445 research outputs found

    Learning to Dress {3D} People in Generative Clothing

    Get PDF
    Three-dimensional human body models are widely used in the analysis of human pose and motion. Existing models, however, are learned from minimally-clothed 3D scans and thus do not generalize to the complexity of dressed people in common images and videos. Additionally, current models lack the expressive power needed to represent the complex non-linear geometry of pose-dependent clothing shapes. To address this, we learn a generative 3D mesh model of clothed people from 3D scans with varying pose and clothing. Specifically, we train a conditional Mesh-VAE-GAN to learn the clothing deformation from the SMPL body model, making clothing an additional term in SMPL. Our model is conditioned on both pose and clothing type, giving the ability to draw samples of clothing to dress different body shapes in a variety of styles and poses. To preserve wrinkle detail, our Mesh-VAE-GAN extends patchwise discriminators to 3D meshes. Our model, named CAPE, represents global shape and fine local structure, effectively extending the SMPL body model to clothing. To our knowledge, this is the first generative model that directly dresses 3D human body meshes and generalizes to different poses. The model, code and data are available for research purposes at https://cape.is.tue.mpg.de.Comment: CVPR-2020 camera ready. Code and data are available at https://cape.is.tue.mpg.d

    Learning to Reconstruct People in Clothing from a Single RGB Camera

    No full text
    We present a learning-based model to infer the personalized 3D shape of people from a few frames (1-8) of a monocular video in which the person is moving, in less than 10 seconds with a reconstruction accuracy of 5mm. Our model learns to predict the parameters of a statistical body model and instance displacements that add clothing and hair to the shape. The model achieves fast and accurate predictions based on two key design choices. First, by predicting shape in a canonical T-pose space, the network learns to encode the images of the person into pose-invariant latent codes, where the information is fused. Second, based on the observation that feed-forward predictions are fast but do not always align with the input images, we predict using both, bottom-up and top-down streams (one per view) allowing information to flow in both directions. Learning relies only on synthetic 3D data. Once learned, the model can take a variable number of frames as input, and is able to reconstruct shapes even from a single image with an accuracy of 6mm. Results on 3 different datasets demonstrate the efficacy and accuracy of our approach

    Tex2Shape: Detailed Full Human Body Geometry From a Single Image

    No full text
    We present a simple yet effective method to infer detailed full human body shape from only a single photograph. Our model can infer full-body shape including face, hair, and clothing including wrinkles at interactive frame-rates. Results feature details even on parts that are occluded in the input image. Our main idea is to turn shape regression into an aligned image-to-image translation problem. The input to our method is a partial texture map of the visible region obtained from off-the-shelf methods. From a partial texture, we estimate detailed normal and vector displacement maps, which can be applied to a low-resolution smooth body model to add detail and clothing. Despite being trained purely with synthetic data, our model generalizes well to real-world photographs. Numerous results demonstrate the versatility and robustness of our method

    Tex2Shape: Detailed Full Human Body Geometry From a Single Image

    Get PDF
    We present a simple yet effective method to infer detailed full human body shape from only a single photograph. Our model can infer full-body shape including face, hair, and clothing including wrinkles at interactive frame-rates. Results feature details even on parts that are occluded in the input image. Our main idea is to turn shape regression into an aligned image-to-image translation problem. The input to our method is a partial texture map of the visible region obtained from off-the-shelf methods. From a partial texture, we estimate detailed normal and vector displacement maps, which can be applied to a low-resolution smooth body model to add detail and clothing. Despite being trained purely with synthetic data, our model generalizes well to real-world photographs. Numerous results demonstrate the versatility and robustness of our method

    Video Based Reconstruction of 3D People Models

    Full text link
    This paper describes how to obtain accurate 3D body models and texture of arbitrary people from a single, monocular video in which a person is moving. Based on a parametric body model, we present a robust processing pipeline achieving 3D model fits with 5mm accuracy also for clothed people. Our main contribution is a method to nonrigidly deform the silhouette cones corresponding to the dynamic human silhouettes, resulting in a visual hull in a common reference frame that enables surface reconstruction. This enables efficient estimation of a consensus 3D shape, texture and implanted animation skeleton based on a large number of frames. We present evaluation results for a number of test subjects and analyze overall performance. Requiring only a smartphone or webcam, our method enables everyone to create their own fully animatable digital double, e.g., for social VR applications or virtual try-on for online fashion shopping.Comment: CVPR 2018 Spotlight, IEEE Conference on Computer Vision and Pattern Recognition 2018 (CVPR

    LiveCap: Real-time Human Performance Capture from Monocular Video

    Full text link
    We present the first real-time human performance capture approach that reconstructs dense, space-time coherent deforming geometry of entire humans in general everyday clothing from just a single RGB video. We propose a novel two-stage analysis-by-synthesis optimization whose formulation and implementation are designed for high performance. In the first stage, a skinned template model is jointly fitted to background subtracted input video, 2D and 3D skeleton joint positions found using a deep neural network, and a set of sparse facial landmark detections. In the second stage, dense non-rigid 3D deformations of skin and even loose apparel are captured based on a novel real-time capable algorithm for non-rigid tracking using dense photometric and silhouette constraints. Our novel energy formulation leverages automatically identified material regions on the template to model the differing non-rigid deformation behavior of skin and apparel. The two resulting non-linear optimization problems per-frame are solved with specially-tailored data-parallel Gauss-Newton solvers. In order to achieve real-time performance of over 25Hz, we design a pipelined parallel architecture using the CPU and two commodity GPUs. Our method is the first real-time monocular approach for full-body performance capture. Our method yields comparable accuracy with off-line performance capture techniques, while being orders of magnitude faster

    Deep deformable models for 3D human body

    Get PDF
    Deformable models are powerful tools for modelling the 3D shape variations for a class of objects. However, currently the application and performance of deformable models for human body are restricted due to the limitations in current 3D datasets, annotations, and the model formulation itself. In this thesis, we address the issue by making the following contributions in the field of 3D human body modelling, monocular reconstruction and data collection/annotation. Firstly, we propose a deep mesh convolutional network based deformable model for 3D human body. We demonstrate the merit of this model in the task of monocular human mesh recovery. While outperforming current state of the art models in mesh recovery accuracy, the model is also light weighted and more flexible as it can be trained end-to-end and fine-tuned for a specific task. A second contribution is a bone level skinned model of 3D human mesh, in which bone modelling and identity-specific variation modelling are decoupled. Such formulation allows the use of mesh convolutional networks for capturing detailed identity specific variations, while explicitly controlling and modelling the pose variations through linear blend skinning with built-in motion constraints. This formulation not only significantly increases the accuracy in 3D human mesh reconstruction, but also facilitates accurate in the wild character animation and retargetting. Finally we present a large scale dataset of over 1.3 million 3D human body scans in daily clothing. The dataset contains over 12 hours of 4D recordings at 30 FPS, consisting of 7566 dynamic sequences of 3D meshes from 4205 subjects. We propose a fast and accurate sequence registration pipeline which facilitates markerless motion capture and automatic dense annotation for the raw scans, leading to automatic synthetic image and annotation generation that boosts the performance for tasks such as monocular human mesh reconstruction.Open Acces
    corecore