
of MLDS, referred to as adaptive MLDS [72] to reduce the redundancy
of conventional MLDS tests whilst also maintaining the reliability of the
results. The strategy of adaptive MLDS is to employ active learning to
minimize the number redundant tests.

3.3.1 Adaptive MLDS method

This method is based on the idea that with the knowledge acquired by
executing a small number of tests we can already estimate the answers of
the remaining tests. Then using these estimates together with the known
responses we execute the MLDS method. Executing the MLDS with more
responses helps the argument maximization procedure to produce more
stable solutions. The estimation of the unanswered tests is based on the
characteristics of the psychometric curve.

The idea comes from the notion that some of the tests are covering
the range of others. In fact, all of the tests overlap with others in one
way or another. The approach makes use of the intrinsic characteristics
of the psychometric curve, a monotonically increasing function ¥ = f(X ).
Consequently, for k < I < m, xx > x; > Xy, if zp — 27 > T — Ty in
the physical domain then ¥ — 9; > 1 — ¥, in the psychological domain
(Figure 3.11).

If we now observe five samples x;, x;, T, ¥, T, such that 1 < j <k <
[ < m and we observe two tests T’ (x;, xj; zx, x;) and T (x4, Tj; Tk, T) , the
perceived qualities in the psychological domain are v¢; < 1; < ¢ < ¢ <
Y. If in Ty the first pair is bigger or 1; — ¥; > 1y, — 13, that would mean
that ¥; —¥; > ¥y, — Y > Y — Y. In other words, if in 75 the first pair
is selected with a bigger difference, then in T} the first pair has a bigger
difference as well (Figure 3.11). There are many different combinations of
tests that have this dependency for the first pair or the second pair. We
can generate a list of dependencies for each pair, based on two simple rules:

e Let us assume test Ti(a, b, c,d) such that a < b < ¢ < d, ¥p — g >
g — Y. and test Th(e, f,g,h) withe < f<g<h. Ife<a<b< f
and ¢ < g < h < d then ¢y — e > 1y, — ¢y (Figure 3.12).
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Figure 3.11: Monotonicity of the psychometric curve
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Figure 3.12: If first pair in T1 is bigger then first pair of T2 is bigger as well

e Let us assume test T7(a,b,c,d) such that a < b < ¢ < d, ¥ — Y, <
g — Y. If for test Th(e, f,g,h) with e < f < g < h the following
holds: a < e < f <band g <c <d< hthen vy — e < 1Py — 1y
(Figure 3.13).

Thus, after introducing an initial set of responses we can start esti-
mating the probabilities of the rest. However first we need to learn the
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Quality difference scale
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Figure 3.13: If second pair in T1 is bigger then second pair of T2 is bigger as well

probabilities of each of the known responses to be actually valid. MLDS
estimates the values of the psychological parameters U = (1)1, ..., 110) such
that the combined probabilities of each response or the overall likelihood of
the dataset is maximized. Nevertheless, after the argument maximization
is finished the different responses have different probabilities of being true.
Having a set of initial ¥ quality values as the prior knowledge about the
underlying process coming from the data, we generate the estimations for
the rest of the tests. The interdependencies from the tests are far more
complex, of course. Let us assume, for example, a test T that depends on
tests Tb and T3. If the answer from 75 indicates that the first pair has a
larger difference in 77 and the answer from 75 indicates the opposite, then
we need to calculate the combined probability of 75 and T3 to estimate the
answer of T7. Assuming that the responses of T and 73 are independent
and that the probability of giving the first and second answer is the same,
the combined probability of T5 and T3 is given by equation 3.8.

P(13)(1 = P(T3))
P(1)(1 = P(T3)) + (1 = P(12)) P(T3])

P(T) = (3.8)

Of the remaining tests that have no responses, some will have higher
estimates than others. In other words, we have better estimations for some
of tests than others. To improve the speed of learning, the adaptive MLDS
process focuses on tests that have smaller confidence in the estimations.
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This way when we receive the next batch of responses, the overall uncer-
tainty in the estimates should be minimized. The goal of the adaptive
MLDS is to develop a metric that will indicate when the amount of tests is
sufficient for determining the psychometric curve. We can obtain this indi-
cation from the probabilities of the estimations. As we get more responses
by asking the right questions, the estimation for the rest of the tests keeps
improving. At some point adaptive MLDS will have very high probabilities
of estimating correctly all of the remaining tests. This is a good indication
that no more tests are necessary.

3.3.2 Learning convergence

The test estimation of adaptive MLDS provides a good indication for con-
cluding the experiment. When the confidence of the estimations of the
remaining tests becomes high, the probability of a surprise in the future
responses of the participants goes down. With this, the need for further
tests also becomes smaller. Even so, an indication of the amount of surprise
from the participant responses would be useful to determine the utility of
more testing.

Each batch of new data that is collected has a specific amount of infor-
mation gain at each point in the experiment. The amount of information
gain is proportional to the amount of surprise that the data delivered, i.e.
how much the data changed the existing model. In other words when we
receive responses that are completely expected our model of the differences
in quality will not change at all. These responses bring no surprise and
their information gain is zero. However, if the responses change our belief
about the scaled quality and the model changes, then the new data has
resulted in information gain. The information gain calculation is based
on the Kullback-Leibler (KL) divergence [108]. The KL divergence is a
way of comparing two probability distributions and produces the number
of average bits that need to be used to explain this difference [109]. Us-
ing the KL divergence, the information gain in bits coming from data that
change the model’s distribution with mean and standard deviation to a
model distribution with and is given in Equation 3.9.

B 2 2 9
=0, 2 4 ((M) +) 3.9

0o og

The information gain is giving us a tool to determine when the learning
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process has converged, i.e. when additional tests would not bring any better
understanding of the problem.

3.3.3 Experimental setup and results

To demonstrate the performance of ’adaptive MLDS’, we have developed
a software test-bed. The software simulates the learning process of the
adaptive MLDS algorithm by sequentially introducing data from our ear-
lier subjective study [73]. The simulation test-bed is a Java application that
loads the subjective data from a file, and then sequentially introduces new
data-points. The data-points are selected by the adaptive MLDS algorithm
and the estimated values are used to calculate the video quality scaling in
each iteration. The output is compared to the output of running MLDS on
the full dataset. The root mean square error (RMSE) is computed on the
differences. In parallel, a random introduction of data is also executed as
a baseline for comparison. The adaptive MLDS algorithm is implemented
in Java, while the MLDS software from [99] is used directly from R using
a Java to R interface. To account for the variation in the results due to
the random start and random data introduction in the comparison pro-
cess, the simulation is repeated 100 times and results are averaged. The
simulation process was computationally very demanding. Each numerical
optimization was bootstrapped 1000 times. This was repeated for each step
in the introduction of new batch of data and for each video. All this for
a single simulation. To handle the computational demand the simulation
was executed on a high-performance computing grid. Adaptive MLDS as
an active learning algorithm explores the space of all possible 2AFC tests
with the goal of optimizing the learning process. It also provides an in-
dication of confidence in the model built on the subset of the data, which
provides for early stopping of the experiment. The performance of adaptive
MLDS is presented in figures 3.14, 3.15, 3.16, 3.17 and 3.18. Figure 3.14
shows the accuracy of the estimations for ten types of videos against the
number of introduced data-points. This should be compared with plain
MLDS whereby all 210 tests must be performed. As it is evident for all
types of videos the accuracy of the estimations is very high. With most
videos we have > 95% accuracy with just 15 tests. The Station and River
bed videos show lower accuracy than the rest, but they recover quickly
above 90% when around 90 - 100 data-points are presented. This indi-
cates that for most videos we can estimate all of the tests accurately after
just about 60 responses, although some videos require about 100 tests. In
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Figure 3.14: Accuracy of the estimations

Figure 3.15 we observe the accuracy of the model generated with adaptive
MLDS compared to the model of the classical MLDS. The horizontal axis
represents the number of points introduced at the time the calculation was
executed; the vertical axis gives the RMSE (root mean square error) be-
tween the estimated values and the values computed on the whole dataset.
We can clearly observe that the adaptive MLDS model differs from the
'true’ model (learned from the full data set) much less than the model built
by introducing data randomly.  In Figure 3.16 we present the standard
deviation of the different value for the RMSE at each point. The results
in this figure further support the fact that adaptive MLDS produces su-
perior results in terms of error and variability. Figure 3.17 presents the
distribution of the confidence or the probabilities of those estimations. The
vertical axis the number of unanswered tests is plotted with different dark-
ness at each step of the experiment. The ratio of the shadings represents
the distribution of the confidence in the estimation of those tests. Starting
from the initial 15 data points most of the unknown 195 tests are estimated
with 0.5 accuracy. But soon after introducing more data, the estimations
rapidly improve. Between 40 and 60 collected answers the confidence in
the estimations was close to 1, suggesting that the rest of the tests are not
necessary and that we can correctly estimate the psychometric curve with-
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out them, which reinforces our claims as per Figure 3.15. The accuracy
of the predicted psychometric curves is high for all datasets in this range.
The RMSE is below 0.3 predicted values. The accuracy in the prediction
is generally very high and improves with the introduction of more data, as
shown in Figure 3.14. As expected, the Riverbed and Station videos are
more difficult to learn due to high noise in the answers, which makes them
also more difficult to estimate. Finally we look at the information gain
for each of the videos on each step of the experiment in Figure 3.18. The
results of the information gain analysis confirm that perturbations in the
model were occurring only in the beginning of the experiment. Most of the
videos had very small information gain after the 60" response had been
received. The only exception is the station video, where the model changes
even after most of the responses have been received. The results for all the
other videos concur with the RMSE values of Figure 3.15. However, the
information gain criterion also considers the changes in the standard devi-
ation of the model, which are not captured by the RMSE. This decrease in
the variation of the model of the Station video explains why there is still
information gain even though the mean RMSE is low.

3.4 Conclusions

Video quality is one of the key factors of the overall QoE of video enabled
network services. Moreover, due to its intensive footprint on the resources,
video quality is also a key aspect for efficient QoE aware management of
these services. Subjective VQA is a slow and expensive process, but it is
a necessary component of QoE management because it forms the basis for
validating any objective quality assessment procedures. In this chapter we
have presented the state of the art of subjective VQA and our contribution
to the area. Rating is still the prevalent methodology for subjective VQA,
however in light of the advantages of difference scaling methods more de-
velopment in this area is expected. In the following chapters the important
role of subjective QoE models is further demonstrated, as they take a key
role in management of multimedia services.



4

QoE Management
Framework

In this chapter we focus on monitoring and management of delivered QoE
in multimedia systems as an enabling factor for QoE-aware multimedia ser-
vices. Monitoring the QoE, due to its complexity, involves collecting a wide
range of available quality performance indicators (QPI) and successfully in-
terpreting these measurements. In this manner, QoE frameworks typically
consist of a set of sensors or probes that collect performance data (or QPI)
from the system that is fed through QoE models to gauge the quality. The
QoE estimations delivered by the frameworks indicate the level of perfor-
mance by the system, against which the service provider can execute the
management strategies. This chapter starts with a discussion of existing
QoE frameworks and continues to introduce a QoE management frame-
work for an TPTV service we have developed [110] and all its supporting
technologies.

4.1 Existing approaches

There are many proposed solutions for managing the QoE of different ser-
vice platforms. They range from simple monitoring tools that evaluate a
restricted set of QPI to complex management systems that correlate many
parameters, arbitrate the resources, even adapt the content to the given
context.

The authors of [111] have developed an utility function for each of the
following network QoS (NQoS) parameters: delay, jitter, packet loss rate
and bandwidth of the video stream. They computed the parameters of a
generic utility function based on the results of subjective feedback. The au-
thors further claim that managing the multimedia streams with this utility
function approach is more effective than using reservation protocols in to-
day’s converged network environments. The proposed approach, however,
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does not considers the interdependency between the NQoS parameters, but
only their effect on QoE independent of each other.

Analysis of quality degradation due to errors during transport is pre-
sented in [112]. This methodology focuses on the stream transport statistics
to determine the effects of data loss on the video. First, the authors es-
timate the artifacts in the video due to the transport errors. Then they
try to study the visibility of those artifacts and their correlation with the
perceived quality. The paper discusses a comprehensive analysis of the er-
ror handling schemes of H.264 video codec in order to predict the video
artifacts. Finally, it continues to analyze the artifacts from the point of
view of magnitude (spatial inconsistency and special extent), special prior-
ity (region of interest) and temporal duration. The results show that this
approach can sometimes follow the trend of MOS results generated by a
subjective study better than the PSNR estimations, but the method is still
not sufficiently accurate, occasionally even less than PSNR.

Kim et al. present a framework for support of mobile IPTV streaming
service in next generation networks (NGN) [113]. The proposed frame-
work uses multiprotocol label switching (MPLS)-based management of the
streams to deliver end-to-end QoS guarantees. Redistribution of the avail-
able resources is done by considering how much of them are available, what
the terminal capability is, and details from the user profiles. Adapting the
requested resources for each stream is included in order to optimize the
delivered QoE, using technologies such as scalable video coding as well as
context-based content extraction. This type of comprehensive adaptations
of the content are resource demanding and hard to implement on a real-time
system. However, if NGN with the necessary technologies for QoS guaran-
tees are implemented successfully, the framework can deliver improvements
in the utilization of the resources to pursue the desired level of QoE.

A QoE modeling and assurance framework also designed for NGN is
presented in [114]. In this framework the QoE assurance is guaranteed
by the service controller, which intercepts the communication request in
the process of establishment. At the point of interception, the controller
predicts the level of QoFE to be provided within current resources and con-
text. Finally, it adjusts respective quality-related configurations in order
to optimize the QoE, given the available resource. This mediation is imple-
mented through the Internet protocol multimedia subsystem that is part of
the NGN delivery system [115]. The QoE model is context-aware and uses
a comprehensive set of QPI extracted from various information factories
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in the NGN service delivery system. The model incorporates service and
content factors, application factors, and transport factors. However, how
these objective factors affect the subjective QoE is not evaluated by this
model.

Another framework for delivering QoE aware management in NGN is
proposed by Zhang and Ansari [116]. The authors recognize many chal-
lenges in delivering end-to-end QoE guarantees, starting from the difficul-
ties in measuring subjective QoE to the fluctuations in resources in wire-
less networks. They suggest modeling QoE with ML methods; however
the solution they propose is restricted to individual parameter thresholds.
This approach does not consider the interdependences between different
parameters and their joint effect on the QoE. The framework includes of a
management and a control block, which determines the target QoE and ne-
gotiates with the resource admission control function a way to achieve this
QoE. Finally, the authors propose a mechanism that implements a global
controlled degradation in QoE when the available resources are not suffi-
cient. However, since QoE is highly non-linear, a better approach might be
to refuse new service requests, rather than degrading the QoE of all users.

The following sections presents a QoE monitoring framework that we
have developed. This framework is extensible to any number of parame-
ters or QPI, and models the QoE based on subjective feedback using ML
methods. Finally, it uses a novel method for calculating possible remedies,
which allows for improvement of the QoE per active service or globally. As
a case study, this framework is applied to a mobile IPTV system.

4.2 QoE management for video streaming

This section presents a framework for QoE-aware management of a video
streaming service. The framework is particularly designed to work in con-
junction with an IPTV service for mobile devices. However, the architecture
is generic and compatible with many similar multimedia services and can
be easily adapted to work with other multimedia content delivery systems.

4.2.1 Architecture of a video streaming systems

The typical video streaming system consists of content servers, transport
network and terminal devices (Figure 4.1). The content servers and the
network are commonly referred to as content distribution network (CDN).
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servers transport consumer

Content distribution network

Figure 4.1: Components of a video streaming system

This allows for the content to be distributed in such a manner that good
scalability is archived. The content itself, needs to be encoded and com-
pressed prior to distribution. All these processes need to be efficiently
managed in order for the service to be successful.

The management of the video encoding process has a significant impact
on the overall efficiency of the system. During encoding, a trade-off be-
tween the size of the compressed video and its quality is made. In Chapter
3 we elaborated on how the video quality degrades when the coding bit-rate
is restricted. On the other hand, one of the major costs in multimedia sys-
tems is incurred by the storing and transporting of large amounts of video
data. Finally, the cost is not the only factor, video streaming delivery re-
quires accurate and timely delivery. Since the network is a shared and lim-
ited resource, large video bit-rates encounter severe hurdles. Consequently,
managing the encoding process efficiently involves a difficult trade-off de-
cision between resources and quality. Considering the number of factors
involved and their non-linear interdependencies, this task becomes a signif-
icant challenge.

Video streaming systems may be implemented using a variety of stream-
ing technologies. The content can be encoded in a single layer, multilayer or
in multiple levels for adaptive streaming. The multilayer and adaptive tech-
nologies offer more control in the degradation of quality when the network
resources are insufficient but require more storage and computing resources.
Additionally, as these technologies add complexity to the system, they also
add more parameters under the management process. Multilayer video has
a number of improvement layers in addition to the base layer, with different
levels of bit-rate. Similarly, the adaptive streaming video has more than
one parallel streams with different bit-rate levels. These additional features
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improve the performance of the system, but also increase the management
complexity.

The transport of the video can be implemented also with different tech-
nologies. Progressive download transport is implemented over the HTTP
[117] protocol, which runs over TCP [118] in the network. In this case, de-
livery is guaranteed by the network protocol, so no error correction mech-
anisms are necessary in the application layers. However, the same TCP
mechanisms that guarantee the delivery can produce delays that decrease
the transport efficiency. This can result in video data arriving late and
causes freezes in the playback. For this reason, progressive download is
more suitable for playback of stored content when sizable buffering is fea-
sible. The HTTP adaptive streaming [119], offers more flexibility to the
client software in case of insufficient transport resources. The client can
choose on-the-fly between different levels of bit-rate, according to the per-
formance of the network, while the TCP network protocol guarantees the
accuracy of the data.

RTSP/RTP is an application level protocol dedicated to multimedia
streaming [120], which can be implemented on either the TCP or the UDP
transport level protocols [118,121]. Removing the TCP transmission con-
trol gives more flexibility to the video streaming protocol to implement the
control that is more suited for video transmission. Removing the TCP de-
lays allows for less buffering of the video, while other error handling meth-
ods can be implemented such as forward error control (FEC) to handle
transmission errors [122].

All these mechanisms provide additional flexibility to the system in
dealing with errors or lack of resources, but naturally they also add more
complexity to the management process.

With so many factors being part of the management and due to the
intricate relationship between the resources and the delivered quality, de-
termining the optimal management strategy becomes a problem that is
hard to scale. As more content is added, with different characteristics,
and similarly new devices become part of the system, the management ef-
fort grows very substantially. In the rest of this chapter we present a set
of methods and technologies involved in the implementation of our QoE
framework, aimed at dealing with this increasing complexity.
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Figure 4.2: The QoE Loop architecture

4.2.2 A hybrid QoE management framework

The three high-level components of the video delivery services (Figure 4.1)
are traditionally managed independently of each other. Server resources
are managed based on utilization statistics. Similarly, network dimension-
ing is based on its resource utilization. Since both the servers and the
transport provide only best-effort reliability, management usually relies on
over-provisioning to keep the service quality high. Content encoding is com-
monly done in a one-size-fits-all fashion to simplify service management.

This approach leads to a sub-optimal utilization of the available re-
sources. Furthermore, due the fact that the components are managed in a
disjoint fashion, information from the transport is not used to optimize the
server resource and vice versa. Finally, the video content is not adapted to
the terminal devices and to the available transport resources.

In order to improve the management process, a closed loop system needs
to be implement, as depicted in Figure 4.2. The information from the
server, transport and terminal device domain need to be correlated with
subjective feedback and sent back to the system. In this way, all available
measurements can be efficiently used to optimize the management deci-
sions. Based on this approach, we have designed a QoE monitoring and
management framework that works in two phases (Figure 4.3).

The first phase is the training phase. For a number of streams, a range
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Figure 4.3: System architecture of the QoE Monitoring framework

of all available QPI and system parameters is measured. Typical available
metrics are: packet loss rate; frame rate; video and audio bit-rate; spatial
and temporal information; Cp and Cm indexes; video encoding quantiza-
tion level or quality settings for variable bit-rate; audio sampling frequency
and quantization precision, screen size; video resolution; number of play-
back freezes; and average freeze length. In addition to these objectively col-
lected metrics the platform collected subjective feedback from the viewers
of those streams. The subjective feedback is used to model the relationship
of the QoE to the values of the measured QPI using ML methods.

The second phase is the operational phase. Using the QoE models, the
framework estimates the delivered QoE of each subsequent stream. This
way the system performance is monitored continuously. The effect of differ-
ent management decisions can be observed on the delivered QoE. In order
to further enhance the decision process the platform calculates 'remedies’
or management decisions, that can effectively improve the delivered QoE,
for specific streams or globally for the system.

The second phase is also expanded to include an online training capa-
bility that works in conjunction to the monitoring and management. The
online learning capability offers continuous adaptation and improvements
to the models, as soon as new subjective feedback becomes available. In
this way the framework does not need to go back to initial phase when the
performance of the models degrades.

The details of the implementation of the QoE monitoring and manage-
ment framework are presented in the rest of this chapter.
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4.3 QoE management for a Mobile IPTV service

The Mobile IPTV QoE management framework is proof-of-concept im-
plementation of the hybrid QoE management framework described in the
previous section.

This framework works in conjunction with a mobile TV streaming ser-
vice of a commercial telecom provider [110, 123]. The customers can select
to watch one of the available multicast video channels with a fixed quality
settings. Some of the content is offered on multiple channels with different
quality settings or adapted to specific devices.

Many providers find it more efficient to maintain more than one stream
with different qualities rather than a single multilayer stream, due to com-
patibility issues with end user devices.

In the rest of this section we present the details about the objective and
subjective data collected. The Algorithms used for modeling the relation-
ships between the two in an offline and online fashion. Finally, a discussion
on the computation of the QoE remedies is given, the last aspect of our
QoE management framework for mobile IPTV.

4.3.1 Objective Measurements

In order to monitor the service quality, a probe-based network monitoring
system is in place, gathering information from the Mobile TV content dis-
tribution platform. For each stream the probes collect information, such as
type of device, name of channel, stream, duration of the connection; these
are captured in an Internet Protocol Detailed Record (IPDR) format [124].

In addition to this information, using mechanisms from RTSP QoS
statistics are collected. Some of these values include the number of packets,
packet loss ratio for audio, packet loss ratio for video, average delay, max-
imum delay, and jitter. The full detailed list of parameters is introduced
in [123].

In a nutshell, there is a deployed system collecting the AQoS (applica-
tion QoS) and NQoS (network QoS) data from the system in real-time [125].
The AQoS involves application-level QoS parameters such as video and au-
dio bit-rate and video frame-rate. The NQoS represents the network QoS
parameters such as packet loss, jitter, and delay.

The original IPTV platform gives a good overview of the network con-
ditions, providing useful information for dimensioning the resources and
managing the parameters of the content encoding. However, it cannot give
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any information as to how the service is perceived by the end-user. To
acquire the user perception a subjective feedback mechanism was realized
as part of this case study, as explained next.

4.3.2 Subjective measurements

In order to understand the subjective experience of the users, we imple-
mented a subjective study. In this study we ask participants to use the
service in various conditions and we collect their feedback on the experi-
ence. During the subjective studies, the system records the IPDR values
for the specific service provided. Then, each participant fills in a question-
naire. These responses are aligned with the IPDR records correspondingly.
After this, the measured objective and subjective values are used as train-
ing data for the Machine Learning algorithms. These algorithms produce
the models that estimate the QoE are used in the following phase. This
approach produces one prediction model for each question. The input to
each model are the collected system measurements and the output is a pre-
dicted answer to one of the questions. The outputs are later combined to
produce an overall QoE value. As long as there is no radical change to the
environment (e.g. new device or user group) these models are expected to
perform accurate predictions of a subset of QoE values.

The QoE prediction models are plugged in the QoE management frame-
work for online use. In this manner the framework continuously evaluates
the performance of the system.

4.4 Computational inference of QoE models

When we set out to model the performance of a service, we proceed to
design a function that computes the performance from the measured service
parameters. We can make one such example using the plain telephony
service. Since we know that the human voice is in the range of 300Hz
to 3400Hz, the service needs a transmission channel of 4KHz to cover this
range. Furthermore, any delay bellow 200 ms is considered acceptable [126].
So a system using pulse code modulation with a sampling rate of 8KHz with
less the 200ms delay can be considered to be delivering a service of high
quality.

However, when we have to face a system that is of high complexity,
and for which we do not fully understand psychophysical perceptual char-
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acteristics, developing a model ’directly’ can not be done accurately. Fur-
thermore, if the complexity prohibits an exhaustive psychophysical study
and the measurements are afflicted with noise, we need to find a differ-
ent approach to model the performance. Computational intelligence (CI)
methods offer a way of modeling complex relationships by observing sample
measurements. This is particularly useful in situations where the environ-
ment is not fully observable and there is noise in the measurements. With
sufficient amount of labeled sample measurements, these methods can be
used to produce a model that will map the input data to the labels. In our
case the input data is the objectively measurable parameters and the QPI,
while the labels are the subjective QoE responses.

This approach also provides for a way to deal with the continuously
growing complexity in multimedia systems in a scalable fashion. Since the
QoE is not just about QPI thresholds, the interdependencies between the
parameters have significant effect on the final outcome. For example, a cer-
tain level of video frame rate may be acceptable for ’head and shoulders’
type of video, but may not be good enough for an ’action movie’. The
resolution of the video and screen size are closely related. Bit-rate, quan-
tization and frame rate are all affecting each other, and so are the spatial
and temporal resolution. Finally, the expectations about the service can
skew the perception as well. The expectations depend on many factors,
such as the service cost or the quality of competitive services. Startup
delay and freezes also have an intricate relationship. The more a video
is buffered at the beginning, the smaller is the chance for freeze during
playback. Many interdependencies between the parameters exists. As they
are highly nonlinear, modeling them becomes challenging with traditional
statistical inference methods; so adopting modern CI methods is neces-
sary. The following sections details CI algorithms that are suited for this
challenge and that were particularly applied in our mobile IPTV QoE man-
agement framework.

4.4.1 Supervised learning background

Supervised learning algorithms build models based on training data or
training examples [127]. Formally, the training set is given in the form
of X = {it,yt}i\io, where z! is an input vector of attributes and 3¢ is a
class or a label of the ' datapoint in a dataset of size N. For training
QoE models, the attributes z can be a set of QoS attributes such as video

bit-rate, frame rate, and audio bit-rate, while the label is the value of the
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QoE (good, fair, bad). The goal of the procedure is to derive a hypothesis
h about the input data such that y = h(z). This hypothesis represents our
prediction model and can have many forms, such as decision tree, artificial
neural net, or a support vector machine.

Decision Trees

Decision Trees (DT) are models represented by a hierarchical tree structure
where each branching node represents a test (or a question) and each leaf
is associated with one possible decision (class or a label) (Figure 4.4). ML
induction tree algorithms produce DT models from training data in a su-
pervised learning fashion. The DT model, can be used for the classification
of unlabeled datapoints. The datapoint values are tested at each branch
starting from the root of the tree. The tested datapoint satisfies tests on
the route leading only up to a single leaf of the tree. The class (or label)
associated to that leaf is the classification output for that datapoint.

The basic concepts for induction of DT are captured by the ID3 algo-
rithm presented in the seminal work by Quinlan [128]. The DT is built
by adding branching nodes, starting from the root of the tree. The tree is
finalized by adding the edges or the leaves. The tree is built in a recursive
fashion until all the branches finish in leaves.

The tests in the branches are expressed as ay = v;, where a is one of
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the k attributes of the dataset and v is one of the [ possible values of this
attribute. If the attribute is of continual nature (real number) than the test
is of the form a; >= v. The attribute a and the value v are selected such
that the two subsets (for binary trees) that this test splits the training data
into are with minimum entropy in regards to their label. In other words,
the dataset is split in such a way that the probability of each datapoint to
belong to a single class in each of the subsets is maximized. This is achieved
by calculating the information gain for each test.

The information gain G(S, a) of splitting the set S over the attribute a
is given in equation 4.1.

G(S,a) = E(S) - ZfS(ai)E(Sai) (4.1)
=1

Zfs )1og; f5(4) (4.2)

E(S) is the entropy of the set S calculated as in equation 4.2 and fs(j)
is the proportion of datapoints in set S belonging to class j.

Selecting first the tests that split the data into more uniform sets results
in a shorter tree that generalizes well. When the subsets only contain
datapoints of a single label, the branching is stopped and a leaf associated
with that label is attached to that branch.

Using the same principles, the C4.5 algorithm is developed as an exten-
sion of ID3 [129]. This algorithm overcomes many weaknesses of ID3, such
as handling continuous attributes, training data with missing values, and
many different pruning enhancements that deal with overfitting.

We have used the DT methods to build models mapping the many
measured parameters of the multimedia delivery system to the subjective
quality feedback collected from the users. DT models are easy to use and
compute the class of an unlabeled datapoint very efficiently. Furthermore,
they represent the model in an intelligible form, which is readable by hu-
mans. This is useful for our purpose, since the network operators can derive
conclusions about the interdependencies between specific network QoS pa-
rameters and the expected QoE.
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Support Vector Machine

The support vector machine (SVM) is a functional type algorithm and
works by first plotting the data in an n-dimensional space (n being the
number of attributes). In case of nominal (or discrete) attributes, the
algorithm creates another axis for each value of the nominal attribute. One
such example is the type of the terminal device. For this attribute the
algorithm creates one variable for each possible value. These variables take
Boolean values (0 or 1) depending the presence of that particular nominal
value.

After plotting the data in the n-dimensional space, the SVM algorithm
builds a hyperplane that separates the data in an optimal manner [130] in
regards to the two classes (labels). If there are more classes, the SVM gen-
erates one hyperplane for each combination of pair of classes. Substituting
the values of the attributes, a particular data point can be placed above
or below the hyperplane; that is, it belongs to one or the other class. The
particular implementation of SVM used here is called Sequential Minimal
Optimization [131].

The SVM is an advanced ML algorithm that in many cases outperforms
the DT and other algorithms. However, the drawback in using SVM is that
is more complex and requires more computing power.

Ensemble methods

Different ML algorithms have different strengths and weaknesses. No one
single algorithm is best suited for capturing all various relationships be-
tween the data and the labels. Furthermore, training models using the same
algorithm on slightly different datasets can lead to different performance
in the models because of the different amount of noise they encountered in
the data.

Ensemble methods use a technique for combining multiple learners into
a group and utilizing their differences to improve the performance of a
single classifier. These methods were developed in an attempt to turn
'weak’ classifiers (classifiers that perform slightly better than random) into
stronger ones [132].

Ensemble methods deploy multiple classifiers trained with different strate-
gies, which combine their predictions into a more accurate group predic-
tion. Their strength is also in improving the generalization capabilities of
the standalone classifier [133].
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Bagging is an ensemble method of bootstrap aggregation according to
which one base classifier of the ensemble is trained on the whole dataset D
and the remaining classifiers on a sub sample of D - sampled uniformly with
replacement. For classification, the bagging ensemble uses equal weight
voting of all the classifiers to output the class of the datapoint.

Boosting is another ensemble learning method. An example to boosting
is the AdaBoost algorithm [134]. AdaBoost generates a sequence of base
models hq,ha,...,h; using weighted training sets (weighted by D1,Ds,...,Dy,
where N is the size of the dataset). To train the first model h;, the weights
are initialized to the values of 1/N. To train the consecutive models, the
algorithms adapt the weights in such a manner that the training is focused
more on the datapoints that were misclassified by the previous classifier.
The weights of the datapoints that were classified correctly are multiplied by
a coefficient 8 (8 < 0), which may be calculated in different ways depending
on the different implementations of AdaBoost. The misclassified samples
weights remain unmodified. Finally, the weights are normalized so that they
resemble a probability distribution. Models that misclassify more than half
of the datapoints are removed from the ensemble.

In our QoE framework, a specific combination of classifiers and ensem-
bles were used to optimize the performance of the system, as discussed
next.

4.4.2 QoE models for mobile IPTV

Here we present two sets of models for QoE evaluation. Models developed
as precursors in the lab and models developed for the commercial IPTV
framework case study, respectively.

Subjective QoE models developed in the lab

To validate our ML approach, subjective QoE models were initially built
in the lab on typical parameters of video streaming services, such as video
bit-rate and frame-rate and audio bit-rate. In this study [135] the subjec-
tive evaluation is implemented using the 'Method of Limits’ [92]. Thus is
used to detect the thresholds by changing a single stimulus in successive,
discrete steps. A series terminates when the intensity of the stimulus be-
comes detectable, as described in Chapter 3. For the particular case, we
record the segment when the customer has decided that the multimedia
quality is unacceptable. The purpose is to determine the user thresholds of
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Figure 4.5: Decision Tree for the Mobile dataset

acceptability in relation to QoS parameters, taking into account the type
of content and terminal. You can see an example of one test for the Mo-
bile terminal in Table 4.1. The user was satisfied with the quality while
the video bit-rate was at or above 96Kbit/s. This example generates eight
data-points of which six are with a class label of "Yes’ (satisfactory QoE)
and two with 'No’ (unsatisfactory QoE).

The same tests are performed on different users showing them different
video content as well as repeating the tests on three different terminals:
mobile, laptop and personal digital assistant (PDA). After compiling the
results into three sets for each type of terminal, we used the sets as training
data for building prediction models. The J48 algorithm, an implementation
of C4.5 [129] in the Weka platform [136], and SMO [131], an implementation
of a Support Vector Machine, were used to build the models. The resulting
prediction models are shown in Figures 4.5 to 4.10.

The ML models are evaluated for prediction accuracy on a test dataset.
The test dataset is usually part of the available labelled data that is reserved
for testing and is not used for training. The goal of this estimation is to
evaluate how well the model generalizes the concepts found in the data,
which could not be accurately accomplished if the same data were used for
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Table 4.1: Example of a series of tests in the subjective study
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Figure 4.6: Decision Tree for the PDA dataset

training and testing.

Test datasets can be generated by reserving approximately 30% of the
available training data for testing. However, when the training data set is of
limitted size, which is common for subjective data, carving out 30% of the
data for testing is a significant restriction for the training process. In such
cases the model evaluation can be implemented using a cross-validation
methodology [137]. The 10-fold cross-validation method splits the dataset
on 10 equal size sets. Then a model is trained on 9 of the sets and the 10th is
used for testing. The procedure is repeated 10 times for each combination of
9 training sets and the one test set. The average performance of the models
on the test sets is considered as the performance of the model trained on
the whole dataset. The results of the 10-fold crossvalidation for our models
are given in Figure 4.11.

The results from Figure 4.11 demonstrate that the ML models can be
efficiently used for estimating subjective quality.
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Figure 4.7: Decision Tree for the PDA dataset
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Figure 4.8: SVM hyperplane for the Mobile dataset
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Figure 4.9: SVM hyperplane for the PDA dataset
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Figure 4.10: SVM hyperplane for the Laptop dataset
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Figure 4.11: Performance of the DT and SVM models on the three datasets
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Subjectve Study Questioneer

* Required

Quality of Experience
This is filled by the questionee

1. What was the type of content that you viewed? *

(Catoon _[-]

2. What was the amount of delay that you experienced before the video
started? *

) Mone
() Little
) Medium
©) High

3. Did you experience frozen images or interruptions in the video? *
) None

) Little

) Medium

Figure 4.12: Subjective study questionnaire

Subjective QoE models for mobile IPTV

Using the demonstrated approach we proceed to model the data collected
by the QoE framework.

The data for this study is collected by the viewers after watching each
of the available videos. The collection is implemented using a Web based
interface (Figure 4.12).

The complete list of questions presented to the participants is the fol-
lowing:

1. What was the type of content that you viewed?

2. What was the amount of delay that you experienced before the video
started?

3. Did you experience frozen images or interruptions in the video?

4. Did you experience interruptions in the audio?
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9.

10.

How much pixelation (big blocks of color) did you experience?
Did you experience noise or distortions in the audio?

Did you experience problems with the synchronization of the audio
and video?

How did you find quality of colors?
How did you find definition (sharpness) of the video?

What was your overall perception of the quality?

For the first question the participants could chose from 7 possible an-
swers for the types of content give bellow:

1.

2.

7.

News
Music Videos

Entertainment

. Documentary

Movie or TV Series
Cartoon

Sports

In questions 2 though 7 the participants are asked to respond between
one of the 4 given values bellow:

1.

2.

3.

4.

None
Little
Medium

High

In questions 8 and 9 the response is between the following 4 values:

1.

Excellent
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Figure 4.13: Prediction accuracy with and without output aggregation

2. Acceptable
3. Poor

4. Unacceptable
The final 10th question offered a choice of 5 distinct values:

1. Excellent
2. Very good
3. Not so good

4. Very bad

The collected subjective dataset contains 55 features from the IPDR
log files and the 10 subjective responses from the viewers. For each of the
10 subjective responses a separate model is trained. Finally a combination
of the output of the 10 models is used to predict the overall QoE.

Each of the models is trained using C4.5 and SVM as base learners of
an AdaBoost ensemble. The performance of the QoE models is given if
Figure 4.13.

The models were trained using categorical labels, which make them
easy for humans to read and understand, for example ” Excellent” or ”Not
Good”. But from the prediction point of view these labels are not ordered,
they are considered the same as we would consider the labels "Red” or
"Blue”. So when we are calculating the prediction accuracy, only the exact
predictions are taken into account as accurate. We do not know how many
near misses we have. Most of these near misses would provide for good
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Figure 4.14: Confusion Matrix for high accuracy with tolerance £1

management input. For instance, a prediction of ”Very Bad” and ”Not
Good” might lead to the same management decision since both cases are
not satisfactory. If we take this into account and tolerate a small error rate
for the output, such as errors with a distance of one or less from the actual
value, the accuracy of the models significantly increases. For graphical
representation we can look at the confusion matrix in Figure 4.14; the main
diagonal represents the accurate cases (actual value row and predicted value
column). If we add the values in the two adjacent diagonals, we can get the
new accuracy with tolerance of +1 and thus get a higher effective accuracy
of our classifier (Figure 4.13).

4.5 On-line inference of QoE models

Supervised learning models give us the possibility to model the QoE from
subjective data. However, multimedia systems are evolving rapidly, with
the introduction of new services and new devices. The models trained on
the pre-determined conditions become less accurate as conditions change.
Retraining the models with new subjective studies regularly is costly and
inefficient. Instead we propose the use of an online learning approach, where
subjective feedback is received continuously and is used for updating the
models with the new data. In order for this method to be incorporated, we
need to have a mechanism for continuous collection of subjective feedback
and new set of methods for inference of models that work in on-line fashion.

The rest of this section introduces the on-line supervised learning meth-
ods used in our QoE management framework.

4.5.1 Online supervised learning background

The online learning algorithms are ML algorithms designed to train models
in a supervised learning fashion from labelled data. The only difference
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with offline or batch learning is that the data is processed sequentially and
continuously. The main motivation for online learning is modelling fast
data streams without having to retain a sizable amount of data. In order
to achieve this, the algorithms need to be able to add new concepts to their
models online, i.e. as new data becomes available. Moreover, they also
need to be able to 'forget’ or remove concepts from the models that are not
present in the incoming data.

Changes in perceived QoE commonly occur when new types of content
or new services are introduced, but also when the user’s expectations in-
crease with the advances in technology. This kind of change can be quite
frequent in multimedia services. To circumvent the need to redo the subjec-
tive studies and recreate the models, we included online learning technology
in the framework.

In the following sections we detail the online learning methods used in
the framework, providing an analysis of their performance.

Hoeffding trees

Hoeffding trees (HT') [138] is an algorithm for decision tree induction that
is designed to handle extremely large training sets delivered by fast data
streams. The training set is commonly so large that it is not expected
for the training data to remain in memory. It is actually processed from
the input stream in a single pass. The fact that the data is processed
sequentially, or one data-point at the time, characterizes this approach as
online learning.

At any point in time, the learner has only a partial view of the data,
since the rest of the dataset has not yet been introduced. This means
that the selected attribute for the test in a node cannot be made with full
confidence for any split criteria, but it has to be made with a more relaxed
one. The algorithm selects the best attribute at a given node, by considering
only a small subset of the training examples that satisfy all the tests leading
to that node. As the data is being introduced, the first datapoints are used
to choose the root test. Once the root attribute is selected, the succeeding
examples will be passed down to the corresponding leaves and used to
choose the appropriate attributes for the tests in the new branching nodes
that replace existing leaves, and so on. The number of examples that justify
a branching at each node is made by relying on a statistical result known
as Hoeffding bound. Given n observations of a random variable r with a
range R, the calculated mean of r is #. The Hoeffding bound states with



4.5 On-line inference of QoE models 87

probability 1 — ¢ that the true mean of the variable is 7 — € whereby € is

given in equation 4.3
[ R2In(1/6)
= _— 4‘
¢ 2n (43)

Defining the attribute selection criterion as G(a), then AG = G(ay) —
G(az) > 0, assuming that the a; attribute is more favourable (or with
larger information gain) than ay. Given the desired €, the Hoeffding bound
guarantees that a; is the better selection with probability § if n examples
are seen, where AG > €2.

In addition to the relaxed information gain criteria for generating the
branches, the HT algorithm also implements mechanisms for pruning ex-
isting branches. At each branch, attribute selection is also being tested
against a 'dummy’ test on the attribute ag that substitutes the branch
with a leaf. If this test results in better gain for the sufficient number of
tests given by the Hoeffding bound, then this branch is pruned.

The resulting tree constantly adapts as new data is being introduced,
capturing more and more relationships between the attribute values and
the labels. Moreover, it also deletes relationships that disappear from the
newly introduced datapoints as new trends in the data appear. This makes
this method applicable for building QoE models based on continuously
collected subjective feedback.

Two further incremental improvements to the HT algorithm that are
used in the application to our framework are explained next.

Hoeffing option trees

Option trees generalize the regular decision trees by adding a new type
of node, an option node [139]. Option nodes allow several branchings in-
stead of a single branching per node. This effectively means that multiple
paths are followed below the option node and classification is commonly
done by a majority-voting scheme of the different paths. Option Decision
Trees can reduce the error rate of Decision Trees by combining multiple
models and combining predictions while still maintaining a single compact
classifier. For the proposed methodology, the combination of the predic-
tions of different paths is done with weighted voting [140], which sums up
individual probability predictions of each leaf.

Hoeffding Option Trees with functional leaves

The usual way a decision tree is built by assigning a fixed class to each
leaf during the training. This class is equal to the class of the majority of
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the training datapoints that reach this node. There is another approach
based on which the leaves are not associated with a fixed class but are
simple classifiers themselves (referred to as functional leaves). These clas-
sifiers are trained only on the data that falls on the leaf during the training
of the whole tree. This approach can outperform both a standalone de-
cision tree as well as a standalone classifier [141]. In further research on
functional leaves the authors of [142] show that, for incremental learning
models, naive Bayes classifiers used as functional leaves improve the ac-
curacy over the majority class approach. However, this cannot be a rule
of thumb. There are exceptional cases shown in [143], where a standard
Hoeffding Option Tree will outperform the tree with functional nodes. The
author of [143] proposes an adaptive approach, where the training algo-
rithm adaptively decides to use the functional or majority votes, based on
the current performance of each of them. This implementation is adopted
in our framework to enable efficient online learning.

Online ensemble methods

Earlier in this chapter we have discussed the benefits of using ensemble
methods for improving the performance of supervised learning algorithms.
However, modifications for the ensemble techniques are also necessary to
enable the online mode of operation.

First of all, the online ensemble methods need to have online algorithms
as base learners, so that they can update their base models as new data
arrives. However, in batch or offline learning the ensemble algorithm has
the freedom to split the set in different subsets or change the dataset weight
distribution for each learner. On the other hand, in online learning the data
arrives one at the time, so the online ensemble algorithms need to adapt
their strategy accordingly.

In online bagging [144,145], instead of resampling the data with re-
placement as in offline bagging, the algorithm presents the datapoint (z,y)
to each learner multiple times. The number of presentations of a data-
point to a base learner is K times, where K is sampled from a Poisson(1)
distribution. The authors of [145] claim that the online bagging classifier
converge to the normal bagging classifier performance as the number of
training examples tend grow to infinity.

Online boosting [144] is designed to be an online version of AdaBoost
[132] algorithm. As we described previously AdaBoost generates a sequence
of base models hi,hs,...,hr such that each consecutive model’s training is
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focused on the datapoints misclassified by previous models. The online
version of this algorithm repeats the presentation of the datapoints sim-
ilarly to the online version of bagging. The only difference is that the
number of presentations K to a based learner t is sampled from a dis-
tribution Poisson(\), where the parameter X is increased if the previous
model (h;—1) misclassified the datapoint or decreased if h;_; classified the
datapoint correctly.

4.5.2 Subjective QoE models with continuous learning

To evaluate the online learning approach, we implement a set of experi-
ments where subjective data is introduced to the learners sequentially in
an online fashion and their performance is evaluated. The subjective data
is collected with the method of limits [74] and have two labels, "acceptable’
and ’not acceptable’. We consider different kinds of streamed content on
three different terminals, as described in the previous chapters.

For the implementation of the online learning algorithms we used the
Massive Online Analysis (MOA) [146] ML platform for data stream mining,
which has implementations of Hoeffding Option Tees and Oza Bagging al-
gorithm. The MOA platform is an extension of the WEKA ML data mining
platform [136]. In our case, the viewer feedback is considered as scarce and
expensive, so we can only expect small amount of data arriving. In light
of this issue we have modified some of the parameters of the algorithm to
serve our purpose, mainly the 7, grace period from 200 (default value)
to 1. It is not meaningful to wait for 200 datapoints until we start building
the DT when we only have 3500 datapoints available.

An adaptation of the model evaluation procedure is also necessary. In
MOA there is the assumption of abundance of data, and the estimation
of the accuracy of the prediction models is done by interleaving testing
and training. In this way there is part of the data that is dedicated for
testing, and this data is not used for training of the models. Consequently,
the accuracy of these models could be reported as lower in cases of small
amount of available data. The approach for model evaluation in cases of
scarce data is cross-validation as described in the previous section.

We implemented a 10-fold cross validation scheme to calculate the ac-
curacy of the classifier. This validation scheme splits the data into 90% for
training and 10% for testing, and then it repeats this process ten times.
FEach time different combination of datapoints is used for training and test-
ing.
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Figure 4.15: Hoeffding Option Tree results

The results of the execution of the Online Learning using the Hoeffd-
ing Option Tree algorithm that the classification accuracy rises fast to over
80% with fewer than 100 datapoints, i.e. user-generated feedback instances.
After around 1000 datapoints the classifiers converges to its accuracy of ap-
proximately 90% (Figure 4.15). In the same manner the standard deviation
of the accuracy falls quickly to below 3% (with just a few exceptions) and
then falls to around 2% after introducing 1600 points.

We obtained qualitatively similar findings from the execution of the
ensemble Online Learning algorithm Oza bagging Hoeffding Option Tree
(Figure 4.16). We can see that both algorithms reach very high predic-
tion accuracy (90%) very rapidly (order of a thousand of datapoints). As
expected, the ensemble approach gains accuracy faster. Furthermore the
classifier’s standard deviation of accuracy over the different folds of the
cross-validation is much lower than in the stand-alone classifier.

Overall, we have presented results that show that we can already achieve
an accuracy of over 80% by learning only 100 datapoints which are ran-
domly selected feedback.

In order to evaluate the overall benefit of using online learning to handle
changes in the environment, we developed the experiment for testing the
concept drift. Changes in trends of the labelled data are referred to as
concept drift. Classifiers need to adapt to concept drift by modifying or
deleting existing concept in the models to accommodate the new patterns
in the data. The test is implemented by training the classifier on one type
of data from the subjective study and then introducing a new type. At
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Figure 4.16: OzaBagging Hoeffding Option Tree results

the moment when the new data is introduced the model is not aware of
the change and predicts based on knowledge from the previous data. Then
new data is introduced from the second dataset. The algorithm updates
the model according to the introduced data.

In our algorithm stack, different algorithms behave differently. The Ho-
effding Option Tree discards some nodes and induces new ones. The weights
on the different paths of the option tree might be modified, and the online
ensemble classifier can decide to update the weights to the individual classi-
fiers if their accuracy decreases. With the proposed experimental setup we
can monitor the introduction of new concepts in the dataset and the speed
of adaptation to the model. The results of the concept drift experiment are
presented in Figure 4.17 for a single HOT classifier and in Figure 4.18 for
an OzaBagging ensemble of HOT classifiers.

The first dataset contains only video with Temporal Information smaller
than 110, which includes about 60% (2010 out of 3370) of the data. The
second set contains the remaining 40% of data. This are samples with Tem-
poral Information higher than 110, typically content with higher dynamics.
The result from using the Hoeffding Option Tree algorithm shows drop in
the accuracy and increases in the standard deviation at the moment when
the new dataset is introduced. However, the accuracy is recovered very fast
and converges to above 90% in fewer than 200 datapoints. This is a very
encouraging result that shows the capabilities of this algorithm to adapt to
changes. In this experiment the model was trained on content with small
TT (slow changing content) and then we introduced high changing content
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Figure 4.17: Results of the Hoeffding Option Tree with concept drift experiment
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Figure 4.18: OzaBagging Hoeffding Option Tree with concept drift results
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Figure 4.19: Comparison with standard ML algorithms

(high TT). Even with this rather drastic change the accuracy recovered very
fast.

The results obtained with the Oza Bagging Hoeffding Option Tree en-
semble are even better (Figure 4.18). This algorithm is much more robust
to changes and deals with the concept drift with close-to-none loss in ac-
curacy and limitted rise in the standard deviation. This result shows the
tremendous value of online learning, the robustness of the ensemble ap-
proach and justifies the added complexity in using an ensemble versus a
standalone classifier.

To demonstrate the statistical significance and viability of our approach,
Figure 4.19 illustrates how Hoeffding Option Tree (HOT) and Oza Bagging
HOT (OzzaBagg HOT) compare with 3 standard ML approaches, namely
Naive Bayes, Support Vector Machine (SVM) and C4.5. Since the offline
algorithms have the advantage to learn on the whole dataset, the perfor-
mance of the online algorithms is expected as good as the offline in the
best case. It is evident, that C4.5 performs best with 93% accuracy but the
online learning algorithms we used follow closely behind with 90.5% and
91.1%.

We demonstrate the usefulness of this approach by testing it on data
that was previously derived via conventional subjective studies. The QoE
prediction models show high accuracy and high adaptability to concept
drift in the dataset. The fact that the accuracy of the online learning algo-
rithms are approaching the accuracy of the standard batch ML algorithms
(of above 90%) demonstrates the applicability of the approach. Unfortu-
nately, due to project constraints and limited access to the commercial



94 QoE Management Framework

IPTV platform, we could not evaluate our online learning system on a real
deployment.

4.6 QoE Remedies

In addition to accurate measurement of QoE, efficient management of mul-
timedia services also necessitates efficient provisioning of resources towards
the delivered quality. However, as complex relationships exist between the
parameters that govern these resources and the delivered quality, selecting
the appropriate values is not trivial.

When the measured QoE is unsatisfactory, how do we determine the
optimal way to improve it? On the other hand, when the delivered QokE is
high, are we over-provisioning certain resources? Can we achieve the same
QoE with fewer resources and utilize them more efficiently?

To answer these questions, we need to expand the functionalities of the
QoE management framework to include mechanisms that allow for calcu-
lating the needed changes, which will provide the targeted QoE. We define
these mechanisms as ’QoE remedies’ and we proceed to describe them in
the rest of this section.

4.6.1 Estimating the QoE remedies

The QoE remedies are changes to parameters under management that need
to be applied to a specific instance of the service so that its QoE is improved.
These changes (or distance in values) can be on a single parameter, such as
the bit-rate of the video. Or they can be on a combination of multiple pa-
rameters, such as frame-rate and the resolution of the video. The remedies
can also refer to measurements such as the incurred packet loss. However,
decreasing the packet loss may not be directly under the control of a sin-
gle parameter and may include the utilization of multiple resources. For
example, the level of packet loss can be affected by increasing the network
resources or by using more advanced transmission data protection schemes.
In any case, the QoE remedies deliver a deeper level of understanding of
the correlation between the system resources and the resulting service QoE.
This level of understanding enables more informed management of the ser-
vice and alleviates the need for a trial and error approach. Furthermore,
if the suggested remedies can be associated with costs, the management
system can autonomously select the best option. In this manner a high
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Figure 4.20: Simple decision tree in 2D space

level of autonomic behaviour can achieved as the framework will take over
many of the monitoring and management processes.

To accomplish this task we implemented an algorithm that, based on
the QoE prediction model, estimates the minimum needed changes in the
measured stream parameters to improve the QoE [147]. This technique is
enabled by the DT prediction models we use for estimating the QoE. The
algorithm represents a QoE prediction DT model in the geometric space,
defined by the dataset parameters. For each parameter it defines a single
dimension in the parameter hyperspace. Each of the datapoints from the
dataset can be represented as a point in this hyperspace. The DT is finally
represented by hyper-regions formed by the leaves of the DT (Figure 4.20).

Each node of the DT represents a binary split (for binary trees) that
forms a hyperplane in the parameter hyperspace. At the bottom, the leaves
of the tree carve out hyper-regions, which are bounded by these hyper-
planes. These hyper regions are associated with a class label membership,
according to the leaf they correspond to. Every datapoint in the dataset
actualizes the tests of a route leading to only a single leaf on the DT.
Correspondingly, every datapoint falls within a single hyper-region and is
therefore classified with the label for that region.

Our algorithm represents the DT in the hyperspace by generating a
set of hyper regions that correspond to the tree leaves (Figure 4.21). Each
hyper-region contains a set of split rules that define the hyper-surface, which
define the boundaries of the hyper-region. The split rules are either rep-
resenting an inequality of the type Parameter; >= Valuey or of the type
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Start from the root node and call a recursive method
FindLeaves

FindLeaves:

1) If the node has children
a) Call FindLeaves on each child

b) Add the SplitRule on each of the Hyper Regions (D)
that are returned

i) If the leaf split is categorical add a Split Rule:
Attribute = ‘value’

i) If the leaf split is continual add on the leaves
from the left side SplitRule: Attribute < value,
and on the leaves from the right side Attribute >
value

c) Return the set of Hyper Regions (D)
2) Else, you arein a leaf
a) Create an Hyper Region object
i) Assign the class of the leaf to the @
i) Return @

Figure 4.21: Hyper-region building algorithm

Parametery = Value; depending on whether Parameter; is continual or
categorical. If the leaf is on the left side of a continual Parameter; split
then the split inequality will be ‘more than or equal to’, if it is on the right
side the split inequality will be ’less than’. Having a list of HyperRegion-s
we can easily determine where each datapoint from the dataset belongs to,
by testing the datapoint on the split rules of each hyper region. The hyper
region is associated with the same class label as the leaf it represents, so all
datapoints that belong to that region are classified according to this label.

In order to improve the QoE of a particular instance of the service, we
need to look at the measured value that was acquired by the monitoring
system for that instance. If the measurement is classified with a QoE value
that is not satisfactory, we look at the distance to the hyper regions that
are associated with a satisfactory QoE value. The distance to each of the
desired regions is the difference in parameter values that are needed in order
to move the datapoint to the desired regions. The output of the algorithm
is a set of distance vectors, which define the parameters that need to be
changed and their change values.

To illustrate the matter better we can take an example from the lap-
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top dataset from [148]. The prediction model built from this dataset is
given in Figure 4.20. If we look at the datapoint given in Table 4.2 we
can see that this datapoint will be classified by the model as QoE =
No('NotAcceptable'). Since the V.Framerate is less than 12.5 and the
V.Bitrate is less than 32 the datapoint reaches a leaf with 'Not Acceptable’
class associated with it. Now, what is the best way to improve the QoE of
this stream?

Video SI | Video TI | V.Bitrate | V.Framerate
67 70 32 10

Table 4.2: Example Datapoint

First of all there are parameters that can be only observed, such as
VideoSI and VideoT'I that characterize the type of the content. In this
dataset structure we are looking into increasing the V. Bitrate and V. Framerate.
If we increase the V.Bitrate for this particular datapoint by one step to
64kbits/s we can see that the datapoint now arrives at one of the bottom
leaves of the DT, but it is still classified as QoFE Acceptable = No. On
another hand, if we increase the V.Framerate to 15fps we can see that
the datapoint is classified as QoFE Acceptable = Yes without adding more
bandwidth.

We can deduce a rule from the model that a video with these char-
acteristics needs to have higher V.Framerate for it to be perceived with
high quality. However, this rule is not easily evident from only looking at
the model. We can also imagine a system with large number of parame-
ters where changing one or more parameters affects the QoE in a complex
way. Further down this line of reasoning, if we want to make a system-wise
improvement that will increase the QoE of most streams we cannot easily
derive which parameters are best to be increased and by how much.

In the case of the example datapoint the algorithm returns the two
possible paths:

e Increasing the Framerate to above 12.5f/s;

e Increasing the V. Bitrate to above 32kbits/s and the Video TI to
above 87.

Since we know that increasing the VideoT I is not an option, because
this is a measurement of an inherent characteristic of the video, the only
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Figure 4.22: Change vector remedies for an example instance

option available is to increase the frame rate. In a general case, there
can be many different paths to a hyper-region with the desired class. To
automate the process, we can assign cost functions to the change of the
attribute values and automatically calculate the cheapest way to reach the
desired QoE. In this manner attributes that are observations and cannot
be controlled, such as the VideoTI, can be excluded from the evaluation
by giving them infinitely large cost.

Given a datapoint and a target label, the algorithm produces a set of
change vectors. Each of the change vectors applied to the datapoint moves
the datapoint to a hyper-region classified with the target label. In other
words, each change vector is one possible fix for the datapoint (Figure 4.22).

® = FindLeaves(DT, QoF) (4.4)
Ag; = Distance(®;, d) (4.5)
ASpoptimum = mlnl(COSt(A(pz)) (46)

In equation 4.4, the function returns a set of regions with a targeted
QoE value. The distance function in 4.5 calculates the vector of distances
for each attribute to the target region in Ap. The optimal distance vector
is the one with minimal cost 4.6 for the given input datapoint d. The Cost
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function in 4.6 is dependent on the application. Each system has explicit
and implicit costs associated with changes of specific parameters.

4.6.2 QOoE remedies for mobile IPTV

The remedies algorithm has been implemented by extending the Weka [136]
platform, so that algorithms such as J48 [129] that induce decision trees can
be used to calculate the hyper-regions. Furthermore, we can now measure
the distance of any datapoint classified by the DT to the desired hyper-
region.

The boxed nodes represent the leaves and map to the hyper-regions as
we have seen in Figure 4.22. There are 17 hyper-regions, out of which, only
two are with excellent QoE value. The algorithm generates the remedy
output specific for each particular broadcasting system.

A target QoE values needs to be defined, and a specific cost for changing
a parameter needs to be given as well. If the target value is ’excellent’
QoE, the algorithm will calculate the minimum cost of changing specific
parameters so that the datapoint falls in one of the two ’excellent’ hyper-
regions.

A more elaborate QoE improvement is also possible where not all dat-
apoints are targeted for the excellent regions, but the management is ex-
ecuted based on the utility of improving a QoE of a stream in regards to
the costs. Then multiple levels of remedies can be suggested by the algo-
rithm with varying costs, and the provider can chose to apply mechanisms
to implement the remedies based on their utility to the customers.

This methodology presents a pragmatic solution for estimating and
maintaining QoE with a wide range of applicability. Its success and usabil-
ity depends on the quality of the prediction models, while as architecture
it is flexible enough to be used in many different environments.

Since Online Learning techniques also generate DT models they are
compatible with the QoE remedies. Both technologies working together
deliver flexible remedy response adapting to the changes in the environment
reported by the user QoE feedback.

4.7 Conclusions

In this chapter an approach for QoE enabled management is presented in
the form of a framework. The framework correlates signals coming from
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Figure 4.23: DT built from the IPTV subjective feedback
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the monitoring system with subjective feedback from the users to develop
QoE estimates and management decisions. A description of its application
to a mobile IPTV service is also given.

The subjective data used for developing the QoE models in this chap-
ter relied mostly on rating and method of limits. However, as described in
Chapter 3, 2AFC methods show superior performance for collecting subjec-
tive data. This framework can further benefit from incorporating this kind
of subjective data into the QoE models. Certain challenges still remain for
the future work. For example, combining MLDS utility curves for certain
QPI with QoE models from rating feedback can improve the management
decisions due to the accuracy of these curves. Further modifications to the
online learning and the remedy algorithms will also be necessary for fully
integrating the MLDS models.

This management framework is designed to address management of re-
sources in multimedia systems reactively, taking into account measurements
received from the monitoring system. However, a different set of challenges
are faced when control decisions need to be implemented in a proactive
fashion. In the following chapter we discuss proactive control in multi-
media services, solutions we have developed and the CI technologies that
enable these solutions.






QoE Active Control

The typical role of managing network multimedia services includes optimiz-
ing the trade-off between resources and the delivered quality. Typically this
means achieving an efficient system where the most users are serviced with
the most quality. Successful management also entails adjusting to changes
in the environment. Reacting to increase in demand or to the requirements
of new devices is essential to meeting customer expectations. However, not
all management decisions can be taken reactively. Many video streaming or
video conferencing services require proactive control strategies to optimize
their performance. Most services are faced with real-time fluctuations in
available resources and real-time requirements that need to be met, which
makes real-time adaptation a crucial function.

These types of challenges are addressed with active control systems
where decisions are taken pro-actively to insure the optimal performance of
the service. In this chapter we present a framework for QoE aware active
control of multimedia services, based on optimal control and reinforcement
learning (RL).

To demonstrate the applicability of our approach we implement a deci-
sion support solution using the suggested approach for the case of adaptive
video streaming client.

5.1 QoE active control framework

The QoE active control (QAC) framework implements control solutions for
multimedia systems that can be formulated as a Markov Decision Process
(MDS) [149]. MDP is a discrete time stochastic control process, which at
each iteration is in a state s and decides between a finite number of actions
a available in that state. After a specific action is taken, the system tran-
sitions to state s’ and a corresponding reward or penalty is accumulated.
The transition to the next state is not deterministic; and it is associated
with a probability distribution. Solving the MDP means determining the
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Figure 5.1: QoE active control framework

optimal action at each state that will maximize the reward or minimize the
penalty, all the way until the goal is reached.

The QoE active control framework defines the penalty proportionally to
the difference between the maximally achievable QoE and the one actually
delivered by the service. Instead of proceeding to model the probabilities in
the transition matrix, the framework relies on RL to compute the value of
each action «¢ in state s. This way the framework does not need to compute
a vast space of conditions and the probabilities for transitioning between
them. It rather needs to explore the space of states and decisions in a
process of iterative learning episodes until it discovers the optimal strategy.
The state is defined by the condition of the system and the measurement
of available resources, and can be partially observable.

Finally, by relying on subjective QoE models to compute the penalty,
the framework optimizes the performance of the system in a user centric
QoE aware manner. The architecture of the QAC framework is presented
in Figure 5.1.

To demonstrate the applicability of the framework we implement a con-
troller for HTTP adaptive streaming client based on this approach. The
following sections describe the HT'TP adaptive streaming environment and
the existing approaches for control in adaptive streaming. This is followed
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Figure 5.2: HTTP Adaptive Streaming architecture

by a presentation of the intelligent streaming agent, a solution based on
our QoE active control framework. Finally, a detailed description of the
RL background, the modelling of the penalty function, the state as well as
the performance analysis of the agent is presented.

5.2 HTTP adaptive streaming client

For a service to achieve high quality video streaming it needs to accomplish
a continuous reproduction of the content with sufficiently high bit-rate and
without any errors. However, in best-effort networks multiple sources are
competing for the same resources and therefore no guarantees are given that
resources will be available when needed. Since video streaming is a data-
intensive process, it is particularly susceptible to variations in throughput.
If the resources are insufficient the video playback will freeze, unless the
video is streamed at a lower bit-rate.

To address the variability in available resources, adaptive streaming
technologies are developed such as HTTP streaming [150] and SVC [151].
These technologies allow for continuous adaptation of the bit-rate so that
a controlled degradation in quality, or quality of experience (QoE), can be
achieved.

The HTTP adaptive streaming architecture consists of the same high-
level components as other video streaming architectures: servers, transport
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system and terminal devices. In this particular case the servers can be any
typical HTTP web servers. The transport system is implemented over the
Internet and the terminal devices are any device that can run the adaptive
streaming application (Figure 5.2).

The video content is transported using the HT'TP protocol. The Hyper-
text transfer protocol (HTTP) is a application-level protocol typically used
for transport of web-based content. It is implemented on top of the TCP /IP
protocol. HTTP functions in a request-response manner, according to the
client-server computing model.

In the case of HT'TP adaptive streaming the HTTP servers serve the
video content upon receiving a request by a client application. The video
content is organized in small segments, or chunks, of few seconds. Different
versions of the video with different levels of quality are typically offered.
The client can choose to request chunks at specific quality levels (L1, L2,
etc), based on its estimate of the available network throughput and its own
control strategy.

5.2.1 DASH standard

MPEG DASH (Dynamic Adaptive Streaming over HTTP) is a standard
for the adaptive streaming over HTTP [150]. The idea behind standardiz-
ing adaptive streaming over HT'TP is due to the incompatibilities between
proprietary implementation that exist today.

Adaptive streaming is implemented by producing different instances of
the source video files with different levels of quality. The main characteristic
of this approach is that it uses a HTTP server for delivering the video
content. In contrast, other video streaming solutions require dedicated
video streaming server applications, which complicate the deployment and
management of the service. In addition to the widely understood and
deployed HTTP servers, adaptive streaming is further advantaged by the
use of HT'TP packets, which are firewall friendly and can utilize the HT'TP
caching mechanisms that already exist in the network.

Apple’s HTTP Live streaming, Microsoft’s Smooth Streaming and Adobe’s
HTTP dynamic streaming all use HT'TP streaming as their underlying de-
livery method. Yet each implementation uses its own manifest and segment
formats. As the standards vary slightly, the players are not compatible with
each other. The goal of the standardization effort is to alleviate this diver-
gence.

The DASH standard defines manifest files that allow the clients to iden-
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tify the different video streams available. In the standard, the video streams
are referred to as Media Presentation and the manifest file is referred to as
the Media Presentation Description (MPD).

The MPD is a XML document describing the characteristics of the mul-
timedia content. It has a hierarchical structure [152]. The MPD consist
of one or multiple periods, which gave time segments of the multimedia
content. Each period consists of one or more adaptation sets. In turn, the
adaptation set consist of one or more media components. So one adapta-
tion set contains different bit-rates of the video component, while another
adaptation set contains the audio. The media components are defined as
representations and consist of multiple segments. The segments are the
chunks of media content that the client is requesting from the server.

The client that implements the DASH model needs to first parse the
MDP XML file. Next it downloads the representations that are suitable in
terms of their characteristics (bit-rate, resolution, and frame-rate) for the
available computational and network resources. The client continues to do
so as the content is played. The decisions are taken sequentially as the
conditions evolve based on the client’s control strategy.

The original media description in the MDP file does not contain infor-
mation about the characteristics of the video itself, such as video SI and
TI. These characteristics can help the clients to determine the appropriate
subjective QoE models for the content of interest; so we have to incorpo-
rate the video characteristics for purposes of QoE management. Subjective
QoE models enable more efficient streaming strategies from the point of
view of the delivered QoE. Even though the MDP does not specify the use
of this type of information, for the implementation of the QAC framework
we used extra miscellaneous fields for this purpose.

5.2.2 Existing heuristic strategies

As part of the implementation of the QAC framework for adaptive stream-
ing, we started off by evaluating the behaviour of existing clients, through
a series of experiments [153]. For the evaluation we implemented a test bed
consisting of a HTTP server, an impairment node and a video streaming
client (Figure 5.3).

The test bed consists of a server with Apache HTTP server an impair-
ment node running Linux netm kernel module and the client device. The
client device also includes a network monitoring software Wireshark, for
observing the client network behaviour. We tested the following streaming



108 QoE Active Control

—

Contentserver Impairmentnode Clientdevice

Figure 5.3: Test bed for adaptive streaming client evaluation

Downloaded bit-rate level
»

5]

-

~
LR 4
LR 2
&
N &
© &

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Downloaded chunk number

5 ¢
24

=fi—Adobe DHS === Apple HLS Microsof SS

Figure 5.4: Adaptive client behaviour with no throttling

platforms: Apple HTTP Live Streaming (HLS); Adobe HTTP Dynamic
Streaming (HDS); and Microsoft smooth streaming (SS). For testing the
Microsoft SS, an HTTP module is added to the Apache HTTP server that
offers the Smooth Streaming capabilities. For Adobe HDS and Microsoft
SS a mp4 container is used, while for Apple HLS uses the MPEG-TS con-
tainer. The video content is 1 minute long, compressed on 10 different
levels ranging from 64kb/s to 2048 Kb/s. The videos are segmented in 2
second chunks.

The test is made to determine the QoE performance of adaptation al-
gorithms in face of various network conditions.

The results of the experiments are illustrated in Figure 5.4. This figure
is a graphical representation of the sequence with which the video chunks
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are downloaded. The horizontal axis represents the video chunk number in
the sequence and the vertical axis represents the bit-rate at which the chunk
is downloaded. If a point is present at x = 3 and y = 4, then the third
chunk is downloaded at level = 4 (384kb/s). The sequence of downloads is
represented with a line connecting the points.

I all cases, all clients start the download at the lowest bit-rate. This is
represented by a point at (z = 1,y = 1). Some players, during playback
decide to replace the already buffered content with content of higher or
lower bit-rate. In this case the figure shows the sequence line going back
to a chunk with a lower number at a higher or lower bit-rate level. This is
particularly characteristic for the Apple HLS client. The other two clients,
when switching levels only repeat the download of the last video chunk.

When exposed to constant throughput exceeding the maximum bit-
rate, Adobe DHS starts off downloading just few chunks at the lowest level
and then proceeds to the maximum level. On the other hand Apple HLS
downloads more chunks on the lowest bit-rate, than makes one intermediate
step and ends up at the highest level. Finally, Microsoft SS gradually
increases the quality with two intermediate steps, and finally settling on
the maximum level.

When the network throughput is limited to 1Mb/s (level 8), the Adobe
HDS does four cycles from minimum to maximum bit-rate and finally con-
verges on 640kb/s (Figure 5.5). The Apple HLS client also does two steps,
but converges to only 256kb/s. Microsoft SS performs much better, in two
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steps it converges to 768kb/s.

We simulate high variability in network conditions by shaping the through-
put in a square wave (pulse train) fashion. The pulses oscillate between
1Mb/s (level 8) and 100kb/s (sufficient for level 1 only) of throughput. The
length of the square wave is 10 seconds, remaining 5 seconds at each level.
The effective throughput in this case, with sufficient buffering (more than
5 seconds), is 550kb/s.

In these conditions, Adobe HDS frequently cycles through the bit-rate
levels and drops to the lowest one for longer periods (Figure 5.6). The
client cannot find the effective throughput successfully. Furthermore, it
reaches buffer depletion and freezes the playback. On the other hands, the
Apple HLS client does not cycle, but remains in the low bit-range rate.
The Microsoft SS, starts at very low bit-rates and cautiously increases over
time. This client finally settled on 384kb/s, again outperforming the other
two clients.

Overall the Adobe HDS makes attempts to improve the QoE by going to
higher bit-rates, but ends up causing freezes and frequent quality changes
that result in much lower QoE. The Apple HLS avoids freezes, but is very
cautious with the bit-rate level. Furthermore, we noticed that it buffers a
large amount of the video beforehand. This requires more memory, but is
also not friendly to other network users. The Microsoft SS avoids freezes
as much as possible, and changes the quality in smoother steps. It strikes
a better balance between the bit-rate and the risk of buffer depletion and
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uses a buffer of no more than 30 seconds.

In a similar study, the Microsoft SS, the Netflix and the Adobe HDS
client were tested [154]. The Microsoft SS is found to be effective under
unrestricted and constantly restricted bandwidth. It converges quickly to
the maximum available bit-rate and is conservative the quality switching
decisions. The Netflix player shows a comparable performance, which is
expected since they both use the Microsoft SS platform. The Adobe HDS
client does not converge to the appropriate bit-rate even when the through-
put is stable. All these findings well aligned to our observations.

In a third study, an evaluation of the changing network conditions in
a vehicular environment is implemented [155]. The results show that Mi-
crosoft SS achieves the highest average bit-rate and the lowest amount of
switching. Apple HLS utilizes the lowest bit-rate and Adobe DHS’s perfor-
mance is the poorest because it introduces freezes.

Overall the three studies reach very similar conclusions. Regardless of
the fact that the Microsoft SS performance shows high avoidance of freezes
and quality changes, the client does not have any understanding as to
how its decisions affect the video QoE. Furthermore, achieving this level of
performance without a doubt requires sophisticated heuristics. Adapting
them to new devices and content requires significant resources. Instead
of this ’design and tuning’ approach, we propose an approach of learning
or inference, which shortens the development and maintenance time, while
providing for high efficiency.

5.3 The intelligent streaming agent

The intelligent streaming agent (ISA) takes a different approach in devel-
oping its decision strategy, compared to any of the existing solutions. As
discussed in the previous section, the evaluated streaming clients use strate-
gies designed by human experts relying on their intuition and experience.
However, such heuristic-based solutions are hard-coded can neither adjust
to broad range of conditions, nor adapt as new conditions appear. ISA, on
the other hand, infers the optimal strategy by exploration. The inference
is guided by the value of each strategy, which is determined by the QoE
reward accumulated using that strategy. The QoE reward estimation is
based on subjective QoE models.

ISA is an adaptation of the QAC frameworks for HT'TP adaptive stream-
ing. It consists of an RL agent for control strategy inference and models
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for state, action and reward. The models are specifically developed for the
particular domain.

The reward function consists of the following factors that affect the QoE
in video streaming;:

e subjective QoE for the specific video;
e incurred impairments from freezes during playback;
e incurred impairments from change in quality during playback.

The actions are the available bit-rates that the client can choose to
download.

The system state captures the conditions of the system that relate to
the delivered QoE. These include: the buffer size; buffer utilization; video
characteristics; and network performance measurements. The video char-
acteristics include: the size of the video; the current position in the video;
resolution; frame-rate; and video SI and TI. The latter two enable the
agent to take different actions for different types of video. Since the re-
ward /penalty is calculated using the subjective QoE models, it will differ
for different types of video (e.g. content that is low in SI and TI can be
compressed more efficiently and requires lower bit-rates). Similarly, the
actions need to correspond to the characteristics of the videos.

Based on these three components (state, actions, reward), the agent can
now explore and discover the best strategies that optimize the delivered
QoE. This inference is implemented using RL training algorithms.

5.3.1 Reinforcement learning background

The system under control is issued actions based on the difference between
its output and the target or reference output, as defined in control theory
(Figure 1.1). This architecture is well suited when the system output needs
to follow a certain reference value over time. However, in some applications
a series of actions need to be taken in order to reach a goal or to maintain
the system in the desired state. In this case a single action is not of concern,
but a strategy to generate sequences or actions is needed.

The purpose of reinforcement learning algorithms is to determine the
good strategies that, for a range of specific situations, and as the envi-
ronment conditions change, will generate actions that achieve the desired
system performance.
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Figure 5.7: Reinforcement Learning framework

Supervised learning is not a good approach for this kind of problems,
because it is very impractical to generate examples for all the possible
conditions that the system can be in and label the best action in each
condition. Furthermore, in many cases there is no single best action; rather
the sequence of actions determines the performance of the system.

A simple example is given by turn-based games. Many games can be
won in many different ways or by different sequences of moves. The success
of the play is determined by the end of the game. The value of a single
move without the context of the sequence is undetermined.

The reinforcement learning framework addresses this type of problems
as an agent operating in a given environment (Figure 5.7) [156]. The agent
takes actions that affect the environment and receives the state and reward
according to the changes in the environment. The agent takes decisions
on each action from a set of available actions in the current state. After
an action has been taken, the state changes accordingly. The reward is
calculated based on the changes in the state. The goal of the agent is to
optimize its decision in order to accumulate maximum reward.

The environment can be partially observable, so that the state is de-
fined by a probability distribution. Furthermore, the environment can be
stochastic, where the actions lead to probabilistic changes in the state.

The inference in RL is implemented by exploring different actions in
various states in order to determine the most valuable strategy [127]. De-
pending on how the reward or penalty function is defined, the best strategy
can be: to reach a goal in a minimum number of steps; or to achieve a max-
imum number of favourable states. If the agent receives a penalty for each
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additional step towards the goal, the agent will learn to get to the goal as
fast as possible. On the other hand, if reaching certain states on the way is
more favourable, the agent will learn take actions accordingly. The agent
can even learn to take risks and weigh-in penalties vs. rewards for certain
actions (e.g. trial-and-error inference).

The learning process is implemented by updating the model for the
state-action values. Since the reward is often delayed, the updates for the
values need to be propagated back, to actions taken in the past. Different
RL algorithms implement the learning in a different manner.

Model based learning is an approach where no exploration is done, but
the optimal actions can be determined using dynamic programming [157].
For this approach the state needs to be relatively small and fully observ-
able. This means that the probability P(s;y1|s¢, a;) of transitioning to
state syy1 from state s; given action a; needs to be available for all possible
transitions and actions. As well as the probability for the received reward
P(Teg15t, St41)-

Full understanding of the environment is not usually available, or the
cost of computing P(s¢+1]|s¢, at) and p(ri11]s¢, S¢11) is too high for the given
state-action space. Hence, the agent needs to explore the environment in
order to build the value model for the action-state.

When the agent is exploring, it can observe the value of future states and
the reward collected on the way. This information can be used to update
the value of the current state. Algorithms that implement this approach
are referred to as temporal difference algorithms because they compare the
current value of the state (or state-action pair) and compare it to the value
of the next state and the reward received.

The online update of the value is implemented by using the delta rule.
The simplified version of the update is given in equation 5.1, where the
system can be in only one state. The value of action a in this state is
defined as Q(a). The reward received at time ¢ + 1 is r44;. The value of
taking the action at time ¢ 4+ 1 (Q.41) is updated based on the previous
value (Q;) and the received reward (r41).

Qi+1(a) < Qu(a) +n(res1 — Qul(a)) (5.1)

7 is the learning factor, which is gradually decreased over time for con-
vergence. The convergence occurs when the value of taking the actions is
equal to the reward Q¢(a) < r14+1(a)

In a more general case, the value of action a in state s is Q(s,a). In this
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case the system evolves through different states as the actions are taken.
Now the value of state-action pair is related to all the rewards that follow
after the action has been taken. The update rule is given in equation 5.2

Q(st, ar) < Q(st,ar) +n(rep1 + 'Yg:?}f@(st—i-laat—i—l) —Q(st,at))  (5.2)

Instead of just looking at the reward after taking one action, now we
need to value the state-action by rewards that are also coming in the fol-
lowing states, hence we take 7441 + vy maxg, 11 Q (5111, a¢+1), as the value
for update. The expression maxg, Q(St+1,at+1) represents the maximum
value that can be achieved with any action. The value of the future states
propagated back is discounted by the factor «, so that the values do not
grow to unmanageable sizes as the size of the state space grows.

As the rewards and the state space transitions are probabilistic, the
expression 741 + ymaxg,+1 Q(s141,ar11) is basically a sample from those
probabilities. The ) values are now estimates Q, which converge to the
mean values of the probability distributions.

The approach is utilized in the Q-learning algorithm (Algorithm 1).

Algorithm 1 The Q-Learning algorithm
for all episodes do
Initialize s
repeat
Choose an action a using € — greedy exploration
Take action a, observe r and s’
Q(s,a) < Q(s,a) + n(r + yargmax,,+1 Q(s',a’) — Q(s, a))
s+ s
until s is in terminal state
end for

The Q-Learning algorithm always uses the action that produces maximum-
valued states to update the current value. This approach is referred to as
off-policy learning [127].

However, the action that the agent selects to move to the next state
is actually selected by the exploration strategy. The typical exploration
strategy is € — greedy. In this strategy the agent selects with probability €
uniformly between all the possible actions and with probability (1 — €) it
selects the best known action.
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Alternatively on-policy methods use the action chosen by the explo-
ration strategy to update the value. The SARSA method is an example of
this approach (Algorithm 2)

Algorithm 2 Sarsa
for all episodes do
Initialize s

Choose an action a using € — greedy exploration

repeat
Take action a, observe r and s’
Choose an action a’ using € — greedy exploration
Q(Sv a) — Q(57 CL) + 77(7“ + 7@(3/7 a’/) - Q(S, a’))
s+ s, a+d

until s is in terminal state

end for

The current algorithm only updates the previous action/state value,
one step in the past. Converging requires passing multiple times over the
same states. A way to improve the performance of the RL algorithms is to
use Eligibility Traces (ET). ET are records of when the algorithm passed
over certain state-actions. Every time the agent at state s takes action a,
the trace e(s,a) is set to 1. At the same time all other traces are decayed
by YA (Equation 5.3).

es(s, a) = 1 if s=s; and a = ay, (5.3)
t(s,a) = .
yAer—1(s,a) otherwise.

Now instead of updating just the last visited state we update all the
states proportional to their eligibility trace. So, if the state-action is recent
in the past the update is more significant, and if the state-action has been
visited in more distant past the update is less significant. The temporal
difference in SARSA at time ¢ is §; (Equation 5.4).

Ot = 141 + YQ (5141, ar1) — Q(5¢, ar) (5.4)

The update with the eligibility traces takes the form given in Equation
5.5.

Q(s,a) < Q(s,a) +note(s,a),Vs,a (5.5)
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The A parameter is the temporal credit. For A = 0 the algorithms is
updated only one step in the past as in SARSA. The closers A gets to 1 the
longer the updates are made into the past action-states. This algorithm is

referred to as SARSA(A) (Algorithm 3).

Algorithm 3 SARSA()\)
Initialize all Q(s,a) arbitrarily, e(s,a) < 0, Vs, a
for all episodes do
Initialize s

Choose an action a using € — greedy exploration
repeat
Take action a, observe r and s’
Choose an action a' using € — greedy exploration
§d—1r+yQ(s,d)—Q(s,a)
e(s,a) <1
for all s,a do
Q(s,a) < Q(s,a) +noe(s, a)
e(s,a) < yXe(s,a)
s+ s, a<+d
end for
until s is in terminal state
end for

However, when the size of the state space starts to grow, the RL algo-
rithms performance starts to deteriorate. In many cases the states can be
very similar and the state-actions can have similar values. This means that
we can compress the space by making a model that maps the large state
space into a smaller one.

One particular example for our case is the state when the available
bandwidth supersedes the bit-rate of the highest quality video. In this case
we can take the action to download the highest quality, regardless if the
bandwidth is twice the bit-rate or ten times the bit-rate. So, these two
stats can be mapped into a single state, since the value for the action will
be the same. This way the algorithm does not need to visit all possible
states to have an approximate value for the actions in that state.

This is a supervised learning approach, where we need to train a model
based on the examples available. Now instead of having a table of Q(s,a)
for all possible (s, a) pairs, we need a model that maps (s, a) into the value
Q@ (@ = f(s,a)). This model can be represented as a linear combination
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of all the features ® parameterized by a vector . The features are bi-
nary parameters that characterize the state-action pair. In this case, Q is
calculated as given in equation 5.6.

Q=> 60) (5.6)
i€d
Instead of updating the values of the table Q(s,a), now we need to
updated the parameters d. Since the RL algorithm updates the state online,
a suitable approach is to use gradient descent to update the g parameters.
In this method these parameters are update as given in equation 5.7.

(9,5:_1 = (9_;5 + adie; (57)

The number of eligibility traces (e;) now do not correspond to all pos-
sible state-action pair, but to all the features that define the (s, a) pair.

Finally to complete the gradient descent SARSA(A) algorithm we need
a mechanism to extract the features from the state-action pairs. Since the
features need to be binary this is implemented with a tiling technique [156].
Each discrete parameter in the state-action pair adds a binary digit for each
possible value that it can contain. The continual parameters need to be dis-
cretized by tiling the space they occupy. The tiles create discrete regions of
space. If the value of the parameter falls on a specific tile, its corresponding
feature value is 1 or, otherwise, is set to zero. For reasons of efficiency, the
continual parameters are joined together in a multidimensional space where
the tiles form hyper volumes. This discretization causes loss of fidelity. In
order to decrease this effect, more sets of tiles are laid over the parameter
space and randomly shifted by different margins, so that they cover slightly
different areas.

Our ISA framework implements the gradient-descent SARSA()) algo-
rithm for training.

5.3.2 Intelligent streaming agent architecture

The components of our intelligent video client are shown in Figure 5.8.
The download manager downloads the video chunks as indicated by the
controller. It also measures network throughput statistics and updates the
state model accordingly.

The downloaded video data is stored in the video buffer. The display
interface pulls the highest quality video data from the buffer and updates
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Figure 5.8: The client application architecture

the device display. The display also reports the quality level of the displayed
segment to the controller, so that the QoE reward/penalty estimation can
be calculated. The controller incorporates a RL agent that continuously
selects the optimal decision based on the state of the system and the value
for each action at that state. The controller updates the state-action value
model based on the reward/penalty accumulated.

The state model contains information about:

e the video spatial and temporal information;

e the video resolution, frame-rate and other objective features;

the video length;

the current position in the video stream;
e short term and long term prognosis of the network throughput.

The state is discretized to form a set of binary features using the tiling
technique, as described in the previous chapter.

To goal of the agent is to maximize the reward or minimize the penalty.
In this architecture the reward is negative and only reaches zero when the
highest possible level of quality was achieved. It is calculation is modelled
on subjective QoE data.

The controller training implements the linear gradient-descent
SARSA(A) algorithm. Its training is implemented by simulating video
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streaming playback in a network environment with self-similar background
traffic.

Details about the implementation of the reward/penalty calculation,
the network throughput prognosis and training performance of the agent
are presented in the rest of the chapter.

5.3.3 Reward/penalty function

The reward/penalty function for the RL agent calculates the delivered QoE
based on the quality of the playback. More precisely the QoE function
calculate degradation or a negative reward. The function returns 0 when
the playback has encountered no freezes and the video was reproduced with
maximum possible bit-rate. As soon as the player chooses to reproduce a
lower bit-rate segment, the function returns a negative value. The value is
proportional with the degradation given by the subjective MLDS model for
the particular type of video. Furthermore, the function includes a quality
model for video freezes and for changes in the level of quality. Every time
there is a change in quality or a freeze in playback, there is a drop in
delivered QoE. Since the changes in quality and the freezes in playback
are bursty and localized impairments, their effects on the quality is not
constant but a function of time.

The effect of the impairment on the QoE starts at the moment it is
introduced. Then it increases in time with a negative gradient. When the
impairment stops, the effects on the QoE decay is again with a negative
gradient. The next impairment may come before the effects from the previ-
ous one have diminished. In this case the effect is cumulative. This type of
impairments has a negative effect on QoE, which is proportional to the fre-
quency of their occurrence and their amplitude. Capturing all these effects,
we calculate the QoE as given in equation 5.8.

QoE = ws fsubjective (bit-rate, videosi, videoyi)+
+ wfffreeze([(tplvt&)v (tp27t52)"'(tpn7t5n)])+ (58)
+  wifrwichange([(01,t1,), (92, t1,)... (6, t1,,)])

The fsupjective function calculates the degradation due to restrictions
in bit-rate. It takes into account the characteristics of the video (spatial
and temporal information) and returns a relative value of degradation. A
typical subjective quality curve obtained with the Maximum Likelihood
Difference Scaling method [72] is presented in Figure 3.9.
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The ffreeze function calculates the degradation incurred by the freezes
in the playback. The value is based on research done on the psychological
effects of this type of impairment. The ff,cc.. inputs a list of pair values.
The first (tp,) is the time at which the " freeze started and the second
(ts;) is the time at which the playback continued. The effect of the freezes
is cumulatively collected over from the beginning to the end of playback as
given in equation 5.9.

tend
Fireese = /0 Ii(t)dt (5.9)

The amplitude of the degradation (I¢(t)) is proportional to the length
of the impairment in time. However, this proportion is not linear. The
freeze of 1 seconds is does not cause half the impairment of a freeze of 2
seconds. Nor a freeze of 20 seconds is half as damaging as an impairment
of 40 seconds. The gradient of degradation is high in the beginning and
drops over time. If we define the impairment on a relative scale from 0
to 1, we can use an exponential decay function to model the degradation
as given in equation 5.10 where \; is the half life (or the time the quality
needs to decrease to half of its initial value). After the freeze has ended
and the playback is restarted the impairment remains in the memory of the
viewer for a period of time. This period of forgetting or forgiving is also
be modelled with a decay function. However, in this case the impairment
amplitude is decayed to 0, or the quality rises up to 1. So in the period
after the restart of the playback the quality due to freezes can be calculated
as given in equation 5.10.

_tzep
e M if playback stopped

I5(t) = Cins (5.10)
1—¢e * if playback continues

where x, and x5 are the shifts on the time axis and are calculated as
given in equation 5.11 and 5.12 respectively.

Tp =1tp+ Ad ln(If(tp)) (5.11)

where ¢, is the moment the impairment started, and I¢(t,) is the am-
plitude of quality at ¢,,.

Ts =ts+ A In(1 — If(ts)) (5.12)
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Figure 5.9: Relative impairment from a freeze

where ¢, is the moment the impairment stopped, and I¢(ts) is the am-
plitude of the quality at ts.

The parameter A, is the ’half life’ of the repair time after the impair-
ment. Both A\; and A, need to be estimated through subjective studies.

A depiction of the impairment of a freeze during playback is given in
Figure 5.9.

The similar approach is taken for the fi,ichange (equation 5.13). How-
ever, the amplitude of the impairment here is the difference in the distance
between levels of quality. And after each occurrence of the change the
impairment effect decays to zero (Figure 5.10).

tend
flvlChange = / Il (t)dt (513)
0

The amplitude of the quality degraded by level change is given in equa-
tion 5.14.

I—ml

L=1—¢ X (5.14)
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where )\; is the half life of the level change impairment decay and z; is
calculated as given in 5.15.

Ny — |9y
N

where ¢; is the moment the impairment happened, and I;(¢;) is the
amplitude of the quality at ¢;, IV; is the number of quality levels and 0; is
the difference in quality level between the video that was played before t;
and the video that was played after ¢;.

Since the three types of impairments have different impact on QoE, they
are weighted differently: w,, wy and w;. These weights can be adjusted by
executing a subjective trial and estimating their effect on the QoE.

xp =1t + NIn(1 — () ) (5.15)

5.3.4 Estimating network throughput trends

The streaming agent can observe the speed with which the chunks of video
are arriving and make assumptions on the available network throughput.
This is a passive assessment of available network resources, which requires
no additional components and resources. This is why it is a commonly
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used solution in network streaming clients. Since the network is a shared
resource, the available throughput can be highly volatile. However, the
resources do not stochastically appear and disappear. The resources are
consumed by other services in the network. As these background services
(from the point of view of the agent) start and stop, they tend to form
certain trends in the available resources.

By looking at the arrival rate of the video data, the agent needs to make
assumptions or forecasts about the trends in the available throughput. The
accuracy of these forecasts affects the performance of the agent in terms of
the delivered QoE.

If the agent had perfect information about the available throughput and
could make perfect predictions, we would be dealing with a fully observ-
able system whose actions would be determined via dynamic programming.
However, we are dealing with a more challenging situation where future
traffic is unknown. We need to ”learn” good strategies based on the best
estimations available. Estimating trends based on sequences of samples is
also referred to as filtering [158]. The challenge in filtering is to overcome
the random fluctuations in the data, or the noise, and to detect the trends.
However, there is a trade-off between the filtering of high frequency fluc-
tuations and the speed of detecting trends. If the filter is disregarding a
wider range of fluctuations it becomes slow to react to trends [159]. On the
other hand, if the filter is following the changes in the input too closely,
its predictions are short sighted and include the noise. This way average
error between the predictions of the filter and the actual measured values
is high.

Many strategies to deal with this challenge have been proposed. One
of the most popular approaches is the exponentially weighted moving av-
erage (EWMA) filter [160]. The filter observes values O; and outputs the
estimations F, where F; is calculated as given in equation 5.16.

Et == OéEt,1 + (1 - a)Ot (516)

The a parameter is the smoothing parameter of the filter. High value
produce more smoothing, giving a filter that slowly reacts to changes in
the data trends. Correspondingly, lower a value make the filter less stable
and more agile.

Since both stability and agility are desirable features of the filter in [161]
suggest an adaptive approach where the values of « is not constant, but it
changes adaptively 5.17.
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Figure 5.11: Performance of typical filters

Et == OétEt_l + (]. - Oét)Ot (517)

The Vertical Horizontal Filter (VHF) solution [159] proposes that the
smoothing parameter is computed as in equation 5.18.

Amaa?
St 10i — 05

A is the gap between the maximum and the minimum value in the
M most recent observations. 3 is empirically set to 0.33.

A stability filter dampens the estimates in proportion to the variance
of spot observations [162]. The goal is to increase the smoothing when the
network exhibits unstable behaviour while keeping the filter stable. On the
other hand, keeping low smoothing when the network is more stable results
in the filter closely following the trends. To compute the level of instability,
this filter uses another EWMA filter as given in equation 5.19.

Qp = ,3 (518)

Uy = BU_1 + (1 — B) |Ot — Ot—l‘ (5.19)

Where 8 = 0.6 (selected empirically) and z; is the value measured at
time t.The smoothing parameter « is set as in equation 5.20.
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U
Umaz

where Uj,q. is the largest instability seen in the 10 most recent obser-
vations.

The error based filter is another variation of the adaptive filtering ap-
proach, where the gain is adapted according to how well the filter predicts
the measurements [162]. When the filter does not accurately predict the fu-
ture values, the gain is decreased so that the filter estimation will converge
more quickly. The error observations are |E; — Oy. These error obser-
vations are filtered through a secondary filter and the estimation error is
finally as defined in equation 5.21.

(5.20)

o =

At = ")/At_l + (1 — ’}/) ’Et—l — Ot| (521)

where v = 0.6 (selected empirically). For the Error based filter the gain
is calculated as in equation 5.22

Ay
Amcm:

where A4 is the largest instability seen in the 10 most recent obser-
vations.

After observing the performance of the filters on the simulated back-
ground traffic (Figure 5.11) we selected a combination of low smoothing
(fast) EWMA, high smoothing (slow) EWMA, stability and VHF estima-
tions output as part of the state. In this manner the agent can use the
strengths of the different filters to deduce the best strategies when exposed
to different traffic patterns.

ap=1- (5.22)

5.3.5 Simulating the background traffic

modelling Internet traffic is a lively research area [163]. Different theories
propose that the Internet traffic is self-similar [164]. Measurements also
demonstrate self-similarity of Internet traffic [165]. Self-similarity implies
that the traffic distribution is of the same kind at all time scales. Natural
examples of self-similar forms are fractals. They are geometrically similar
over all spatial scales. The Internet traffic, however, is statistically self-
similar over different time scales [165].

Part of the reason for self-similarity lies in the long tailed distribution of
file sizes. Most files are small, very few files are very big. The distribution
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of file size is long tailed. Empirically, from file sizes on the world-wide-web
(WWW) the distribution follows a Pareto model [164].

One particular model fits most of these characteristics and is a good fit
for modelling Internet traffic. The Poisson Pareto burst process (PPBP) is
a simple but accurate traffic model [166].

The length of the bursts of background traffic is distributed with a long-
tailed Pareto distribution. The number of new sources in each iteration
is distributed with a Poisson distribution. An aggregation of the traffic
generated of these sources is self-similar.

The PPBP also has the highly attractive property that its variance-
time curve (the variance of the total traffic arriving in an interval of length
t, as a function of t) is asymptotically, for large t, the same as fractional
Brownian noise with Hurst parameter H > 0.5, which is the form that has
been observed in real traffic in many studies [167].

The number of new processes started in each iteration is drawn from a
Poisson distribution (Equation 5.23).

X (5.23)
The length of the file downloaded by each process is sampled from a
Pareto distribution 5.24.

Zm \* >
P(X >z)= ()" fora>am, (5.24)
1 for x < x,,.

Example background traffic generated by the PPBP is given in Figure
5.12.

5.3.6 Agent performance

We trained the agent in an environment of simulated background traffic
and followed the rate of its learning by measuring the delivered QoE after
each training episode. The values for the weights of the QoE function
were selected as 1 for ws, 2 for w; and 10 for wy. With this selection the
penalty for the level change is twice as big as the one for the constant
level of quality, and the penalty for a freeze is ten times as big. These
values are selected intuitively, based on some simplistic tests. The accurate
proportions between the effects of each of the three factors on the QoE need
to be established through a comprehensive subjective study.
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Figure 5.12: Simulated background traffic with A = 0.1and A = 0.5 with hurst = 0.7

The agent undertakes a training regimen of 1000 episodes. Over each
episode a video streaming session is simulated. Background traffic is gener-
ated using the PPBP model, where the hurst parameter is set to 0.7 and A
the varies between 0.1 and 1. This creates conditions between very low and
very high background traffic. During the training episodes, the penalty is
calculated based on the quality level of the played video, the quality changes
and the freezes. The penalty incurred over each consecutive episode is given
in Figure 5.13.

The agent learns to avoid freezes quickly, since this is heavily penalized
in the QoE function. The results show that the RL agent is fully capable
to inferring the appropriate strategy defined by the penalty function, and
can be successfully implemented into a video streaming client.

Future developments can possible implement training on network traces
in addition to the simulations. This opens possibilities for further explo-
ration of the predictive capabilities on natural patterns in the network.

5.4 Conclusions

Many multimedia services need to include online control mechanisms to
optimize their service. Often these control mechanisms are designed with
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Figure 5.13: Performance of the RL intelligent agent during training

heuristics based on the experience and intuition of the system architects.
However, with the growth in complexity of the multimedia systems design-
ing efficient heuristics becomes more difficult. The solution presented in
this chapter provides a framework for implementing online control mecha-
nisms that does not require design, but rather infers the optimal strategies.
We presented a proof-of-concept implementation of the framework in the
form of a HT'TP adaptive streaming client to demonstrate the capabilities
of this approach.

The implemented solution provides few advances over existing approaches.

It relies on subjective models for optimizing the delivered quality. The ac-
curacy of the subjective models in estimating the delivered QoE offer pos-
sibility for superior decisions, compared to the existing approaches. There
is no design of heuristics involved. The agent is flexible and highly adapt-
able. It can train and improve continuously. It infers complex patterns
in the traffic and develops appropriate strategies. Finally, since the agent
implements autonomic learning, updating the strategy to new content or
devices is easily implemented by updating the penalty calculation. The
agent in turn will infer the new specific strategies for the novel compo-
nents. Adding new or more advanced sensors for the network conditions
can be implemented by adding more features to the state. There is no need
for redesign of new heuristic rules either.
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The QAC framework provides a flexible solution to the problem of adap-
tive streaming. However, it can also be used more generally in other control
problems where it is hard to model the system deterministically. Particu-
larly in solutions where human perception (subjective) factors in are key
to the performance of the system.



Conclusions

Multimedia services have become essential to how we interact with each
other, exchange information, or entertain. Multimedia content has even
entered the domain of printed media, as books and magazines are now
augmented with content for tablets and mobile phones.

With ubiquitous connection, video streaming has gone mobile. We
watch movies, TV and user generated content on the move, whether we
are at home or in the train. These technologies further enable sharing ex-
periences by streaming what we see to other users, as we see it. This trend
shows no signs of slowing down, on the contrary, with developments of
wearable computing devices and augmented reality, this trend is expected
to increase.

Evidently the number of services is growing with the growth of de-
vice capabilities and underlying network and display technologies. With a
plethora of devices available, adapting the service efficiently is a challenging
proposition. With standardized technologies, such as SD TV, the service
parameters are defined precisely. Hence, the delivered quality is easy to
measure. However, faced with a wide range of devices with different fea-
tures selecting the appropriate resolution or frame-rate for each possible
condition is not trivial. Should the service providers spend all available re-
sources to deliver each pixel of a video to a perfect accuracy in order for the
service to have acceptable quality? Is this feasible, and more importantly,
is it necessary?

The introduction of this thesis gives a short discussion on the limitation
of the HVS and the masking effects resulting from those limitations. These
limitations have been successfully utilized to optimize the quality of multi-
media content. Encoding algorithms save on precious bits by disregarding
details that are not noticeable by the viewer. Accuracy mechanisms in
networks have been substituted for error correction or error concealment
mechanisms so that delays are minimized. The specifications for a high
quality service have become vaguer. Pushing the limits of technologies to
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deliver richer features, higher resolution, shorter delays, real-time streaming
very often means relaxing some expectations such as reliability or accuracy.
Faced with the dilemma of offering more and assuring high quality, service
providers are faced with the difficulties of estimating the quality of their
service.

This brings us to QoE as a new metric that addresses need to measure
the quality in these newly developed conditions. However, faced with the
complexity of current multimedia systems, the many factors that affect QoE
and the continually evolving environment, measuring QokE is a challenge on
its own.

In Chapter 2, we address the objective measurements of factors that
contribute to QoE. QoE is evidently a subjective metric, but there are
many objective factors that can deliver valuable insight into the level of
delivered quality. The results from our evaluation of objective QoE meth-
ods demonstrate that, even very simple algorithms, restricted to specific
conditions can measure important aspects of quality degradation. On the
other hand, complex and sophisticated metrics produce results well corre-
lated with subjective QoE in much wider set of conditions. Understanding
how to utilize the objective measurements for evaluating QoE is important
for efficient QoE management. Measurement of objective factors is precise,
low costs and can be easily automated. Each of these characteristics is
important for an efficient QoE management framework.

Nevertheless, the key aspect for understanding the QoE is successful
subjective quality measurement. Chapter 3 discusses existing subjective
QoE methods and their drawback. In this chapter we propose a new and
more effective way for evaluating video QoE via difference scaling, rather
than absolute rating, as a way to achieve accurate subjective video QoE
measurement. The MLDS method does not deliver absolute quality ratings,
but it provides models that illustrate the utility of the resources against the
delivered quality. These models are very well suited for delivering efficient
management decisions, as they can be combined with cost functions to
derive continuous utility functions.

Understanding how to measure objective QoE factors and the delivered
subjective QoE is not necessarily enough to guarantee efficient manage-
ment of a multimedia system. In Chapter 4 we present the challenges
faced in QoE-based management of a video streaming system. The sheer
number of factors involved in this approach practically prohibits the use
of subjective QoE modelling. Correlating monitoring data, objective and
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subjective measurements is necessary to manage the QoE of the service.
In this chapter we introduce an approach based on CI technologies, as a
way to deal with the complexity in determining the highly non-linear rela-
tionships among the many monitored parameters and the delivered QoE.
We present methods for capturing these relationships into QoE prediction
models. The subjective QoE prediction models provide for estimating the
subjective QoE based on objective measurements. We further present on-
line learning solutions to deal with the continuous evolution of technology
and expectations in the context of multimedia streaming services. Finally,
we present a method for calculating QoE remedies, as a way to determine
which management decisions can deliver satisfactory QoE to the end user.

In Chapter 5 we turn our focus to the many time-sensitive multimedia
systems where rapid control decisions determine the level of delivered qual-
ity. Typically, video streaming services need to make choices that determine
their QoE, based on available resources. Scaling back on bit-rate can mean
avoiding a playback freeze that will lower the service quality significantly.
This type of systems face similar level of complexity as QoE management
systems. The typical approach for designing control strategies is based on
heuristic algorithmic solutions. However, due to the high complexity and
inevitable changes in the environment these solutions often do not provide
the best performance in all conditions. We propose a solution based on
'learning’ instead of ’deterministic design’. Our solution relies on a rein-
forcement learning agent to determine the optimal strategies that results
in maximum performance. We find that this approach infers an efficient
control strategy in regards to the predefined reward function effectively.

To conclude, this thesis presents a suite of methods and frameworks that
address important aspects of QoE in multimedia services. Our approach is
heavily influenced by the paradigm of continuous learning and adaptability,
rather than deterministic design. In light of the growing complexity and
rapid evolution of multimedia services, computational intelligence methods
offer a promising direction.

Future challenges in adopting this approach still remain. Difference scal-
ing methods offer important benefits for subjective evaluation, but methods
for measuring the subjective effects of many factors are still missing. Fur-
thermore, the integration of these models into commercial management
systems requires a shift in the management paradigm from 'How good is
the QoE?’ to 'THow much will resource X improve the QoE?’. Even though
the difference scaling methods lack the 'directness’ of the traditional rating,
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they more than make up for it with the assessment accuracy.

Predictive capabilities, enabled by RL, improve the performance of ac-
tive control agents because they allow for better anticipation of changes
in the environment. However, if RL agents are left to continuously learn
and adapt to the local environment they will develop unique strategies.
This non-uniformity in deployed products is unusual for service providers.
For further adoption of this type of approach an evaluation of long-term
performance and stability needs to be evaluated.

As with any new approach, certain level of maturity is necessary for a
wide-spread adoption. Nevertheless, as the current management challenges
arising from the complexity and the diversity continue to grow the continu-
ous learning approach presents a valid direction, not only for video enabled
services, but also for other multimedia services.
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