5 research outputs found

    CO2-free coal-fired power generation by partial oxy-fuel and post-combustion CO2capture: Techno-economic analysis

    Get PDF
    Among the carbon capture and storage (CCS) technologies suitable for power generation plants, partial oxy-combustion coupled with post combustion CO2capture is gaining interest, since such a hybrid configuration could allow to reduce the size and enhance the performance of post-combustion CO2capture by operating combustion with air enriched with oxygen and reducing the dilution of flue gas. Moreover, partial oxy-combustion is a potential candidate for the retrofit of existing steam plants because it could be based on an almost conventional boiler and requires a smaller CO2capture section. This work presents the results of a comparative techno-economic analysis of a 1000 MWthpartial oxy-combustion plant based on an ultra-supercritical pulverized coal combustion power plant integrated with a post-combustion CO2capture system and geological storage in saline aquifer. In particular, plant performance is assessed by using simulation models implemented through Aspen Plus 7.3 and Gate Cycle 5.40 commercial tools, whereas economic performance are evaluated on the basis of the expected annual cash flow. The analysis shows that, for new plants, this hybrid approach is not feasible from the economic point of view and full oxy-combustion potentially remains the most profitable technology even if, in the short-term period, the lack of commercial experience will continue to involve a high financial risk

    Application of life cycle assessment in process design: case study on SOβ‚‚ abatement technologies in the PGM sector

    Get PDF
    Platinum group elements (PGEs) are increasingly being used in a variety of environmentally-related technologies such as catalysts and catalytic converters which have strong expected growth to meet environmental and technological challenges this century. The platinum industry is actively seeking to progress its commitment to sustainability principles by reducing the negative impacts of their mining and mineral processing operations. Technical innovation to improve future plant designs, as well as the development of management policies, guidelines and protocols for efficient operation of process plants has therefore become a strategic priority for the South African platinum industry. The industry has also made an effort to understand the environmental impacts of its products from mine to metal, using life cycle methods. However, very limited research has been done to investigate what environmental value could be created if strategic and design decisions in minerals processing were life cycle based, particularly in the context of PGMs. Seminal work by Stewart (1999) investigating the environmental life cycle consideration for design-related decision making in the minerals industry has not led to significant adoption. Forbes et al. (2000) analysed metal processing using LCA and were able to identify opportunities for improved environmental performance. They however did not explore how it would be incorporated into the decision making cycle. Therefore, the main objective of this research is to determine whether life cycle assessment could help inform design decision making in the minerals industry. In the years 2002-2008 several PGM-producing companies commissioned new SOβ‚‚ scrubbing technologies to meet the regulations that had been set to prevent the release of excessive amounts of sulphur dioxide from smelters in the Rustenburg area, a mining town located in the North West Province of South Africa. Using these cleanup process retrofits as case studies, this dissertation aims to determine whether the introduction of LCA as an environmental analysis tool would have provided additional value to the decision makers. The case study approach that was chosen compared and assessed the performance of SOβ‚‚ abatement technologies and the effect of efficiencies chosen on environmental performance by using life cycle assessment modelling. By doing the life cycle assessment on the different options that the companies had, it was possible to evaluate the indirect environmental impacts that could have been overlooked during the design decision making process. In addition , experts who were involved in the design processes of the SOβ‚‚ abatement retrofits were interviewed to establish: i) how the design decisions were made and ii) whether the life cycle based insights into technology performance would have been of use in the design work. The goal of the life cycle assessment was to identify whether there were design decisions that induced environmental burden shifting when platinum smelters in the Rustenburg area added SOβ‚‚ abatement technologies to their processes, which could have been avoided had the LCA perspective been taken into account. The assessments considered two key variables, namely extent of recovery and technology choice

    Modelling of flue gas desulfurization process by sorbent injection into the pulverized coal-fired utility boiler furnace

    Get PDF
    Environmental problems during energy conversion from coal into electric power are of great importance and must be addressed as such. Before undertaking measures to improve existing utility boilers, or during planning and building new plants, detailed analysis are required, considering both techno-economic and the environmental issues. During the middle of the last century a rapid development of computers started, and at the same time computers became affordable and available to the end user. Thus, the 21st century becomes the era that will be marked by significant changes in computer structure, possibilities and use. Advances in computer development allowed for improvement of the computational methods in mechanical engineering and in other fields as well. Process control and plant design with the aid of computers are becoming everyday task and allow dealing with engineering problems that have previously been unsolvable and required empirical approach. One of the major contributors to environmental pollution is the emission of pollutants from large stationary sources, that is, more precisely, from the pulverized coal powered utility steam boilers. The subject of research in the dissertation is numerical modelling of complex processes in utility boiler furnace during direct injection of pulverized calcium-based sorbent (limestone, or lime) into the furnace for sulfur oxides reduction, with the model development, as well as numerical analysis and optimization of the processes as the primary goals. Process is well known in theory, however, as it can be found in the literature, the sorbent behavior during the furnace sorbent injection is still not understood enough, and thus on the full-scale plants the efficiency of the process significantly varies. Problems and the causes of significant drops in efficiency can be attributed to the poor process control. Numerical modeling allows for investigation of furnace behavior during various configurations of the sorbent injection process, before any changes are made at the plant itself, which is of primary importance during analysis and decision making about directions of the changes and upgrades of the existing plants, and can give good ideas about the design of the new plants. Developed software for three-dimensional furnace calculation includes differential model of flow and heat transfer processes, combustion reactions model, nitrogen oxides formation and destruction reactions model, and two selected and optimized models of sorbent particle reactions with sulfur oxides from furnace gasses, applied within the comprehensive model of furnace processes. A k-Ξ΅ model is used for turbulence modeling, while the radiative heat exchange is modelled by using the six fluxes model. Two-phase gas-particle turbulent flow is modeled with Euler-Lagrangian approach. Interaction between gas phase and particles is treated by PSI-Cell method, with transport equations for gas phase having source terms that takes into account the particles influence. Significance of development and application of such a software for calculations is mostly notable in possibility to perceive and analyze processes inside of the furnace which cannot be analyzed and (the entire system cannot be) predicted by other means. Understanding the behavior of the boiler furnace during certain operation regimes, with the use of various fuels, as well as under modifications such as the furnace sorbent injection is of great importance, and represents a prerequisite for achieving efficient, reliable and environmentally friendly boiler operation with compromises between the three, important but to some extent opposed conditions. Particular attention is devoted to the modeling of pulverized sorbent furnace injection, regarding that a primary goal is investigation of possibility to reduce sulfur oxides emission by means of direct sorbent injection into the boiler furnace. Problem is approached through several phases, starting with the analysis of selected models of calcination, sintering and sulfation reactions, their stability and behavior in two-dimensional simulated reactors with focus on comparison with available experimental results in order to validate the models implementation. In further study, models are implemented in three-dimensional numerical code for simulation of in-furnace processes, with particular interest to observe, beside the sorbent influence on sulfur oxides content, the influence it has on the furnace exiting gas temperature and other relevant process parameters in the furnace. During the research, a complex numerical study of the furnace sorbent injection possibilities and accompanying phenomena was performed. Sorbent injection was simulated through the burner tiers, and through the special injection ports above the burner tiers, individually and in combination. Process was analyzed for several fuels with different heating values and varied sulfur content, and various the impacts of different operation regimes and combustion configurations on the gaseous combustion products at the furnace exit were shown. Influence of wide range of desulfurization process parameters was considered, such as: sorbent injection position and particle distribution, particle temperature history and residence time, local gas temperature within the furnace, calcium – sulfur molar ratio, local sulfur oxides concentration, local oxygen concentration, etc. Conclusions were drawn considering possibilities for direct sorbent injection into the pulverized coal fired boiler furnace, as well as suggestions were given on optimal furnace sorbent injection configuration, depending on the boiler operation parameters. The developed software includes a user interface for easier data input for the case-study boiler furnace, allowing for easier boiler analysis, and provides engineering staff with a tool for an efficient software control, with the purpose of considering and analyzing better the furnace sorbent injection technology and its potential applications in the utility boiler furnaces.Π•ΠΊΠΎΠ»ΠΎΡˆΠΊΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΈ ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ ΠΏΡ€Π΅Ρ‚Π²Π°Ρ€Π°ΡšΠ° Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ садрТанС Ρƒ ΡƒΠ³Ρ™Ρƒ Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Ρƒ Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Ρƒ су ΠΎΠ΄ ΠΈΠ·ΡƒΠ·Π΅Ρ‚Π½ΠΎΠ³ Π·Π½Π°Ρ‡Π°Ρ˜Π° ΠΈ ΠΏΠΎΡΠ²Π΅Ρ›ΡƒΡ˜Π΅ ΠΈΠΌ сС посСбна паТња. ΠŸΡ€Π΅ ΠΏΡ€Π΅Π΄ΡƒΠ·ΠΈΠΌΠ°ΡšΠ° ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΈΡ… ΠΌΠ΅Ρ€Π° Π½Π° ΡƒΠ½Π°ΠΏΡ€Π΅Ρ’Π΅ΡšΡƒ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›ΠΈΡ… ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠ°, ΠΈΠ»ΠΈ ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ ΠΏΠ»Π°Π½ΠΈΡ€Π°ΡšΠ° ΠΈ ΠΈΠ·Π³Ρ€Π°Π΄ΡšΠ΅ Π½ΠΎΠ²ΠΈΡ… ΠΏΠΎΡ‚Ρ€Π΅Π±Π½ΠΎ јС извСсти Π΄Π΅Ρ‚Π°Ρ™Π½Π΅ Π°Π½Π°Π»ΠΈΠ·Π΅, ΠΊΠ°ΠΊΠΎ Ρ‚Π΅Ρ…Π½ΠΎ-СкономскС, Ρ‚Π°ΠΊΠΎ ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΡƒΡ‚ΠΈΡ†Π°Ρ˜Π° Π½Π° ΠΆΠΈΠ²ΠΎΡ‚Π½Ρƒ срСдину. Π‘Ρ€Π΅Π΄ΠΈΠ½ΠΎΠΌ ΠΏΡ€ΠΎΡˆΠ»ΠΎΠ³ Π²Π΅ΠΊΠ° ΠΎΡ‚ΠΏΠΎΡ‡Π΅ΠΎ јС ΡƒΠ±Ρ€Π·Π°Π½ Ρ€Π°Π·Π²ΠΎΡ˜ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π°, ΡƒΠ· истоврСмСно ΠΏΠΎΡ˜Π΅Ρ„Ρ‚ΠΈΡšΠ΅ΡšΠ΅ ΠΈ доступност ΠΊΡ€Π°Ρ˜ΡšΠ΅ΠΌ кориснику, a 21. Π²Π΅ΠΊ јС столСћС којС Ρ›Π΅ ΠΎΠ±Π΅Π»Π΅ΠΆΠΈΡ‚ΠΈ ΠΈ Π²Π΅Ρ› ΠΎΠ±Π΅Π»Π΅ΠΆΠ°Π²Π°Ρ˜Ρƒ Π·Π½Π°Ρ‡Π°Ρ˜Π½Π΅ ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅ Ρƒ структури Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π°, могућностима ΠΈ ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈ. НапрСдак Ρƒ Ρ€Π°Π·Π²ΠΎΡ˜Ρƒ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π° ΠΎΠΌΠΎΠ³ΡƒΡ›ΠΈΠΎ јС Ρ€Π°Π·Π²ΠΎΡ˜ Π½ΠΎΠ²ΠΈΡ… прорачунских ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Ρƒ ΠΌΠ°ΡˆΠΈΠ½ΡΡ‚Π²Ρƒ ΠΊΠ°ΠΎ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌ областима. Π’ΠΎΡ’Π΅ΡšΠ΅ процСса ΠΈ ΠΏΡ€ΠΎΡ˜Π΅ΠΊΡ‚ΠΎΠ²Π°ΡšΠ΅ ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠ° ΡƒΠ· ΠΏΡ€ΠΈΠΌΠ΅Π½Ρƒ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π° ΠΏΠΎΡΡ‚Π°Ρ˜Ρƒ наша свакоднСвница Ρƒ којој јС ΠΌΠΎΠ³ΡƒΡ›Π΅ Ρ€Π΅ΡˆΠΈΡ‚ΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅ који су Ρ€Π°Π½ΠΈΡ˜Π΅ Π±ΠΈΠ»ΠΈ Π½Π΅Ρ€Π΅ΡˆΠΈΠ²ΠΈ ΠΈ приступало ΠΈΠΌ сС искључиво Π΅ΠΌΠΏΠΈΡ€ΠΈΡ˜ΡΠΊΠΈ. ЈСдан ΠΎΠ΄ ΠΎΠ²ΠΈΡ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Ρ˜Π΅ΡΡ‚Π΅ ΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ СмисијС ΡˆΡ‚Π΅Ρ‚Π½ΠΈΡ… јСдињСња ΠΈΠ· стационарних ΠΈΠ·Π²ΠΎΡ€Π° Π²Π΅Π»ΠΈΠΊΠΈΡ… ΠΊΠ°ΠΏΠ°Ρ†ΠΈΡ‚Π΅Ρ‚Π°, односно, Ρƒ нашСм ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΌ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ ΠΈΠ· СнСргСтских ΠΏΠ°Ρ€Π½ΠΈΡ… ΠΊΠΎΡ‚Π»ΠΎΠ²Π° Π½Π° ΡƒΠ³Ρ™Π΅Π½ΠΈ ΠΏΡ€Π°Ρ…. ΠŸΡ€Π΅Π΄ΠΌΠ΅Ρ‚ ΠΏΡ€ΠΎΡƒΡ‡Π°Π²Π°ΡšΠ° Ρƒ овој Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ Ρ˜Π΅ΡΡ‚Π΅ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΠ΅ слоТСних процСса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ ΠΏΠ°Ρ€Π½ΠΎΠ³ ΠΊΠΎΡ‚Π»Π° ΠΏΡ€ΠΈ ΡƒΠ½ΠΎΡˆΠ΅ΡšΡƒ ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Π½Π° Π±Π°Π·ΠΈ ΠΊΠ°Π»Ρ†ΠΈΡ˜ΡƒΠΌΠ° (ΠΊΡ€Π΅Ρ‡ΡšΠ°ΠΊΠ°, ΠΈΠ»ΠΈ ΠΊΡ€Π΅Ρ‡Π°) Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎ Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ Ρ€Π°Π΄ΠΈ смањСња СмисијС оксида сумпора, Π° Ρ†ΠΈΡ™Π΅Π²ΠΈ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ су Ρ€Π°Π·Π²ΠΎΡ˜ ΠΌΠΎΠ΄Π΅Π»Π°, ΠΊΠ°ΠΎ ΠΈ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠ° Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Π° ΠΎΠ²ΠΈΡ… процСса. ΠŸΡ€ΠΎΡ†Π΅Ρ јС ΠΏΠΎΠ·Π½Π°Ρ‚, Π°Π»ΠΈ, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ сС ΠΌΠΎΠΆΠ΅ ΠΏΡ€ΠΎΠ½Π°Ρ›ΠΈ Ρƒ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ, понашањС сорбСнта ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ јС ΠΈ Π΄Π°Ρ™Π΅ Π½Π΅Π΄ΠΎΠ²ΠΎΡ™Π½ΠΎ ΠΏΠΎΠ·Π½Π°Ρ‚ процСс, ΠΈ Π½Π° стварним ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠΈΠΌΠ° Сфикасност процСса Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΎ Π²Π°Ρ€ΠΈΡ€Π° ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠ° истС ΠΈΠ»ΠΈ сличнС снагС. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅ ΠΈ ΡƒΠ·Ρ€ΠΎΠΊΠ΅ Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΈΡ… Ρ€Π°Π·Π»ΠΈΠΊΠ° Ρƒ Сфикасности ΠΌΠΎΠ³ΡƒΡ›Π΅ јС Ρ‚Ρ€Π°ΠΆΠΈΡ‚ΠΈ Ρƒ лошСм Π²ΠΎΡ’Π΅ΡšΡƒ процСса. НумСричко ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΠ΅ Π½Π°ΠΌ ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° Π΄Π° испитамо понашањС Π»ΠΎΠΆΠΈΡˆΡ‚Π° ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° процСса Π²Π΅Π·Π°Π½ΠΈΡ… Π·Π° ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ΅ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡ‚Π΅, ΠΏΡ€Π΅ Π±ΠΈΠ»ΠΎ ΠΊΠ°ΠΊΠ²ΠΈΡ… ΠΈΠ·ΠΌΠ΅Π½Π° Π½Π° ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›Π΅ΠΌ ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΡƒ, ΡˆΡ‚ΠΎ јС ΠΎΠ΄ ΠΈΠ·ΡƒΠ·Π΅Ρ‚Π½ΠΎΠ³ Π·Π½Π°Ρ‡Π°Ρ˜Π° ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π°ΠΌΠ° ΠΈ ΠΎΠ΄Π»ΡƒΡ‡ΠΈΠ²Π°ΡšΡƒ ΠΎ ΠΏΡ€Π°Π²Ρ†ΠΈΠΌΠ° Ρƒ којима Ρ‚Ρ€Π΅Π±Π° Π²Ρ€ΡˆΠΈΡ‚ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅ Π½Π° ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›ΠΈΠΌ ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠΈΠΌΠ°, односно Π΄Π°Ρ‚ΠΈ смСрницС ΠΏΡ€ΠΈ Π΄ΠΈΠ·Π°Ρ˜Π½Ρƒ Π½ΠΎΠ²ΠΈΡ…. РазвијСн јС софтвСр Π·Π° ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½ процСса Ρƒ Ρ‚Ρ€ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½Π°Π»Π½ΠΎΠΌ котловском Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ који ΡƒΠΊΡ™ΡƒΡ‡ΡƒΡ˜Π΅ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½ΠΈ ΠΌΠΎΠ΄Π΅Π» ΡΡ‚Ρ€ΡƒΡ˜Π½ΠΎΡ‚Π΅Ρ€ΠΌΠΈΡ‡ΠΊΠΈΡ… процСса, ΠΌΠΎΠ΄Π΅Π» Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π° ΡΠ°Π³ΠΎΡ€Π΅Π²Π°ΡšΠ°, Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π° Π½Π°ΡΡ‚Π°Ρ˜Π°ΡšΠ° ΠΈ Π΄Π΅ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡ˜Π΅ оксида Π°Π·ΠΎΡ‚Π°, ΠΈ Π΄Π²Π° ΠΎΠ΄Π°Π±Ρ€Π°Π½Π° ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΎΠ²Π°Π½Π° ΠΌΠΎΠ΄Π΅Π»Π° Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π° чСстица сорбСнта са оксидима сумпора ΠΈΠ· Π»ΠΎΠΆΠΈΡˆΠ½ΠΈΡ… гасова, ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½Π° Ρƒ слоТСном ΠΌΠΎΠ΄Π΅Π»Ρƒ процСса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ. Π£ΠΏΠΎΡ‚Ρ€Π΅Π±Ρ™Π°Π²Π° сС οΏ½ βˆ’ οΏ½ ΠΌΠΎΠ΄Π΅Π» Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ†ΠΈΡ˜Π΅, Π΄ΠΎΠΊ сС Π·Π° ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΠ΅ Ρ€Π°Π΄ΠΈΡ˜Π°Ρ†ΠΈΠΎΠ½Π΅ Ρ€Π°Π·ΠΌΠ΅Π½Π΅ Ρ‚ΠΎΠΏΠ»ΠΎΡ‚Π΅ користи ΠΌΠΎΠ΄Π΅Π» ΡˆΠ΅ΡΡ‚ флуксСва. Π”Π²ΠΎΡ„Π°Π·Π½ΠΈ гас-чСстицС Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½ΠΈ Ρ‚ΠΎΠΊ сС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π° ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ EulerLagrange-ΠΎΠ²ΠΎΠ³ поступка. Π˜Π½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ гасовитС Ρ„Π°Π·Π΅ ΠΈ чСстица сС Ρ‚Ρ€Π΅Ρ‚ΠΈΡ€Π° ΠΏΠΎΠΌΠΎΡ›Ρƒ PSI-Cell ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅, односно Ρƒ транспортним Ρ˜Π΅Π΄Π½Π°Ρ‡ΠΈΠ½Π°ΠΌΠ° Π·Π° гасну Ρ„Π°Π·Ρƒ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅ ΠΈΠ·Π²ΠΎΡ€Π½ΠΈ Ρ‡Π»Π°Π½ΠΎΠ²ΠΈ којима сС ΡƒΠ·ΠΈΠΌΠ° Ρƒ ΠΎΠ±Π·ΠΈΡ€ ΡƒΡ‚ΠΈΡ†Π°Ρ˜ чСстица. Π—Π½Π°Ρ‡Π°Ρ˜ Ρ€Π°Π·Π²ΠΎΡ˜Π° ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅ ΠΎΠ²Π°ΠΊΠ²ΠΎΠ³ софтвСра Π·Π° ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½ сС ΠΎΠ³Π»Π΅Π΄Π° Ρƒ могућности саглСдавања ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ процСса ΡƒΠ½ΡƒΡ‚Π°Ρ€ Π»ΠΎΠΆΠΈΡˆΡ‚Π° којС Π½Π° Π΄Ρ€ΡƒΠ³ΠΈ Π½Π°Ρ‡ΠΈΠ½ нијС ΠΌΠΎΠ³ΡƒΡ›Π΅ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Ρ‚ΠΈ Π½ΠΈΡ‚ΠΈ ΠΏΡ€Π΅Π΄Π²ΠΈΠ΄Π΅Ρ‚ΠΈ понашањС систСма Π΄Ρ€ΡƒΠ³ΠΈΠΌ Ρ˜Π΅Π΄Π½ΠΎΡΡ‚Π°Π²Π½ΠΈΡ˜ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠ°. ПознавањС понашања котловског Π»ΠΎΠΆΠΈΡˆΡ‚Π° ΠΏΡ€ΠΈ ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½ΠΈΠΌ Ρ€Π°Π΄Π½ΠΈΠΌ Ρ€Π΅ΠΆΠΈΠΌΠΈΠΌΠ°, ΡƒΠ· ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… Π³ΠΎΡ€ΠΈΠ²Π°, ΠΊΠ°ΠΎ ΠΈ ΠΏΡ€ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π°ΠΌΠ° ΠΏΠΎΠΏΡƒΡ‚ ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ јС ΠΎΠ΄ ΠΈΠ·ΡƒΠ·Π΅Ρ‚Π½ΠΎΠ³ Π·Π½Π°Ρ‡Π°Ρ˜Π°, ΠΈ прСдставља прСдуслов Π·Π° ΠΏΠΎΡΡ‚ΠΈΠ·Π°ΡšΠ΅ Сфикасног, ΠΏΠΎΡƒΠ·Π΄Π°Π½ΠΎΠ³ ΠΈ Сколошки ΠΏΡ€ΠΈΡ…Π²Π°Ρ‚Ρ™ΠΈΠ²ΠΎΠ³ Ρ€Π°Π΄Π° ΡƒΠ· компромисС који ΠΈΠ· Ρ‚Π° Ρ‚Ρ€ΠΈ Π±ΠΈΡ‚Π½Π°, Π°Π»ΠΈ Π΄ΠΎΠ½Π΅ΠΊΠ»Π΅ супротстављСна Π·Π°Ρ…Ρ‚Π΅Π²Π° ΠΏΡ€ΠΎΠΈΠ·ΠΈΠ»Π°Π·Π΅. ОвдС јС посСбна паТња посвСћСна ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΡƒ ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ ΠΏΠ°Ρ€Π½ΠΎΠ³ ΠΊΠΎΡ‚Π»Π°, с ΠΎΠ±Π·ΠΈΡ€ΠΎΠΌ Π΄Π° јС Π³Π»Π°Π²Π½ΠΈ Ρ†ΠΈΡ™ ΠΏΡ€ΠΎΠ²Π΅Ρ€Π° могућности смањСња СмисијС оксида сумпора ΠΏΠΎΠΌΠΎΡ›Ρƒ Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎΠ³ ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅. Π Π΅ΡˆΠ°Π²Π°ΡšΡƒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° приступљСно јС ΠΊΡ€ΠΎΠ· Π΅Ρ‚Π°ΠΏΠ΅, ΠΏΠΎΡ‡Π΅Π² ΠΎΠ΄ ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅ ΠΈΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Π΅ ΠΎΠ΄Π°Π±Ρ€Π°Π½ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π° Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π° ΠΊΠ°Π»Ρ†ΠΈΠ½Π°Ρ†ΠΈΡ˜Π΅, ΡΠΈΠ½Ρ‚Π΅Ρ€ΠΎΠ²Π°ΡšΠ° ΠΈ ΡΡƒΠ»Ρ„Π°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ чСстицС сорбСнта, ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅ ΡšΠΈΡ…ΠΎΠ²Π΅ стабилности ΠΈ понашања Ρƒ Π΄Π²ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½Π°Π»Π½ΠΈΠΌ ΠΊΠ°Π½Π°Π»ΠΈΠΌΠ° којима сС ΡΠΈΠΌΡƒΠ»ΠΈΡ€Π°Ρ˜Ρƒ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€ΠΈ ΠΈ Ρƒ којима јС посСбно посвСћСна паТња ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΡƒ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π° са доступним СкспСримСнталним Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈΠΌΠ° Ρ€Π°Π΄ΠΈ Π²Π°Π»ΠΈΠ΄Π°Ρ†ΠΈΡ˜Π΅ ΠΌΠΎΠ΄Π΅Π»Π°. НадаљС су ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½ΠΈ Ρƒ Ρ‚Ρ€ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½Π°Π»Π½ΠΎΠΌ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΎΠΌ ΠΊΠΎΠ΄Ρƒ Π·Π° ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Ρƒ процСса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ ΠΏΠ°Ρ€Π½ΠΎΠ³ ΠΊΠΎΡ‚Π»Π° ΠΈ Ρ‚Ρƒ јС посСбно интСрСсантно Π±ΠΈΠ»ΠΎ посматрати, ΠΏΠΎΡ€Π΅Π΄ ΡƒΡ‚ΠΈΡ†Π°Ρ˜Π° сорбСнта Π½Π° ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜ оксида сумпора, ΠΈ ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π½Π° ΠΈΠ·Π»Π°Π·Π½Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΈ Π΄Ρ€ΡƒΠ³Π΅ Ρ€Π΅Π»Π΅Π²Π°Π½Ρ‚Π½Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π΅ процСса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ. Π£ Ρ‚ΠΎΠΊΡƒ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° ΠΈΠ·Π²Π΅Π΄Π΅Π½Π° јС ΠΎΠ±ΠΈΠΌΠ½Π° Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠ° Π°Π½Π°Π»ΠΈΠ·Π° могућности ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ ΠΈ ΠΏΡ€Π°Ρ‚Π΅Ρ›ΠΈΡ… појава. Π‘ΠΈΠΌΡƒΠ»ΠΈΡ€Π°Π½ΠΎ јС ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ΅ ΠΊΡ€ΠΎΠ· Π΅Ρ‚Π°ΠΆΠ΅ Π³ΠΎΡ€ΠΈΠΎΠ½ΠΈΡ‡ΠΊΠΈΡ… ΠΏΠ°ΠΊΠ΅Ρ‚Π°, ΠΊΠ°ΠΎ ΠΈ ΠΊΡ€ΠΎΠ· посСбнС ΠΎΡ‚Π²ΠΎΡ€Π΅ ΠΈΠ·Π½Π°Π΄ Π³ΠΎΡ€ΠΈΠΎΠ½ΠΈΡ‡ΠΊΠΈΡ… ΠΏΠ°ΠΊΠ΅Ρ‚Π°, ΠΏΠΎΡ˜Π΅Π΄ΠΈΠ½Π°Ρ‡Π½ΠΎ ΠΈ Ρƒ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΡ˜ΠΈ. АнализиранС су могућности процСса са вишС Π³ΠΎΡ€ΠΈΠ²Π°, са Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΠΌ Ρ‚ΠΎΠΏΠ»ΠΎΡ‚Π½ΠΈΠΌ ΠΌΠΎΡ›ΠΈΠΌΠ° ΠΈ ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜ΠΈΠΌΠ° сумпора ΠΈ ΠΏΡ€ΠΈΠΊΠ°Π·Π°Π½ΠΈ су ΡƒΡ‚ΠΈΡ†Π°Ρ˜ΠΈ којС Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈ Ρ€Π°Π΄Π½ΠΈ Ρ€Π΅ΠΆΠΈΠΌΠΈ ΠΈ ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΡ˜Π΅ ΡΠ°Π³ΠΎΡ€Π΅Π²Π°ΡšΠ° ΠΈΠΌΠ°Ρ˜Ρƒ Π½Π° ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜Π΅ гасовитих ΠΏΡ€ΠΎΠ΄ΡƒΠΊΠ°Ρ‚Π° Π½Π° ΠΈΠ·Π»Π°Π·Ρƒ ΠΈΠ· Π»ΠΎΠΆΠΈΡˆΡ‚Π°. Π Π°Π·ΠΌΠ°Ρ‚Ρ€Π°Π½ јС ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π²Π΅Π»ΠΈΠΊΠΎΠ³ Π±Ρ€ΠΎΡ˜Π° Ρ€Π°Π΄Π½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π° процСса ΠΎΠ΄ΡΡƒΠΌΠΏΠΎΡ€Π°Π²Π°ΡšΠ°, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ су: мСсто ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΠΈ Π΄ΠΈΡΡ‚Ρ€ΠΈΠ±ΡƒΡ†ΠΈΡ˜Π° чСстица сорбСнта, тСмпСратурска ΠΈΡΡ‚ΠΎΡ€ΠΈΡ˜Π° ΠΈ Π²Ρ€Π΅ΠΌΠ΅ Π±ΠΎΡ€Π°Π²ΠΊΠ° чСстица Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ, Π»ΠΎΠΊΠ°Π»Π½Π° Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° гаса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ, ΠΌΠΎΠ»Π°Ρ€Π½ΠΈ однос ΠΊΠ°Π»Ρ†ΠΈΡ˜ΡƒΠΌΠ° ΠΈ сумпора, Π»ΠΎΠΊΠ°Π»Π½Π° ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° оксида сумпора ΠΈ кисСоника Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ, ΠΈΡ‚Π΄. ИзвСдСни су Π·Π°ΠΊΡ™ΡƒΡ‡Ρ†ΠΈ ΠΎ могућностима ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ ΠΏΠ°Ρ€Π½ΠΎΠ³ ΠΊΠΎΡ‚Π»Π°, ΠΊΠ°ΠΎ ΠΈ ΠΏΡ€ΠΎΠ½Π°Π»Π°ΠΆΠ΅ΡšΡƒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½ΠΎΠ³ Π½Π°Ρ‡ΠΈΠ½Π° ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° Ρƒ зависности ΠΎΠ΄ Ρ€Π°Π΄Π½ΠΎΠ³ Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΊΠΎΡ‚Π»Π°. РазвијСни софтвСр јС ΠΎΠΏΡ€Π΅ΠΌΡ™Π΅Π½ корисничким ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ˜ΡΠΎΠΌ који ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° Ρ˜Π΅Π΄Π½ΠΎΡΡ‚Π°Π²Π½ΠΎ задавањС ΡƒΠ»Π°Π·Π½ΠΈΡ… ΠΏΠΎΠ΄Π°Ρ‚Π°ΠΊΠ° Π·Π° ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½ΠΎ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅, ΡˆΡ‚ΠΎ олакшава Π°Π½Π°Π»ΠΈΠ·Π΅, Π° ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° ΠΈ ΠΈΠ½ΠΆΠ΅ΡšΠ΅Ρ€ΡΠΊΠΎΠΌ ΠΊΠ°Π΄Ρ€Ρƒ олакшан Ρ€Π°Π΄ са софтвСром, Π° Ρƒ Ρ†ΠΈΡ™Ρƒ саглСдавања ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½ΠΎΠ³ процСса ΠΊΠ°ΠΎ ΠΌΠΎΠ³ΡƒΡ›Π΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅ ΠΈ њСнС ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅ Π½Π° Π»ΠΎΠΆΠΈΡˆΡ‚ΠΈΠΌΠ° ΠΏΠ°Ρ€Π½ΠΈΡ… ΠΊΠΎΡ‚Π»ΠΎΠ²Π°

    Modelling of flue gas desulfurization process by sorbent injection into the pulverized coal-fired utility boiler furnace.

    Get PDF
    Π•ΠΊΠΎΠ»ΠΎΡˆΠΊΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΈ ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ ΠΏΡ€Π΅Ρ‚Π²Π°Ρ€Π°ΡšΠ° Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ садрТанС Ρƒ ΡƒΠ³Ρ™Ρƒ Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Ρƒ Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Ρƒ су ΠΎΠ΄ ΠΈΠ·ΡƒΠ·Π΅Ρ‚Π½ΠΎΠ³ Π·Π½Π°Ρ‡Π°Ρ˜Π° ΠΈ ΠΏΠΎΡΠ²Π΅Ρ›ΡƒΡ˜Π΅ ΠΈΠΌ сС посСбна паТња. ΠŸΡ€Π΅ ΠΏΡ€Π΅Π΄ΡƒΠ·ΠΈΠΌΠ°ΡšΠ° ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΈΡ… ΠΌΠ΅Ρ€Π° Π½Π° ΡƒΠ½Π°ΠΏΡ€Π΅Ρ’Π΅ΡšΡƒ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›ΠΈΡ… ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠ°, ΠΈΠ»ΠΈ ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ ΠΏΠ»Π°Π½ΠΈΡ€Π°ΡšΠ° ΠΈ ΠΈΠ·Π³Ρ€Π°Π΄ΡšΠ΅ Π½ΠΎΠ²ΠΈΡ… ΠΏΠΎΡ‚Ρ€Π΅Π±Π½ΠΎ јС извСсти Π΄Π΅Ρ‚Π°Ρ™Π½Π΅ Π°Π½Π°Π»ΠΈΠ·Π΅, ΠΊΠ°ΠΊΠΎ Ρ‚Π΅Ρ…Π½ΠΎ-СкономскС, Ρ‚Π°ΠΊΠΎ ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΡƒΡ‚ΠΈΡ†Π°Ρ˜Π° Π½Π° ΠΆΠΈΠ²ΠΎΡ‚Π½Ρƒ срСдину. Π‘Ρ€Π΅Π΄ΠΈΠ½ΠΎΠΌ ΠΏΡ€ΠΎΡˆΠ»ΠΎΠ³ Π²Π΅ΠΊΠ° ΠΎΡ‚ΠΏΠΎΡ‡Π΅ΠΎ јС ΡƒΠ±Ρ€Π·Π°Π½ Ρ€Π°Π·Π²ΠΎΡ˜ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π°, ΡƒΠ· истоврСмСно ΠΏΠΎΡ˜Π΅Ρ„Ρ‚ΠΈΡšΠ΅ΡšΠ΅ ΠΈ доступност ΠΊΡ€Π°Ρ˜ΡšΠ΅ΠΌ кориснику, a 21. Π²Π΅ΠΊ јС столСћС којС Ρ›Π΅ ΠΎΠ±Π΅Π»Π΅ΠΆΠΈΡ‚ΠΈ ΠΈ Π²Π΅Ρ› ΠΎΠ±Π΅Π»Π΅ΠΆΠ°Π²Π°Ρ˜Ρƒ Π·Π½Π°Ρ‡Π°Ρ˜Π½Π΅ ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅ Ρƒ структури Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π°, могућностима ΠΈ ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈ...Environmental problems during energy conversion from coal into electric power are of great importance and must be addressed as such. Before undertaking measures to improve existing utility boilers, or during planning and building new plants, detailed analysis are required, considering both techno-economic and the environmental issues. During the middle of the last century a rapid development of computers started, and at the same time computers became affordable and available to the end user..

    Modelling of flue gas desulfurization process by sorbent injection into the pulverized coal-fired utility boiler furnace

    Get PDF
    Environmental problems during energy conversion from coal into electric power are of great importance and must be addressed as such. Before undertaking measures to improve existing utility boilers, or during planning and building new plants, detailed analysis are required, considering both techno-economic and the environmental issues. During the middle of the last century a rapid development of computers started, and at the same time computers became affordable and available to the end user. Thus, the 21st century becomes the era that will be marked by significant changes in computer structure, possibilities and use. Advances in computer development allowed for improvement of the computational methods in mechanical engineering and in other fields as well. Process control and plant design with the aid of computers are becoming everyday task and allow dealing with engineering problems that have previously been unsolvable and required empirical approach. One of the major contributors to environmental pollution is the emission of pollutants from large stationary sources, that is, more precisely, from the pulverized coal powered utility steam boilers. The subject of research in the dissertation is numerical modelling of complex processes in utility boiler furnace during direct injection of pulverized calcium-based sorbent (limestone, or lime) into the furnace for sulfur oxides reduction, with the model development, as well as numerical analysis and optimization of the processes as the primary goals. Process is well known in theory, however, as it can be found in the literature, the sorbent behavior during the furnace sorbent injection is still not understood enough, and thus on the full-scale plants the efficiency of the process significantly varies. Problems and the causes of significant drops in efficiency can be attributed to the poor process control. Numerical modeling allows for investigation of furnace behavior during various configurations of the sorbent injection process, before any changes are made at the plant itself, which is of primary importance during analysis and decision making about directions of the changes and upgrades of the existing plants, and can give good ideas about the design of the new plants. Developed software for three-dimensional furnace calculation includes differential model of flow and heat transfer processes, combustion reactions model, nitrogen oxides formation and destruction reactions model, and two selected and optimized models of sorbent particle reactions with sulfur oxides from furnace gasses, applied within the comprehensive model of furnace processes. A k-Ξ΅ model is used for turbulence modeling, while the radiative heat exchange is modelled by using the six fluxes model. Two-phase gas-particle turbulent flow is modeled with Euler-Lagrangian approach. Interaction between gas phase and particles is treated by PSI-Cell method, with transport equations for gas phase having source terms that takes into account the particles influence. Significance of development and application of such a software for calculations is mostly notable in possibility to perceive and analyze processes inside of the furnace which cannot be analyzed and (the entire system cannot be) predicted by other means. Understanding the behavior of the boiler furnace during certain operation regimes, with the use of various fuels, as well as under modifications such as the furnace sorbent injection is of great importance, and represents a prerequisite for achieving efficient, reliable and environmentally friendly boiler operation with compromises between the three, important but to some extent opposed conditions. Particular attention is devoted to the modeling of pulverized sorbent furnace injection, regarding that a primary goal is investigation of possibility to reduce sulfur oxides emission by means of direct sorbent injection into the boiler furnace. Problem is approached through several phases, starting with the analysis of selected models of calcination, sintering and sulfation reactions, their stability and behavior in two-dimensional simulated reactors with focus on comparison with available experimental results in order to validate the models implementation. In further study, models are implemented in three-dimensional numerical code for simulation of in-furnace processes, with particular interest to observe, beside the sorbent influence on sulfur oxides content, the influence it has on the furnace exiting gas temperature and other relevant process parameters in the furnace. During the research, a complex numerical study of the furnace sorbent injection possibilities and accompanying phenomena was performed. Sorbent injection was simulated through the burner tiers, and through the special injection ports above the burner tiers, individually and in combination. Process was analyzed for several fuels with different heating values and varied sulfur content, and various the impacts of different operation regimes and combustion configurations on the gaseous combustion products at the furnace exit were shown. Influence of wide range of desulfurization process parameters was considered, such as: sorbent injection position and particle distribution, particle temperature history and residence time, local gas temperature within the furnace, calcium – sulfur molar ratio, local sulfur oxides concentration, local oxygen concentration, etc. Conclusions were drawn considering possibilities for direct sorbent injection into the pulverized coal fired boiler furnace, as well as suggestions were given on optimal furnace sorbent injection configuration, depending on the boiler operation parameters. The developed software includes a user interface for easier data input for the case-study boiler furnace, allowing for easier boiler analysis, and provides engineering staff with a tool for an efficient software control, with the purpose of considering and analyzing better the furnace sorbent injection technology and its potential applications in the utility boiler furnaces.Π•ΠΊΠΎΠ»ΠΎΡˆΠΊΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΈ ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ ΠΏΡ€Π΅Ρ‚Π²Π°Ρ€Π°ΡšΠ° Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ садрТанС Ρƒ ΡƒΠ³Ρ™Ρƒ Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Ρƒ Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Ρƒ су ΠΎΠ΄ ΠΈΠ·ΡƒΠ·Π΅Ρ‚Π½ΠΎΠ³ Π·Π½Π°Ρ‡Π°Ρ˜Π° ΠΈ ΠΏΠΎΡΠ²Π΅Ρ›ΡƒΡ˜Π΅ ΠΈΠΌ сС посСбна паТња. ΠŸΡ€Π΅ ΠΏΡ€Π΅Π΄ΡƒΠ·ΠΈΠΌΠ°ΡšΠ° ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΈΡ… ΠΌΠ΅Ρ€Π° Π½Π° ΡƒΠ½Π°ΠΏΡ€Π΅Ρ’Π΅ΡšΡƒ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›ΠΈΡ… ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠ°, ΠΈΠ»ΠΈ ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ ΠΏΠ»Π°Π½ΠΈΡ€Π°ΡšΠ° ΠΈ ΠΈΠ·Π³Ρ€Π°Π΄ΡšΠ΅ Π½ΠΎΠ²ΠΈΡ… ΠΏΠΎΡ‚Ρ€Π΅Π±Π½ΠΎ јС извСсти Π΄Π΅Ρ‚Π°Ρ™Π½Π΅ Π°Π½Π°Π»ΠΈΠ·Π΅, ΠΊΠ°ΠΊΠΎ Ρ‚Π΅Ρ…Π½ΠΎ-СкономскС, Ρ‚Π°ΠΊΠΎ ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΡƒΡ‚ΠΈΡ†Π°Ρ˜Π° Π½Π° ΠΆΠΈΠ²ΠΎΡ‚Π½Ρƒ срСдину. Π‘Ρ€Π΅Π΄ΠΈΠ½ΠΎΠΌ ΠΏΡ€ΠΎΡˆΠ»ΠΎΠ³ Π²Π΅ΠΊΠ° ΠΎΡ‚ΠΏΠΎΡ‡Π΅ΠΎ јС ΡƒΠ±Ρ€Π·Π°Π½ Ρ€Π°Π·Π²ΠΎΡ˜ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π°, ΡƒΠ· истоврСмСно ΠΏΠΎΡ˜Π΅Ρ„Ρ‚ΠΈΡšΠ΅ΡšΠ΅ ΠΈ доступност ΠΊΡ€Π°Ρ˜ΡšΠ΅ΠΌ кориснику, a 21. Π²Π΅ΠΊ јС столСћС којС Ρ›Π΅ ΠΎΠ±Π΅Π»Π΅ΠΆΠΈΡ‚ΠΈ ΠΈ Π²Π΅Ρ› ΠΎΠ±Π΅Π»Π΅ΠΆΠ°Π²Π°Ρ˜Ρƒ Π·Π½Π°Ρ‡Π°Ρ˜Π½Π΅ ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅ Ρƒ структури Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π°, могућностима ΠΈ ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±ΠΈ. НапрСдак Ρƒ Ρ€Π°Π·Π²ΠΎΡ˜Ρƒ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π° ΠΎΠΌΠΎΠ³ΡƒΡ›ΠΈΠΎ јС Ρ€Π°Π·Π²ΠΎΡ˜ Π½ΠΎΠ²ΠΈΡ… прорачунских ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Ρƒ ΠΌΠ°ΡˆΠΈΠ½ΡΡ‚Π²Ρƒ ΠΊΠ°ΠΎ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌ областима. Π’ΠΎΡ’Π΅ΡšΠ΅ процСса ΠΈ ΠΏΡ€ΠΎΡ˜Π΅ΠΊΡ‚ΠΎΠ²Π°ΡšΠ΅ ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠ° ΡƒΠ· ΠΏΡ€ΠΈΠΌΠ΅Π½Ρƒ Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ€Π° ΠΏΠΎΡΡ‚Π°Ρ˜Ρƒ наша свакоднСвница Ρƒ којој јС ΠΌΠΎΠ³ΡƒΡ›Π΅ Ρ€Π΅ΡˆΠΈΡ‚ΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅ који су Ρ€Π°Π½ΠΈΡ˜Π΅ Π±ΠΈΠ»ΠΈ Π½Π΅Ρ€Π΅ΡˆΠΈΠ²ΠΈ ΠΈ приступало ΠΈΠΌ сС искључиво Π΅ΠΌΠΏΠΈΡ€ΠΈΡ˜ΡΠΊΠΈ. ЈСдан ΠΎΠ΄ ΠΎΠ²ΠΈΡ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Ρ˜Π΅ΡΡ‚Π΅ ΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ СмисијС ΡˆΡ‚Π΅Ρ‚Π½ΠΈΡ… јСдињСња ΠΈΠ· стационарних ΠΈΠ·Π²ΠΎΡ€Π° Π²Π΅Π»ΠΈΠΊΠΈΡ… ΠΊΠ°ΠΏΠ°Ρ†ΠΈΡ‚Π΅Ρ‚Π°, односно, Ρƒ нашСм ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΌ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ ΠΈΠ· СнСргСтских ΠΏΠ°Ρ€Π½ΠΈΡ… ΠΊΠΎΡ‚Π»ΠΎΠ²Π° Π½Π° ΡƒΠ³Ρ™Π΅Π½ΠΈ ΠΏΡ€Π°Ρ…. ΠŸΡ€Π΅Π΄ΠΌΠ΅Ρ‚ ΠΏΡ€ΠΎΡƒΡ‡Π°Π²Π°ΡšΠ° Ρƒ овој Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ Ρ˜Π΅ΡΡ‚Π΅ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΠ΅ слоТСних процСса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ ΠΏΠ°Ρ€Π½ΠΎΠ³ ΠΊΠΎΡ‚Π»Π° ΠΏΡ€ΠΈ ΡƒΠ½ΠΎΡˆΠ΅ΡšΡƒ ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Π½Π° Π±Π°Π·ΠΈ ΠΊΠ°Π»Ρ†ΠΈΡ˜ΡƒΠΌΠ° (ΠΊΡ€Π΅Ρ‡ΡšΠ°ΠΊΠ°, ΠΈΠ»ΠΈ ΠΊΡ€Π΅Ρ‡Π°) Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎ Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ Ρ€Π°Π΄ΠΈ смањСња СмисијС оксида сумпора, Π° Ρ†ΠΈΡ™Π΅Π²ΠΈ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ су Ρ€Π°Π·Π²ΠΎΡ˜ ΠΌΠΎΠ΄Π΅Π»Π°, ΠΊΠ°ΠΎ ΠΈ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠ° Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Π° ΠΎΠ²ΠΈΡ… процСса. ΠŸΡ€ΠΎΡ†Π΅Ρ јС ΠΏΠΎΠ·Π½Π°Ρ‚, Π°Π»ΠΈ, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ сС ΠΌΠΎΠΆΠ΅ ΠΏΡ€ΠΎΠ½Π°Ρ›ΠΈ Ρƒ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ, понашањС сорбСнта ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ јС ΠΈ Π΄Π°Ρ™Π΅ Π½Π΅Π΄ΠΎΠ²ΠΎΡ™Π½ΠΎ ΠΏΠΎΠ·Π½Π°Ρ‚ процСс, ΠΈ Π½Π° стварним ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠΈΠΌΠ° Сфикасност процСса Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΎ Π²Π°Ρ€ΠΈΡ€Π° ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠ° истС ΠΈΠ»ΠΈ сличнС снагС. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅ ΠΈ ΡƒΠ·Ρ€ΠΎΠΊΠ΅ Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΈΡ… Ρ€Π°Π·Π»ΠΈΠΊΠ° Ρƒ Сфикасности ΠΌΠΎΠ³ΡƒΡ›Π΅ јС Ρ‚Ρ€Π°ΠΆΠΈΡ‚ΠΈ Ρƒ лошСм Π²ΠΎΡ’Π΅ΡšΡƒ процСса. НумСричко ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΠ΅ Π½Π°ΠΌ ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° Π΄Π° испитамо понашањС Π»ΠΎΠΆΠΈΡˆΡ‚Π° ΠΏΡ€ΠΈΠ»ΠΈΠΊΠΎΠΌ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° процСса Π²Π΅Π·Π°Π½ΠΈΡ… Π·Π° ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ΅ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡ‚Π΅, ΠΏΡ€Π΅ Π±ΠΈΠ»ΠΎ ΠΊΠ°ΠΊΠ²ΠΈΡ… ΠΈΠ·ΠΌΠ΅Π½Π° Π½Π° ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›Π΅ΠΌ ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΡƒ, ΡˆΡ‚ΠΎ јС ΠΎΠ΄ ΠΈΠ·ΡƒΠ·Π΅Ρ‚Π½ΠΎΠ³ Π·Π½Π°Ρ‡Π°Ρ˜Π° ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π°ΠΌΠ° ΠΈ ΠΎΠ΄Π»ΡƒΡ‡ΠΈΠ²Π°ΡšΡƒ ΠΎ ΠΏΡ€Π°Π²Ρ†ΠΈΠΌΠ° Ρƒ којима Ρ‚Ρ€Π΅Π±Π° Π²Ρ€ΡˆΠΈΡ‚ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅ Π½Π° ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅Ρ›ΠΈΠΌ ΠΏΠΎΡΡ‚Ρ€ΠΎΡ˜Π΅ΡšΠΈΠΌΠ°, односно Π΄Π°Ρ‚ΠΈ смСрницС ΠΏΡ€ΠΈ Π΄ΠΈΠ·Π°Ρ˜Π½Ρƒ Π½ΠΎΠ²ΠΈΡ…. РазвијСн јС софтвСр Π·Π° ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½ процСса Ρƒ Ρ‚Ρ€ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½Π°Π»Π½ΠΎΠΌ котловском Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ који ΡƒΠΊΡ™ΡƒΡ‡ΡƒΡ˜Π΅ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½ΠΈ ΠΌΠΎΠ΄Π΅Π» ΡΡ‚Ρ€ΡƒΡ˜Π½ΠΎΡ‚Π΅Ρ€ΠΌΠΈΡ‡ΠΊΠΈΡ… процСса, ΠΌΠΎΠ΄Π΅Π» Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π° ΡΠ°Π³ΠΎΡ€Π΅Π²Π°ΡšΠ°, Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π° Π½Π°ΡΡ‚Π°Ρ˜Π°ΡšΠ° ΠΈ Π΄Π΅ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡ˜Π΅ оксида Π°Π·ΠΎΡ‚Π°, ΠΈ Π΄Π²Π° ΠΎΠ΄Π°Π±Ρ€Π°Π½Π° ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΎΠ²Π°Π½Π° ΠΌΠΎΠ΄Π΅Π»Π° Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π° чСстица сорбСнта са оксидима сумпора ΠΈΠ· Π»ΠΎΠΆΠΈΡˆΠ½ΠΈΡ… гасова, ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½Π° Ρƒ слоТСном ΠΌΠΎΠ΄Π΅Π»Ρƒ процСса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ. Π£ΠΏΠΎΡ‚Ρ€Π΅Π±Ρ™Π°Π²Π° сС οΏ½ βˆ’ οΏ½ ΠΌΠΎΠ΄Π΅Π» Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ†ΠΈΡ˜Π΅, Π΄ΠΎΠΊ сС Π·Π° ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΠ΅ Ρ€Π°Π΄ΠΈΡ˜Π°Ρ†ΠΈΠΎΠ½Π΅ Ρ€Π°Π·ΠΌΠ΅Π½Π΅ Ρ‚ΠΎΠΏΠ»ΠΎΡ‚Π΅ користи ΠΌΠΎΠ΄Π΅Π» ΡˆΠ΅ΡΡ‚ флуксСва. Π”Π²ΠΎΡ„Π°Π·Π½ΠΈ гас-чСстицС Ρ‚ΡƒΡ€Π±ΡƒΠ»Π΅Π½Ρ‚Π½ΠΈ Ρ‚ΠΎΠΊ сС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π° ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ EulerLagrange-ΠΎΠ²ΠΎΠ³ поступка. Π˜Π½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ гасовитС Ρ„Π°Π·Π΅ ΠΈ чСстица сС Ρ‚Ρ€Π΅Ρ‚ΠΈΡ€Π° ΠΏΠΎΠΌΠΎΡ›Ρƒ PSI-Cell ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅, односно Ρƒ транспортним Ρ˜Π΅Π΄Π½Π°Ρ‡ΠΈΠ½Π°ΠΌΠ° Π·Π° гасну Ρ„Π°Π·Ρƒ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅ ΠΈΠ·Π²ΠΎΡ€Π½ΠΈ Ρ‡Π»Π°Π½ΠΎΠ²ΠΈ којима сС ΡƒΠ·ΠΈΠΌΠ° Ρƒ ΠΎΠ±Π·ΠΈΡ€ ΡƒΡ‚ΠΈΡ†Π°Ρ˜ чСстица. Π—Π½Π°Ρ‡Π°Ρ˜ Ρ€Π°Π·Π²ΠΎΡ˜Π° ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅ ΠΎΠ²Π°ΠΊΠ²ΠΎΠ³ софтвСра Π·Π° ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½ сС ΠΎΠ³Π»Π΅Π΄Π° Ρƒ могућности саглСдавања ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ процСса ΡƒΠ½ΡƒΡ‚Π°Ρ€ Π»ΠΎΠΆΠΈΡˆΡ‚Π° којС Π½Π° Π΄Ρ€ΡƒΠ³ΠΈ Π½Π°Ρ‡ΠΈΠ½ нијС ΠΌΠΎΠ³ΡƒΡ›Π΅ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€Π°Ρ‚ΠΈ Π½ΠΈΡ‚ΠΈ ΠΏΡ€Π΅Π΄Π²ΠΈΠ΄Π΅Ρ‚ΠΈ понашањС систСма Π΄Ρ€ΡƒΠ³ΠΈΠΌ Ρ˜Π΅Π΄Π½ΠΎΡΡ‚Π°Π²Π½ΠΈΡ˜ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠ°. ПознавањС понашања котловског Π»ΠΎΠΆΠΈΡˆΡ‚Π° ΠΏΡ€ΠΈ ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½ΠΈΠΌ Ρ€Π°Π΄Π½ΠΈΠΌ Ρ€Π΅ΠΆΠΈΠΌΠΈΠΌΠ°, ΡƒΠ· ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… Π³ΠΎΡ€ΠΈΠ²Π°, ΠΊΠ°ΠΎ ΠΈ ΠΏΡ€ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π°ΠΌΠ° ΠΏΠΎΠΏΡƒΡ‚ ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ јС ΠΎΠ΄ ΠΈΠ·ΡƒΠ·Π΅Ρ‚Π½ΠΎΠ³ Π·Π½Π°Ρ‡Π°Ρ˜Π°, ΠΈ прСдставља прСдуслов Π·Π° ΠΏΠΎΡΡ‚ΠΈΠ·Π°ΡšΠ΅ Сфикасног, ΠΏΠΎΡƒΠ·Π΄Π°Π½ΠΎΠ³ ΠΈ Сколошки ΠΏΡ€ΠΈΡ…Π²Π°Ρ‚Ρ™ΠΈΠ²ΠΎΠ³ Ρ€Π°Π΄Π° ΡƒΠ· компромисС који ΠΈΠ· Ρ‚Π° Ρ‚Ρ€ΠΈ Π±ΠΈΡ‚Π½Π°, Π°Π»ΠΈ Π΄ΠΎΠ½Π΅ΠΊΠ»Π΅ супротстављСна Π·Π°Ρ…Ρ‚Π΅Π²Π° ΠΏΡ€ΠΎΠΈΠ·ΠΈΠ»Π°Π·Π΅. ОвдС јС посСбна паТња посвСћСна ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€Π°ΡšΡƒ ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ ΠΏΠ°Ρ€Π½ΠΎΠ³ ΠΊΠΎΡ‚Π»Π°, с ΠΎΠ±Π·ΠΈΡ€ΠΎΠΌ Π΄Π° јС Π³Π»Π°Π²Π½ΠΈ Ρ†ΠΈΡ™ ΠΏΡ€ΠΎΠ²Π΅Ρ€Π° могућности смањСња СмисијС оксида сумпора ΠΏΠΎΠΌΠΎΡ›Ρƒ Π΄ΠΈΡ€Π΅ΠΊΡ‚Π½ΠΎΠ³ ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅. Π Π΅ΡˆΠ°Π²Π°ΡšΡƒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° приступљСно јС ΠΊΡ€ΠΎΠ· Π΅Ρ‚Π°ΠΏΠ΅, ΠΏΠΎΡ‡Π΅Π² ΠΎΠ΄ ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅ ΠΈΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Π΅ ΠΎΠ΄Π°Π±Ρ€Π°Π½ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π° Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜Π° ΠΊΠ°Π»Ρ†ΠΈΠ½Π°Ρ†ΠΈΡ˜Π΅, ΡΠΈΠ½Ρ‚Π΅Ρ€ΠΎΠ²Π°ΡšΠ° ΠΈ ΡΡƒΠ»Ρ„Π°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΡ˜Π΅ чСстицС сорбСнта, ΠΏΡ€ΠΎΠ²Π΅Ρ€Π΅ ΡšΠΈΡ…ΠΎΠ²Π΅ стабилности ΠΈ понашања Ρƒ Π΄Π²ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½Π°Π»Π½ΠΈΠΌ ΠΊΠ°Π½Π°Π»ΠΈΠΌΠ° којима сС ΡΠΈΠΌΡƒΠ»ΠΈΡ€Π°Ρ˜Ρƒ Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€ΠΈ ΠΈ Ρƒ којима јС посСбно посвСћСна паТња ΠΏΠΎΡ€Π΅Ρ’Π΅ΡšΡƒ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π° са доступним СкспСримСнталним Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈΠΌΠ° Ρ€Π°Π΄ΠΈ Π²Π°Π»ΠΈΠ΄Π°Ρ†ΠΈΡ˜Π΅ ΠΌΠΎΠ΄Π΅Π»Π°. НадаљС су ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡ€ΠΈΠΌΠ΅ΡšΠ΅Π½ΠΈ Ρƒ Ρ‚Ρ€ΠΎΠ΄ΠΈΠΌΠ΅Π½Π·ΠΈΠΎΠ½Π°Π»Π½ΠΎΠΌ Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠΎΠΌ ΠΊΠΎΠ΄Ρƒ Π·Π° ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Ρƒ процСса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ ΠΏΠ°Ρ€Π½ΠΎΠ³ ΠΊΠΎΡ‚Π»Π° ΠΈ Ρ‚Ρƒ јС посСбно интСрСсантно Π±ΠΈΠ»ΠΎ посматрати, ΠΏΠΎΡ€Π΅Π΄ ΡƒΡ‚ΠΈΡ†Π°Ρ˜Π° сорбСнта Π½Π° ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜ оксида сумпора, ΠΈ ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π½Π° ΠΈΠ·Π»Π°Π·Π½Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΈ Π΄Ρ€ΡƒΠ³Π΅ Ρ€Π΅Π»Π΅Π²Π°Π½Ρ‚Π½Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π΅ процСса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ. Π£ Ρ‚ΠΎΠΊΡƒ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° ΠΈΠ·Π²Π΅Π΄Π΅Π½Π° јС ΠΎΠ±ΠΈΠΌΠ½Π° Π½ΡƒΠΌΠ΅Ρ€ΠΈΡ‡ΠΊΠ° Π°Π½Π°Π»ΠΈΠ·Π° могућности ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ ΠΈ ΠΏΡ€Π°Ρ‚Π΅Ρ›ΠΈΡ… појава. Π‘ΠΈΠΌΡƒΠ»ΠΈΡ€Π°Π½ΠΎ јС ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ΅ ΠΊΡ€ΠΎΠ· Π΅Ρ‚Π°ΠΆΠ΅ Π³ΠΎΡ€ΠΈΠΎΠ½ΠΈΡ‡ΠΊΠΈΡ… ΠΏΠ°ΠΊΠ΅Ρ‚Π°, ΠΊΠ°ΠΎ ΠΈ ΠΊΡ€ΠΎΠ· посСбнС ΠΎΡ‚Π²ΠΎΡ€Π΅ ΠΈΠ·Π½Π°Π΄ Π³ΠΎΡ€ΠΈΠΎΠ½ΠΈΡ‡ΠΊΠΈΡ… ΠΏΠ°ΠΊΠ΅Ρ‚Π°, ΠΏΠΎΡ˜Π΅Π΄ΠΈΠ½Π°Ρ‡Π½ΠΎ ΠΈ Ρƒ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΡ˜ΠΈ. АнализиранС су могућности процСса са вишС Π³ΠΎΡ€ΠΈΠ²Π°, са Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΠΌ Ρ‚ΠΎΠΏΠ»ΠΎΡ‚Π½ΠΈΠΌ ΠΌΠΎΡ›ΠΈΠΌΠ° ΠΈ ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜ΠΈΠΌΠ° сумпора ΠΈ ΠΏΡ€ΠΈΠΊΠ°Π·Π°Π½ΠΈ су ΡƒΡ‚ΠΈΡ†Π°Ρ˜ΠΈ којС Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈ Ρ€Π°Π΄Π½ΠΈ Ρ€Π΅ΠΆΠΈΠΌΠΈ ΠΈ ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΡ˜Π΅ ΡΠ°Π³ΠΎΡ€Π΅Π²Π°ΡšΠ° ΠΈΠΌΠ°Ρ˜Ρƒ Π½Π° ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜Π΅ гасовитих ΠΏΡ€ΠΎΠ΄ΡƒΠΊΠ°Ρ‚Π° Π½Π° ΠΈΠ·Π»Π°Π·Ρƒ ΠΈΠ· Π»ΠΎΠΆΠΈΡˆΡ‚Π°. Π Π°Π·ΠΌΠ°Ρ‚Ρ€Π°Π½ јС ΡƒΡ‚ΠΈΡ†Π°Ρ˜ Π²Π΅Π»ΠΈΠΊΠΎΠ³ Π±Ρ€ΠΎΡ˜Π° Ρ€Π°Π΄Π½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π° процСса ΠΎΠ΄ΡΡƒΠΌΠΏΠΎΡ€Π°Π²Π°ΡšΠ°, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ су: мСсто ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΠΈ Π΄ΠΈΡΡ‚Ρ€ΠΈΠ±ΡƒΡ†ΠΈΡ˜Π° чСстица сорбСнта, тСмпСратурска ΠΈΡΡ‚ΠΎΡ€ΠΈΡ˜Π° ΠΈ Π²Ρ€Π΅ΠΌΠ΅ Π±ΠΎΡ€Π°Π²ΠΊΠ° чСстица Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ, Π»ΠΎΠΊΠ°Π»Π½Π° Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° гаса Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ, ΠΌΠΎΠ»Π°Ρ€Π½ΠΈ однос ΠΊΠ°Π»Ρ†ΠΈΡ˜ΡƒΠΌΠ° ΠΈ сумпора, Π»ΠΎΠΊΠ°Π»Π½Π° ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° оксида сумпора ΠΈ кисСоника Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Ρƒ, ΠΈΡ‚Π΄. ИзвСдСни су Π·Π°ΠΊΡ™ΡƒΡ‡Ρ†ΠΈ ΠΎ могућностима ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° ΡΠΏΡ€Π°ΡˆΠ΅Π½ΠΎΠ³ сорбСнта Ρƒ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅ ΠΏΠ°Ρ€Π½ΠΎΠ³ ΠΊΠΎΡ‚Π»Π°, ΠΊΠ°ΠΎ ΠΈ ΠΏΡ€ΠΎΠ½Π°Π»Π°ΠΆΠ΅ΡšΡƒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½ΠΎΠ³ Π½Π°Ρ‡ΠΈΠ½Π° ΡƒΠ½ΠΎΡˆΠ΅ΡšΠ° Ρƒ зависности ΠΎΠ΄ Ρ€Π°Π΄Π½ΠΎΠ³ Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΊΠΎΡ‚Π»Π°. РазвијСни софтвСр јС ΠΎΠΏΡ€Π΅ΠΌΡ™Π΅Π½ корисничким ΠΈΠ½Ρ‚Π΅Ρ€Ρ„Π΅Ρ˜ΡΠΎΠΌ који ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° Ρ˜Π΅Π΄Π½ΠΎΡΡ‚Π°Π²Π½ΠΎ задавањС ΡƒΠ»Π°Π·Π½ΠΈΡ… ΠΏΠΎΠ΄Π°Ρ‚Π°ΠΊΠ° Π·Π° ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½ΠΎ Π»ΠΎΠΆΠΈΡˆΡ‚Π΅, ΡˆΡ‚ΠΎ олакшава Π°Π½Π°Π»ΠΈΠ·Π΅, Π° ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° ΠΈ ΠΈΠ½ΠΆΠ΅ΡšΠ΅Ρ€ΡΠΊΠΎΠΌ ΠΊΠ°Π΄Ρ€Ρƒ олакшан Ρ€Π°Π΄ са софтвСром, Π° Ρƒ Ρ†ΠΈΡ™Ρƒ саглСдавања ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π½ΠΎΠ³ процСса ΠΊΠ°ΠΎ ΠΌΠΎΠ³ΡƒΡ›Π΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅ ΠΈ њСнС ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅ Π½Π° Π»ΠΎΠΆΠΈΡˆΡ‚ΠΈΠΌΠ° ΠΏΠ°Ρ€Π½ΠΈΡ… ΠΊΠΎΡ‚Π»ΠΎΠ²Π°
    corecore