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Abstract

Deformable models are powerful tools for modelling the 3D shape variations for a class

of objects. However, currently the application and performance of deformable models

for human body are restricted due to the limitations in current 3D datasets, annota-

tions, and the model formulation itself. In this thesis, we address the issue by making

the following contributions in the field of 3D human body modelling, monocular re-

construction and data collection/annotation.

Firstly, we propose a deep mesh convolutional network based deformable model for 3D

human body. We demonstrate the merit of this model in the task of monocular human

mesh recovery. While outperforming current state of the art models in mesh recovery

accuracy, the model is also light weighted and more flexible as it can be trained end-

to-end and fine-tuned for a specific task.

A second contribution is a bone level skinned model of 3D human mesh, in which bone

modelling and identity-specific variation modelling are decoupled. Such formulation

allows the use of mesh convolutional networks for capturing detailed identity spe-

cific variations, while explicitly controlling and modelling the pose variations through

linear blend skinning with built-in motion constraints. This formulation not only sig-

nificantly increases the accuracy in 3D human mesh reconstruction, but also facilitates

accurate in the wild character animation and retargetting.

Finally we present a large scale dataset of over 1.3 million 3D human body scans in

daily clothing. The dataset contains over 12 hours of 4D recordings at 30 FPS, con-

sisting of 7566 dynamic sequences of 3D meshes from 4205 subjects. We propose a

fast and accurate sequence registration pipeline which facilitates markerless motion

capture and automatic dense annotation for the raw scans, leading to automatic syn-

thetic image and annotation generation that boosts the performance for tasks such as

monocular human mesh reconstruction.
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Chapter 1

Introduction

1.1 Motivation

Human understanding from images has been one of the core problems of computer

vision due to its wide range of applications in human computer interaction. Since the

recent development of deep learning methods and hardware, the level of perception

of human bodies in images has progressed from detection, classification and keypoints

localisation in 2D to 3D pose estimation and surface reconstruction, facilitating appli-

cations such as monocular motion capture, 3D full body avatar digitisation, character

animation and virtual/augmented reality. Leveraging 3D representations from 2D im-

ages however remains a challenging problem due to the ambiguities introduced while

projecting a 3D object to the 2D image plane.

Many works have attempted to tackle the problem with deep neural networks, where

a mapping from input images and the human joints in 3D is learnt. The limitation of

such model free method is the lack of prior knowledge of the human body structure,

which could lead to implausible reconstructions in some challenging cases. A model

free reconstruction of the full 3D surface is even more challenging as the degree of

freedom increases.

Deformable models, or parametric models, incorporate prior knowledge about objects,

restricting the generated shapes to lie within a plausible space. Such models have

been used widely in the task of 3D pose estimation as the problem could be reduced

to predicting the model parameters. Moreover, a deformable model provides a surface

reconstruction while solving the pose estimation problem alone, which can be further

refined for high fidelity surface reconstruction with additional supervision signals. The
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Chapter 1. Introduction

resulting parameterisation of the human in the image can be used for motion and tex-

ture transfer, which is not straightforward with a model free approach.

However, building compact and realistic 3D parametric models of human body is chal-

lenging. Existing 3D datasets of human body scans are either captured in restricted

conditions or have small number of participants and pose variations, leading to mod-

els with limited representation power. Moreover, manual annotation of 3D datasets

requires a lot of labour, therefore there does not exist a dataset with reliable ground

truth registrations, subsequently the learned parametric model suffers from noise and

misalignment of the vertices, leading to insufficient representation of details.

Texture model is also a important component of deformable models, however currently

most of the human body models only consider the shape component due to the lack

of high quality texture information in the existing 3D datasets. Datasets such as

[11][12][13] capture human body in minimum clothing in different experimental setup,

as a result, texture models built with these datasets can only be used to improve

registration results within the datasets, and cannot be used for in the wild tasks, such

as detailed surface reconstruction from images.

1.2 Contribution

Motivated by the aforementioned problems, we make the following contributions in

this thesis.

1.2.1 Reparameterising 3D Morphable Models

Building parametric models of 3D human bodies remains a difficult problem due to

limitations of dataset, realiability of registration method and computational resources.

Here we consider linear shape models which is built by performing Principal Compo-

nent Analysis (PCA) on a set of registrations aligned to a pre-defined template, and

linear blend skinning models for human bodies. Once a shape model is trained, the

topology of the instances in the model space is then fixed. However, in many appli-

cations, a model with a different topology might be useful. High resolution models

can be used for synthesising high fidelity meshes, while low resolution models could

reduce the computational overhead in downstream applications. For these use cases,

one may prefer to reuse a model instead of repeating the model training pipeline with

another template, since it could be quite demanding in terms of computational time.
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1.2. Contribution

In other cases it would not even be possible because access to the original training

data is prohibited.

In Chapter 3 of the thesis, we propose a simple yet efficient method of reparameterising

statistical shape models given a new template of a different topology. The proposed

method is based on the probabilistic nature of statistical shape models. Given a

model and a new template, we solve for a covariance matrix for the new model di-

rectly without using or generating any training data. We provide both qualitative and

quantitative evaluation, demonstrating that our proposed method is able to reparam-

eterise models while preserving the surface details with no information loss in terms of

intrinsic properties of the model. This is particularly useful while comparing models

of different topology, as we demonstrate in Chapter 5.

1.2.2 Single Image 3D Reconstruction with Mesh Convolu-

tions

In Chapter 4 we propose a method for recovering 3D representation of human body

from single RGB image. Previous works rely on the use of a parametric model of

human body, either in the form of optimisation based fitting method, or deep learning

based method that regress the model parameters directly from the input image. In

both cases, supervision with model parameters are required for plausible and robust

reconstruction results, requiring extra learning or fitting steps for preparing the pose

priors.

We propose a network structure that operates directly on 3D mesh vertices instead.

Given an input RGB image, our network compute a latent code through an image

encoder, which is then sent to a mesh convolutional decoder that outputs the 3D

vertex locations. During training, we use a mesh convolutional autoencoder based

discriminator network to enforce plausible reconstructions, which lead to significantly

better results compared to the direct vertex regression method through mesh convo-

lutions. We perform quantitative evaluations on the task of 3D pose estimation, and

show that our proposed method outperforms comparable linear blend skinning model

based methods. We also show our results on in-the-wild images, demonstrating the

effectiveness and potential of our proposed approach.
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1.2.3 A Bone-Level Skinned Model of the Human Mesh

Currently a common approach of data-driven parametric models of rigged mesh repre-

sentations for 3D human body first synthesise the template mesh in a canonical pose,

then estimate skeleton joints post-hoc by regressing from the synthesised mesh. We

aim at increasing the accuracy of modelling by revisiting the template synthesis pro-

cess prior to rigging. Our major contribution in Chapter 5 consists of disentangling

the modelling of bone length variability from acquired body traits dependent. This

also facilitates modelling of human body with clothes, for which the bone structure of

the modelled body does not depend on the clothes they wear.

We further control and strengthen the individual components of the model: Firstly,

we constrain joint angles to respect the kinematic constraints of human body, reducing

body motion to 47 pose atoms. Secondly, we introduce accurate mesh convolution-

based networks to capture identity-specific surface variation. We show that these

largely outperform their linear basis counterparts, demonstrating for the first time the

merit of mesh convolutions in rigged full-body modelling.

We provide quantitative results on the problem of reconstructing a collection of 3D hu-

man scans, and show that we obtain systematic gains in average vertex reconstruction

accuracy when comparing to a SMPL-type baseline. Beyond quantitative evaluation,

we also show that our decoupled bone and shape representation facilitates accurate

character animation in-the-wild.

1.2.4 MeDigital: A Large Scale 4D Dataset Of Human Body

Existing data-driven human body models are restricted to model human body shapes

under clothes due to the lack of high quality 3D scan data of clothed human bod-

ies. Thus beyond the above contributions with regards to modelling methods, we also

present the first ever large scale 4D dataset of clothed human body scans. The dataset

consists of 1.3 million scans together with high resolution texture maps. Over 4000

adults and children spanning different age, body type and ethinic groups were cap-

tured in their daily clothes, resulting in over 7500 sequences with different motions

covering a wide range of actions. We propose a robust and fast registration pipeline

and evaluate the performance both qualitatively and quantitatively.

We further demonstrated two use cases of our dataset in the task of attribute driven

mesh synthesis and synthetic image generation with automatic 3D annotations, which
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improves the performance of model based 3D human mesh recovery in monocular

images.
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Chapter 2

Background

In this chapter we present a literature review of parametric 3D human body models

and it’s applications. We first describe the commonly used data representation for

3D shapes, then we introduce different types of formulations that are commonly used

for parametric modelling of 3D human bodies, as well as the challenges that arises

when training such models. Finally we provide a brief overview of the applications of

parametric models of human bodies in various problems.

2.1 3D Data Representation

Pointcloud and Mesh

3D shapes can be represented as an unordered set of points {Pi|i = 1, 2, ..., N} where

each Pi is a vector (x, y, z) of Cartesian coordinate of the point. This can be rep-

resented as a matrix P ∈ RN×3. While pointclouds can store the location of a large

number of points, accessing the surface properties such as normals of the shape is not

straightforward and requires searching for the neighbours for each point, leading to

extra computational cost. Moreover, to represent a detailed shape, a large amount of

points are needed and thus can be memory inefficient.

Another commonly used representation for 3D data is mesh. Meshes are defined as a

graph G = (V, E), where V ∈ RN×3 is the set of N vertices, each represented by the

Cartesian coordinates describing the location of the vertex; and E is the set of edges

representing the connectivities between the vertices. The sets of closed edges give a set

of faces, and each face can contain more than 2 edges. However the most commonly

used setting is 3 edges per-face, resulting in triangle meshes.
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Edges explicitly defined on meshes facilitates operations that explores neighbouring

properties of vertices, as neighbourhood of a vertex can be obtained simply by indexing

with the edge list. Moreover, faces defined by the edges can act as an approximation

of the surface, thus reduce the number of points needed to represent an object as

opposite to pointclouds.

Occupancy Grid

Occupancy grid is a 3D tensor where each element is a binary value indicating whether

a unit cube (voxel) is filled. Fig. 2.1 shows a chair represented with occupancy grid,

where size of the grid is 30 × 30 × 30. Probablisic representation of occupancy grid

is also possible [14]. The advantage of using occupancy grid is that deep learning

methods defined on 2D images that use convolutional neural networks can be directly

adopted to operate on 3D objects. However a huge amount of memory is required to

represent an object with high resolution details and smooth surface. [15] attempted to

use hierarchical octree representation to refine surface details of the modelled objects,

however the resolution is still limited.

Figure 2.1: Illustration of a typical binary voxel occupancy encoding (used by [1]),
where for the completed shape representation, the a voxel is either with in the observed
surface or free. The side view marked as the yellow slice in (2) is used for visualisation
in (3).

Implicit Representations

Except for the explicit representations that directly describes the shape in 3D space,

there are also implicit representations that do not involve 3D coordinates. One ex-

ample of such representations is shape descriptors. The property of shape descriptors

depends on the definition of the specific shape descriptor that is used. However they

are generally obtained from the object’s geometry, topology, surface and other char-

acteristics [16].
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Chapter 2. Background

Another type of implicit representation of shape makes use of a function F which takes

as input a latent vector, and estimate the inside/outside or signed-distance function

given a query location in 3D space [17][18][8][19][20]. The shape is however implic-

itly described by the latent vector and the function, and it takes an extra step to

reconstruct the surface of the object.

Other Representations

There exists other representations of 3D objects where the objects are stored in ’2.5D’

instead of actual 3D. Depth images and multiview representations are typical ’2.5D’

representations of 3D shapes. Depth images are typically combined with RGB images

and are inexpensive to store and capture due to the popular RGB-D sensors. However

depth maps do not represent the full 3D geometry of the object, and lack of topological

information.

2D images from multiple views can also be used to represent a 3D object, however

geometry of the 3D shape need to be learned or induced from the set of 2D images.

Also the number of views that are needed is unclear, as small number of views might

not capture the full 3D property of the object.

2.2 Parametric Models of Human Bodies

In this section we provide a literature survey on parametric modelling of human bodies.

We start with explaining what is a parametric model, and describe the formulations

of some popular human body models. We then give an overview of the general model

training pipeline, emphasising the challenge with pre-processing the 3D data that are

crucial for the training.

2.2.1 Model Formulation

Parametric models of 3D shapes are compact representations that is able to map a

single or a set of parameter values to a specific shape. Here we consider shapes that

are explicitly represented by 3D coordinates of a collection of points or vertices. In

other words, we would like to find a statistical space such that the function

F (c) : Rd → RN×3
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which takes the vector of d coefficients c, will generate a mesh of the desired shape

and pose [21]. Such models can be hand engineered, which is common in graphic

applications. However due to the need to represent a wide variety of body shapes and

poses, researchers have focused on learning such models from data. In the following,

we will describe different categories of parametric models of the human body, classified

by the different types of generation functions that are used: triangle based models, ba-

sis/manifold based models, blend skinning models, deep neural network based models

and models that use implicit functions.

Triangle Based Models

The triangle based models generate model instances by deforming each of the triangle

faces in a template mesh. In this case the coefficients c define the transformation

matrices of each face in the template. The SCAPE model [30] represents the shape

and pose changes of human body separately. The shape changes are modelled by the

per-triangle deformations Ct where t is the index of the triangle in the mesh. The

pose changes are represented with two transformations: Rt which are computed by the

deformation of neighbouring joints of triangle t, and transformations Qt which encode

the non-rigid pose dependent deformations such as muscle bulging. Neighbouring

triangles are forced to have similar Qt so that the problem is well-constrained. Given

the joint rotations and the shape coefficients, a new mesh can then be computed by

first computing Rt, Qt as a function of the neighbouring joints, and Ct as a function

of the shape coefficients, then the edges ekt , k = 1, 2, 3 of triangle t can be deformed as:

ekt = RtCtQtêkt (2.1)

then the N vertex locations ykt of the resulting mesh, where t and k here denotes the

k-th vertex of triangle t, are solved by minimising the overall least squares error:

argmin
y1,...,yN

∑
t

∑
k

∥∥∥RtCtQtêkt − (ykt − y1t )
∥∥∥2

(2.2)

The SCAPE model is flexible, but generating a new mesh with the model is computa-

tionally expensive, since it does not encode vertex positions, and to recover a smooth

surface the least square problem need to be solved to ”stitch” the triangles (see figure

2.2 for a similar example). Similarly [31] reconstructed the mesh using poisson sur-

face reconstruction algorithm [32] after solving the per-triangle transformations. The

computational overhead makes the model unsuitable for applications where speed is

important. The problem can be overcame by directly learning a model of vertices
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Chapter 2. Background

Figure 2.2: An example of deformation transfer using similar approach as the SCAPE
model. Deformation of the mesh is modeled as per-triangle transformations. Simply
solving the new mesh with neighbouring triangle smoothness constraint gives a discon-
tinued mesh B. Enforcing the shared vertices to be transformed to the same location (or
computing the new vertices locations to be as close as possible to B as in the SCAPE
model) gives a continued smooth surface C [2].

instead of triangle deformations, as described in the paragraphs below.

Blend Skinning Models

Blend skinning methods (rigging) are widely used in the animation industry. It at-

taches the mesh surface to an underlying skeleton. Given the transformation of each

part of the skeleton, the vertices can then be computed using the weighted influence of

its neighbouring bone (figure 2.3). The aforementioned SCAPE model uses a similar

approach, except it is based on triangles instead of vertices. A detailed review of blend

skinning methods can be found in [3]. We will mainly focus on modelling shapes and

poses with blend skinning here, instead of the variations of blend skinning methods.

The blend skinning method transforms the template mesh to give a new mesh of dif-

ferent pose, but do not change the shape of the body. Therefore the shape changes,

modelled as vertex displacements from the template mesh, need to be blended into

the mesh before skinning. The vertex displacements are computed as the linear com-

bination of the blend shapes, weighted by some coefficients. The S-SCAPE model [33]

learns the body shape changes with PCA, then perform rigging on the shaped mesh

(figure 2.3 (b)). This simplified variation of the SCAPE model does not consider

the pose-dependent deformations such as muscle bulging, but is efficient to compute.

The SMPL model (Skinned Multi-Person Linear model) [3] learns the pose-dependent

deformations as pose blend shapes (figure 2.3 (c)). The model is more realistic and

efficient to animate compared to other models based on blend skinning method, but

it is hard to train. The SMPL pose blend shapes are weighted by the joint rotation

matrices. Thus during training N × 3× 9×K parameters for the pose blend shapes
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2.2. Parametric Models of Human Bodies

Figure 2.3: A blend skinning human body model proposed by [3]. Given a rigged
template mesh (a), the shape and pose-dependent variations are added to template as
vertex offsets, and the joint location is updated (b and c), then linear blend skinning is
applied to animate the updated template to desired pose.

need to be learned, where N is the number of vertices in the template mesh, and K is

the number of joints.

Since the blend skinning methods models the full pose already, the models based on

this method need to ensure that the learned shape variations are purely based on

individual variations, the pose changes need to be excluded completely. Therefore

before learning the shape variations, the data need to be ’pose normalised’ so that the

meshes are in exactly the same pose. Different pose normalisation methods can be

used depending on the model formulation. For example, the S-SCAPE model performs

PCA on localised Laplacian coordinates [34] of the registrations. The SMPL model

first solves for the pose defined by the joint rotations, then solve for the shape, which

when posed by the previously learned pose, will match the registration by minimising

the sum of vertex distances between the model instance and the data. [35] normalise

the pose by introducing a skeleton model to the scans, and performs Laplacian surface

deformation.

Basis/Manifold Based Models

The basis based models learn a set of orthonormal basis vectors, such that the linear

combination of the basis vectors gives a new 3D mesh of the desired pose and shape.

In this case the coefficients of the generation function F are the weights of the basis

vectors.

The most common form of this approach is computing the basis vectors via PCA.

Assuming a set of data of rigidly aligned 3D meshes M = [m1,m2, ...,mD] is given,

where mi = [x1, y1, z1, ..., xN , yN , zN ]
T is a 3N × 1 vector of concatenated Cartesian
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coordinates of the N vertices of the i-th mesh. PCA can then be applied to M,

resulting in a mean mesh m̄ and a set of orthonormal basis UM ∈ R3N×d such that

the variance of M is maximised in UM . Then the shape generation function becomes:

F (c) = m̄+UMc

The PCA approach has been applied to human face modelling to capture identity and

expression variations in both 2D [36] and 3D [37][38][39][40]. The same approach has

also been applied to learn model of human body shapes. [41] used a model similar to

[37] to learn shapes of human body in a similar pose. Similar models has been used

by [42][43] and [44] to reconstruct 3D shapes from single view images. However these

models only capture the shape variations of human bodies, not pose.

Models allowing pose variations such as the SCAPE model [30], the S-SCAPE model

[33] and the SMPL model [3] use PCA only to learn shape variations, the pose varia-

tions are modelled separately with rigging. Models such as [45] use skeletons to model

the poses, then apply PCA on the poses represented by the joint rotation matrices to

reduce the number of components of the model. Such models are powerful in terms of

expressive abilities, however generating a new mesh with these models requires a more

complex generation function rather than the simple linear combination of basis.

Figure 2.4: A human body shape space learned by PCA [3], the first two principal
components are visualised, varying from -2 to +2 standard deviation

PCA assumes the data can be well-approximated by a hyper-planar manifold, which

makes it unsuitable for data with high non-linear variations such as articulated pose

variation of the human body (see figure 2.5 (b) for an example). Using PCA to

learn human body pose variations will result in unrealistic artefacts. Thus non-linear

approaches have been proposed [4] to perform PCA in non-linear manifold. In this
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case the manifold need to be defined or learnt, and the statistics for computing the

mean, covariance and eigenvectors for PCA also need to be defined (see [4] and [46]

for details).

Figure 2.5: Shell PCA compared to Euclidean PCA on human body pose modelling
[4]. PCA in non-linear manifolds better captures the non-linear nature of human body
articulations comparing to PCA in Euclidean space.

Apart from learning basis from data, shape modelling can also be done with Gaussian

process [47]. While PCA learns a discrete covariance matrix from the data matrix,

Gaussian process defines a continuous kernel function. Then the eigenfunctions of the

kernel function can be estimated to form a set of basis functions via the Nystrom

approximation algorithm given just a single template mesh [5].

The kernel defines the correlation between two points x and y based on their euclidean

distances, such that closer points on the mesh are more correlated. Moreover, while

most of the PCA approaches model the vertex locations of the mesh, the Gaussian

Process Morphable Model (GPMM) directly models the deformations of the vertices,

therefore the samples of the model are deformation fields instead of meshes. The de-

formation of the template mesh in the model space defined by this kernel is smooth,

since neighbouring points are more correlated, they are more likely to deform similarly.

Note that the resulting meshes given by the samples of this model are not necessarily

valid faces or bodies (see figure 2.6), but they are flexible enough to help the following

optimisation steps to converge faster. For example, [48] uses the GPMM to adapt the

template mesh to be as close to the target as possible by matching some target key

points, then use Coherent Point Drift (CPD) to perform mesh registration. The kernel
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Figure 2.6: A template mesh deformed by the samples of the GPMM with a Gaussian
kernel [5]. Meshes synthesised from GPMMs are not necessarily valid shapes, but they
are flexible enough and could benefit downstream optimisation steps.

function can also be defined as the Gaussian kernel multiplied by the data covariance

matrix, which allows the results to be closer to valid faces, but with more flexible

variations than the PCA models.

Deep Neural Network Based Models

Another line of work attempts to model 3D human bodies with deep learning ap-

proaches. In this case, the generation function F takes the form of neural networks

with a decoder structure, and the input coefficients c is a latent vector. The network

can either be fully connected or convolutional. The network is trained either as part

of a variational autoencoder (VAE) or a generative adversarial network (GAN). Then

the decoder part of the VAE or the generator part of the GAN is retained for 3D mesh

synthesis.

[25] proposed a variational autoencoder that operates on the shape descriptor do-

main. They use the rotation-invariant mesh difference (RIMD) feature, and attempt

to reconstruct the feature with a VAE. While synthesising shapes, 3D meshes are re-

constructed from the output features by minimising the RIMD energy function over

vertex locations. The use of shape descriptor guarantees accurate and detailed mod-

elling compared to the baseline method which outputs directly globally aligned 3D

vertex coordinates in the authors’ experiments, however size of the model is increased

as a feature vector of dimension 60K is needed to represent a mesh of 5K faces. More-

over, an extra step of optimisation is needed in order to reconstruct a 3D shape from

the output feature vector. [49] proposed to use VAE to model only the shape vari-

ations of human bodies. While the VAE outputs 3D vertex locations, the output is

then fed into a blend skinning layer to produce articulated body shapes.
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Figure 2.7: Mesh convolutional based models struggle to model large articulated poses
(top row: COMA [6]). The result is improved when the number of learnable weights in
the network is increased (bottom row: Neural 3DMM [7]), however the reconstruction
error is still high for some parts.

To exploit the graph structure of meshes, many works has been proposed to generalise

convolutional operator to 3D shape learning and analysis. [50][26][27] has attempted

model 3D human bodies with graph convolutional VAEs on the shape descriptors. [6]

proposed to build mesh autoencoders for 3D faces by performing convolutions on the

spectral domain [51]. [24] used VAE on the spectral domain to model clothes defor-

mations from a T-pose template of the human body. [28] attempted to regress 3D

human body meshes from latent codes computed by an image encoder, and combined

the result with linear blend skinning (LBS) based models. [7] proposed neural 3D

morphable models with spiral convolutional autoencoders, and evaluated the model

on the task of 3D reconstruction of human body meshes.

The challenge in building a deep neural network based parametric model is to gener-

ate plausible shapes. As shown in [7], graph convolutional based models struggle to

produce a smooth surface when large articulated motions occur (Fig. 2.7). [28] used

a linear blend skinning model post hoc to regularise the generated shapes. [24] used

mesh convolutional networks to model only deformations at T-pose. While adversar-

29



Chapter 2. Background

ial losses have been used in [10] to learn valid joint rotations for linear blend skinning

models, [52] proposed the first generative adversarial network to generate directly 3D

shapes with mesh convolutions, and demonstrated its superiority over autoencoder

based models. However the work has not been extended for body modelling, and

could be an interesting direction for future work.

Models Using Implicit Shape Representations

Implicit functions [53] are a type of representation of surface where a function F takes

as input a point p, and outputs a value indicating if the point is inside/outside/on

the surface of an object. The indicator value varies depending on the implementation,

while the function F generally takes the form of a deep neural network in the era of

deep learning. [18] used a VAE which takes as input the the point location and a latent

vector to generate the probability of occupancy, which is further processed to produce

a high resolution mesh using octree. [8] used a fully connected decoder network and

employed latent-GANs on the input feature vectors to generate 3D objects. [19] used

a auto-decoder structure where latent vectors paired with each shape and the network

parameters are optimised jointly during training.

The aforementioned work aims to generate 3D shapes of objects such as chairs and

tables. [17] attempted to generate 3D human bodies by combining local analytic im-

plicit functions with deep implicit functions. Each local implicit function is a gaussian

that provides a coarse shape and region of influence for each shape element, and the

deep implicit function networks are used to refines the shape details. The results of

each part are then combined to produce the full shape. The authors have attempted

to reconstruct samples from the SMPL model for evaluation, however details of the

body are not well preserved. [29] proposed to use an effective spatial sampling strategy

that is more suitable for meshes. Points are sampled from the surface and perturbed

before combined with points uniformly sampled from the object’s bounding box. The

resulting shape is then able to preserve details on the surface such as clothes folds.

2.2.2 Model Training and Data Pre-processing

Training data-driven parametric models involves solving for the parameters ϕ of the

generation function F such that for instances Sn, n = 1, ..., N in the training set, the

following loss is minimised:
N∑

n=1

d(Fϕ(cn),Sn) (2.3)
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Figure 2.8: Network structure of implicit function based model used in [8]. Given
a feature vector, the network outputs a binary value indicating if the queried point is
inside or outside the object. Surface is reconstructed by sampling points in the 3D space
and query with the network.

where d is the distance function, generally takes the form of L1 or L2 norm. cn is the

vector of optimal coefficients that gives the best fit for instance n within the model

space. ϕ and cn can be optimised jointly or in an iterative manner.

3D data used to train the models are often required to share the same topology and se-

mantic ordering of points, with the exception of implicit function based models where

the 3D objects are treated as surface instead of a collection of points. Here we con-

sider the case of using meshes as training data. Meshes in different datasets often do

not correspond, in the sense that they have different number of points and ordering of

points. Also, the desired parametric models are often based on meshes of relatively low

resolutions for simplicity and efficiency, while the scans are often of high resolutions.

Moreover, there is typically noise in the scans, resulting in holes on the surface which

need to be filled or outlier points that need to be removed. Thus pre-processing of the

data is a crucial step for training a high fidelity model.

To jointly tackle the aforementioned problems, surface registration techniques can be

used, where a low resolution template mesh will be aligned and deformed to match

the scans. The problem can be formulated as an optimisation problem. Assuming a

template mesh T and a scan S are given, the goal of surface registration is to find the

deformation D such that:

E = ∥D(T)− U(S)∥2

is minimised, where D(T) is the template mesh deformed by D, and U(S) is the set

of corresponding points of each point in T on S [54].
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Searching for the correspondences is the key of surface registration algorithms. Some-

times sparse ground truth correspondences are available from the dataset. For exam-

ple, markers can be attached to the subjects prior to data acquisition, and they can be

corresponded to manually defined landmarks on the template mesh [55]. When ground

truth correspondences are not available, correspondence can be established by search-

ing for pairs of the closest points between the target scan and the template mesh. [5]

finds the closest points on the scan for each point in the template mesh (template to

scan correspondence). [45] and [40] also included the scan to template correspondence

in their cost function. [33] also computes the compatibility of the closest points where

the compatibility is defined by the angles between the surface normals of a pair of

candidate. [48] considers only the ”mutual nearest neighbours” between the template

and scan. While applicable, texture or colour information can also be used as evidence

for establishing correspondences [56].

Correspondences established by searching for nearest neighbours are only reliable when

the template and target scan are close to each other. Several approaches can be used

to address this issue. The Iterative Closest Points method (ICP) [57] searches for the

closest points in an iterative manner. After each iteration of deformation, the corre-

spondences are updated using the latest deformed template. Parametric models with

manual initialisation of parameters (e.g. the skeleton structure of linear blend skin-

ning based models) can also be used to estimate an initial fitting by first solving for

the optimal coefficients with sparse correspondences. The results can then be further

refined with closest point approaches outside the model space [58][59][45]. Without a

parametric model initialisation, the template can be deformed using some mesh edit-

ing algorithms as priors such as the Laplacian mesh editing algorithm [60], Free-form

Deformation [61], or Gaussian Process Regression [5].

To deal with missing data and noises in the scans, several approaches have been pro-

posed. For example the ”mutual nearest neighbours” correspondence used in [48] also

helps to deal with missing data. [54] and [33] include a smoothness or stiffness term in

their cost function so that neighbouring points are deformed similarly to prevent over-

fitting. Other model based approaches such as [40] and [45] regularise the registrations

towards the model instances which matches the scans best, so that the registrations

cannot deform arbitrarily away from the model space.

After registration, the registered meshes need to be rigidly aligned so that the models
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2.3. Applications

trained with these meshes learn only the shape and pose variations; rotation, transla-

tion, and scaling in the dataset will be excluded. Generalised Procrustes Analysis [62]

can be applied in this case. A detailed survey on the rigid registration methods can

be found in [63].

2.3 Applications

Parametric models of 3D human body has many applications. In this section, we

briefly discuss it’s application in the task of 3D pose estimation/shape reconstruction

from images, 3D shape completion/synthesis and 2D image synthesis.

Parametric models have been widely used in the task of 3D reconstruction from sin-

gle view images. The problem itself is challenging due to the ambiguity introduced

when projecting a real world 3D scene into the 2D image plane. Many works have

focused on recovering the poses from images only, resulting in skeletons instead of 3D

shapes. Without using a parametric model, a mapping between appearance and body

pose need to be learned, i.e. use the image pixels as the input to some regressors to

induce the resulting pose [64]. Some of the recently popular deep learning approaches

fall into this category, where the 2D image pixels are used as input of Convolutional

Neural Networks (CNNs) to compute the 3D joint locations which define the pose

[65]. The limitation of such model free method is the lack of prior knowledge of the

object’s structure and characteristics. In the case of human body poses, this will lead

to implausible 3D poses due to the misprediction of joints, as well as self occlusions

of the body in the image. A model free reconstruction of the full 3D surface is even

more challenging as the degree of freedom increases, and many works have attempted

to incorporate a parametric model post hoc to the model free prediction to recover a

plausible 3D prediction [28].

Parametric models incorporate prior knowledge about the body. This could be learned

from data, manually defined or in the form of adversarial training. The parametric

model itself restricts the generated shapes to lie within the model space, thus reg-

ularisation only need to be enforced on the model parameters, instead of the whole

shape. The model can be used for 3D shape reconstruction from images in a multi-

staged system or one stage system. One example of multi-stage system is [66], which

first detects 2D keypoints from the image, then optimise over the model and camera

parameters to minimise the keypoint reprojection loss. [10][67][68] use instead a one

stage system, which directly regress the model parameters from images using CNNs.
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Chapter 2. Background

On the other hand, shapes given by parametric 3D reconstructions often shares the

same topology, therefore landmark localisation and semantic segmentation problems

can be solved automatically from the resulting shape. Also, since the models represent

the human pose and shape with only a few parameters, the human motion and shape

in 2D images can be parameterised easily with the fitting results, which facilitates

markerless motion capture and transfer in the wild.

The unified mesh topology resulted from parametric 3D reconstructions provides a

handle to textured 3D shape digitization. [22] used SMPL model plus vertex offset

induced from silhouette to reconstruct a person in clothes from a video, the texture is

then painted from multiview images to give a textured reconstruction of the person.

[69] used a texture inpainting network which allows full body texture generation from

reconstruction of a single image. Since the digitization result is automatically rigged

as an instance of the parametric model, it can be subsequently controlled and ren-

dered to synthesis personalised animations. Without a parametric model, the problem

of motion transfer between images are often tackled with image to image translation

GANs [70][71]. With parametric reconstructions of a textured human body, the prob-

lem simply becomes rendering and blending the person into a background image [72].

This also allows image synthesis from different view point, which is not straightforward

with image to image translation methods. The parameterisation can also be used to

reshape the person in the image as demonstrated in [73].

Parametrising human body shapes and poses also facilitates the synthesis of gar-

ments associated with the body, as such, the model can be used to power virtual

try on applications. In graphics applications, cloth simulation focus on modelling the

physical property of the garment. However with parametric models, the deformation

and wrinkles of the clothes can be associated with the pose parameters of the body

[23][24][74][75].
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Chapter 3

Reparameterising 3D Morphable

Models

The limitation of statistical shape models is that, once built, the model can only

represent 3D shape instances of a fixed mesh topology. While some applications may

require a shape model of a different mesh topology, the model building pipeline has to

be repeated with the new template, which could be time and computational resource

consuming. In other cases only the statistical model is available and access to the

original data is not possible. In this chapter, we present a method to reparameterise

a given 3D statistical shape model to any topology without using any training data.

We also show that the reparameterised model achieves comparable performance as the

original model.

3.1 Introduction

3D statistical shape models are widely used for modelling human faces [37][76], bodies

[77][78][79] as well as objects such as human bones and organs [80]. The idea of building

statistical shape model is to perform PCA on a set of registrations aligned to a pre-

defined template, the shape space is then parameterised by the principal components.

Once a statistical shape model is trained, the topology of the instances in the model

space is then fixed. However, in many applications, a model with a different topology

might be useful. For example, in [38], in order to reconstruct the 3D structures of

human faces in 2D images, an accurate high resolution per-vertex texture model is

needed. In [3], the pose dependent shape variations are modelled with a matrix of

dimension 3N × 9n, where N is the number of vertices in the registration and n is

the number of joints in the skeleton structure of the template. For these applications,
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3.2. Related Work

one may prefer to reuse a model instead of repeating the model training pipeline with

another template, since it could be quite demanding in terms of computational time.

In other cases it would not even be possible because access to the original training

data is prohibited.

Motivated by the aforementioned problems, we propose a simple, yet very efficient,

method of reparameterising statistical shape models given a new template of a different

topology. Our method is based on the probabilistic nature of statistical shape models.

Given a model and a new template, we solve for a covariance matrix for the new model

directly without using or generating any training data. We present the formulation

and solution of the problem in section 3.3. In section 3.4, we present both qualitative

and quantitative evaluation of our method. Finally in section 3.5, we summarise our

contribution and provide ideas for future work.

3.2 Related Work

The original formulation of 3D Morphable Models (3DMM) was proposed by [37],

where they construct 3D face shape models by performing Principal Component Anal-

ysis on a set of training face meshes in full correspondence. 3DMMs have since been

widely applied to human face modelling. While [76] and [81] showed the linear PCA

based 3DMMs can capture the identity dependent variations in human faces, such

as gender, ethnicity and age, the work of [38] and [40] also modelled the expression

variations. The success of 3DMM is due to the fact that the identity and expression

variations in human faces can be well approximated by a hyper-planar manifold in

Euclidean space [4], the face shape space can then be parameterised by the axes of the

manifold where the captured variance is maximised. The same assumption holds for

human body shape variations related to identity [77][78][79][3].

For nonlinear variations such as human body pose changes, the most commonly used

approach is blend skinning, where each vertex in the pre-defined template is trans-

formed as a function of the neighbouring bones. In this case the model is parame-

terised by the parameters of the blend skinning function. We refer the reader to [3]

for a detailed review on blend skinning methods. [40] also modelled variations such as

jaw movement in faces with blend skinning. [82] used blend skinning method to model

the pose changes of hands.

We aim to reparameterise 3D statistical models. For PCA based models, our goal is
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Chapter 3. Reparameterising 3D Morphable Models

to reparameterise the principal components. For blend skinning based models, the

goal is to reparameterise the per-vertex parameters of the blend skinning function. To

the best of our knowledge, this is the first work on reparameterising statistical shape

models.

3.3 Method

3.3.1 Problem Formulation

Assuming a set of D aligned 3D meshes are given, where each mesh mi with N vertices

is represented by an 3N × 1 vector [x1, y1, z1, ..., xN , yN , zN ]
T . From the probabilistic

view, a PCA-based statistical shape model assumes the shape variations can be mod-

elled with a normal distribution [47]:

u ∼ N (µ,Σ) (3.1)

where the mean vector µ and the covariance matrix Σ are computed from the data

as:

µ =
1

D

D∑
i=1

ui (3.2)

Σ =
1

D − 1

D∑
i=1

(ui − µ)(ui − µ)T (3.3)

Given an N1-vertexed model M 1: N (µ1,Σ1) and a new template m2 represented

as µ2 with N2 vertices, the problem of reparameterising M 1 to be used with m2

can be considered as an optimisation problem, where the covariance matrix Σ2 which

minimises the difference between the old model M 1 and the new model M 2 need to

be solved. With the probabilistic formulation of PCA-based shape models, we solve

for Σ2 by minimising the Kullback-Leibler (KL) divergence between M 1 and M 2:

Σ2 = argmin
Σ

DKL(WN (µ1,Σ1)||N (µ2,Σ)) (3.4)

where W is a 3N2 × 3N1 matrix which maps M 1 to the same 3N2-dimension as µ2.

By setting the derivative of Eq 3.4 w.r.t. Σ to 0, the new covariance matrix can then

be obtained:

Σ2 = WΣ1W
T + (µ2 −Wµ1)(µ2 −Wµ1)

T (3.5)
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3.3.2 Computing the W matrix

The performance of the new model depends on the choice of the matrix W. Ideally,

the new model M 2 can model the exact distribution of WM 1 if Wµ1 − µ2 = 0,

therefore we want Wµ1 to be as close to µ2 as possible.

Assuming the new template m2 has been non-rigidly aligned to the template m1 of

M 1. The vertex to surface correspondences from m2 to m1 can be computed. We can

then define W as the matrix which maps the N1 vertices of m1 to the N2 points on

its surface corresponding to the vertices of m2, in this way the distance between Wµ1

and µ2 is minimised while preserving the surface property of m1.

Such matrix W can be arranged as a sparse matrix of N2 × N1 blocks, where each

block is a 3× 3 submatrix. Suppose the closest point of vertex vi ∈ m2 on the surface

of m1 is (ti,xi), where ti = (a, b, c) is the index of the corresponding triangle face

defined by three point with index a, b and c, and xi = (ui, vi, wi) is the barycentric

coordinate of this point within triangle ti. We then set block (i, a), (i, b) and (i, c) of

matrix W as follows:

a b c



... ... ... ... ... ... ...

i ...

ui 0 0

0 ui 0

0 0 ui

...

vi 0 0

0 vi 0

0 0 vi

...

wi 0 0

0 wi 0

0 0 wi

...

... ... ... ... ... ... ...

Setting the blocks in such way for all N2 vertices gives us the final W matrix, where

the rest of the entries remain zero.

3.3.3 Blend Skinning Models

For human bodies, PCA based shape models are commonly used to model only the

identity dependent shape changes, while the pose changes are modelled with blend

skinning methods. Here we consider the formulation proposed by [3], in which they

used linear blend skinning method to model the pose changes of human bodies, as well

as pose blend shape to model the pose-dependent shape changes. We use the matrixW
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Chapter 3. Reparameterising 3D Morphable Models

to transform the vertex based parameters in their model such as the blend skinning

weights and pose blend shapes. The pose blend shape models the pose dependent

deformations of theN vertices in the template while the n joints rotate. The pose blend

shape is linear with respect to the joint rotation matrices, therefore it is represented

by a 3N × 9n matrix. We compute the pose blend shape of our new model as:

P2 = WP1 (3.6)

The blend skinning weights define how much the transformation of the n joints affect

the transformation of the N vertices. It is represented by an N × n matrix. We

rearrange our W matrix as a N2 ×N1 matrix W′. For each pair of vertex to surface

correspondence vi and ((a, b, c), (ui, vi, wi)), we set the entries (i, a), (i, b), and (i, c) of

W′ as:

a b c


... ... ... ... ... ... ...

i ... ui ... vi ... wi ...

... ... ... ... ... ... ...

We then compute the new blend skinning weights as:

B2 = W′B1 (3.7)

3.4 Evaluation

We evaluate the proposed method with statistical models of faces and bodies. For

faces, we build a model of 8082 vertices with 2500 randomly selected scans from the

MeIn3D [76] dataset following the pipeline proposed in the original paper. We aim

to reparameterise the model to have 15176 vertices. 2000 registrations were used for

training, and 500 registrations were also aligned to the new template for testing. For

bodies, we train a shape model of 6890 vertices with 1657 randomly selected meshes

from the MPII Human Shape dataset [83] following the pipeline proposed in [3]. More

specifically, we align the meshes to the template used by [3] with non-rigid icp [84],

then normalise the registrations to T-pose before performing PCA to build the body

model. We then reparameterise the model to have 10412 vertices, and test the models

with 500 registrations.

40



3.4. Evaluation

Figure 3.1: Visualisation of the first three principal components at -3 and +3 standard
deviations. The red meshes indicate the original model, while the gray meshes indicate
the new model.

3.4.1 PCA-based Shape Models

We first visually inspect the quality of the new model by comparing its first few

principal components with the components of the original model. In figure 3.1 we

visualise the first three principal components of the original and new models from

-3 to +3 standard deviation. We observe that each principal component of the new

models retain similar variations as in the original models.

We then compare the original model and the new model in terms of their compactness,

generalisation, and specificity as proposed by [85]. Compactness is the percentage of

variance in the training data that is explained by the model. Figure 3.2 shows the

variance retained by the original and new model while a certain number of principal

components are kept. For both the body and face models, the principal components

of the new model are able to explain nearly the same percentage of variance as the
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Chapter 3. Reparameterising 3D Morphable Models

original model. Therefore we consider the new model to be as compact as the original

model.

(a) Body Model (b) Face Model

Figure 3.2: Compactness of the Original and Reparameterised Models.

Generalisation measures the model’s ability of generalising to new instances that are

unseen during the training. We project each of the models to the test set, and compute

the mean of the average per-vertex euclidean distance between the model reconstruc-

tion and the testing instances to obtain the generalisation error for each model. Note

that during training, we scale our templates to fit inside box of diagonal 1. Thus the

generalisation and specificity error are measured at this scale. For both the body and

face models, the difference between the generalisation error of the new and original

model is smaller than 0.001. Therefore we believe that the new models computed with

our method can achieve comparable generalisation ability as the original models.

(a) Body Model (b) Face Model

Figure 3.3: Generalisation Error of the Original and Reparameterised Models.
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Specificity evaluates the validity of instances generated by the model. For each model,

we randomly generate 1000 samples from the model, and compute the averaged per-

vertex euclidean distance between each instance and its nearest neighbour in the test

set. We then average this error over all 1000 samples as the specificity error of this

model. The specificity errors for the face and body models are plotted in figure 3.4.

We observe that for the face model, the new model computed with our method have

smaller specificity errors. And for the body model, the new model have specificity

error larger than the original model, but the difference between the specificity error

is smaller than 0.001. Therefore we believe that the new models can generate similar

random instances as the original models.

(a) Body Model (b) Face Model

Figure 3.4: Specificity Error of the Original and Reparameterised Models.

3.4.2 Blend Skinning Models

We animate the body models with poses from Unite The People (UP-3D) dataset [86]

to inspect the quality of the new blend skinning parameters. Some examples of the

animated meshes are presented in figure 3.5. We observe that the animated meshes

have smooth surface, which suggests the reparameterised blend skinning weights are

able to represent the relations between each vertex in the new template and the joints

correctly. Also the pose blend shapes are able to preserve the muscle bulging details

given by the original model and the bending artefact around the joints resulted from

the linear blend skinning method is corrected accordingly.
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3.5 Conclusion

In this chapter we have presented a method to reparameterise 3D statistical shape

models given a new template. We have computed a transformation matrix to trans-

form the model template that we wish to reparameterise to be at the same dimension

as the new template. For PCA based models, we then computed a new covariance

matrix by minimising the KL-divergence between the original model and the reparam-

eterised model. For blend skinning based models, we have transformed the per-vertex

parameters with our transformation matrix. We have showed that the reparameterised

models are as compact as the original model, and generalise equally well while being

more specific than the original model. We have also demonstrated that the reparam-

eterised blend skinning models are able to preserve the surface details of the original

model.

In future work, we will explore further the performance of our method by applying

the reparameterised models to mesh registration, 3D reconstruction of 2D images, and

dense shape regression problems.
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Figure 3.5: Visualisation of the animated blend skinning models. Red meshes: anima-
tion result of the original model with 6890 vertices. Gray meshes: animation result of
the reparameterised model with 10412 vertices.
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Chapter 4

Single Image 3D Human Body

Reconstruction with Mesh

Convolutions

In this chapter we propose a method for recovering 3D representation of human body

from single RGB image. Previous works rely on the use of a parametric model of

human body, either in the form of optimisation based fitting method, or deep learning

based method that regress the model parameters directly from the input image. In

both cases, supervision with model parameters are required for plausible and robust

reconstruction results, requiring extra learning or fitting steps for preparing the pose

priors.

We propose a network structure that operates directly on 3D mesh vertices instead.

Given an input RGB image, our network compute a latent code through an image en-

coder, which is then sent to a light weighted mesh convolutional decoder that outputs

the 3D vertex locations. During training, we use a mesh convolutional autoencoder

based discriminator network to enforce plausible reconstructions, which lead to signif-

icantly better results compared to the direct vertex regression method through mesh

convolutions. We perform quantitative evaluations on the task of 3D pose estimation,

and show that our proposed method outperforms comparable linear blend skinning

model based methods. We also show our results on in-the-wild images, demonstrating

the effectiveness and potential of our proposed approach.
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Figure 4.1: Overview of our proposed approach. Given an input RGB image, our net-
work outputs a 3D mesh reconstruction of the person in the image through an encoder-
decoder structure. During training, the 3D mesh reconstruction loss and 2D keypoint
reprojection loss is minimised. We also use a mesh autoencoder based discriminator
network during training to ensure that the image to mesh network outputs plausible
human bodies.

4.1 Introduction

Leveraging 3D representations of the human body from a single RGB image has at-

tracted many researcher’s attention recently due to its wide range of applications.

While many approaches successfully recover 3D joint locations, recovering a full 3D

mesh remains a challenge. The problem itself is ill-posed due to the ambiguities be-

tween 3D and 2D mapping, self occlusion and the articulated nature of the human

body.

Parametric models of human bodies incorporate prior knowledge of the shape and pose

variabilities, limiting the predicted 3D mesh to lie within the model space which guar-

antees plausible outputs. While used for the task of 3D reconstructions, the problem

is reduced to predicting the low dimensional model parameters from the input image,

instead of the full set of 3D vertex locations. The most widely used parametric human

body model is SMPL [3] where the human mesh is parameterised by a set of shape

coefficients and joint rotation matrices. Such models are heavy weighted due to the

need of storing the blend skinning weight matrix and the linear basis, consequently

the size grows linearly while the resolution of the template increases.
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Early works that utilise the SMPL model typically involves an optimisation based

pipeline [66], where the model parameters are solved in an iterative manner to optimise

the model’s reprojection loss based on some image observations (e.g. 2D keypoints or

silhouettes). The major drawbacks of such approach are the slow running time during

inference and the need to solve a non-convex optimisation problem which could easily

lead to local minima while dealing with challenging poses. Therefore, focus has been

shifted to learning based method, which uses convolutional neural networks to directly

regress the SMPL model parameters. However the axis-angle joint rotations used by

the SMPL model is difficult to regress, as such, many methods have been proposed

to improve the results either by using an iterative error feedback regressor [10] or in-

termediate representation of the image such as joint heatmaps and part segmentation

maps [87][88].

Another issue with the SMPL model is that it does not restrict the human body pose

space, which could potentially lead to kinematically implausible results. This issue is

addressed by learning a separate pose prior either in the form of mixture of gaussian

[66] or with adversarial training [10]. Learning such pose priors requires additional

MoCap data that are represented as the SMPL pose parameters, requiring extra step

of model fitting.

Motivated by the aforementioned problems, we propose a simple yet effective network

structure that operates directly on 3D mesh vertices. The overview of our approach

is illustrated in Fig. 4.1. Instead of using linear blend skinning based models, we use

a powerful deep mesh convolutional decoder for generating 3D meshes. The shape

and pose variabilities of the 3D human body mesh is fully parameterised by a low di-

mentional latent vector space, which is obtained by pretraining a mesh convolutional

autoencoder.

We then combine the mesh decoder with an image encoder and train the network end-

to-end to perform the 3D reconstruction task from images. The network is trained to

minimise the vertex reconstruction loss, avoiding the need of additional supervision

on model parameters. While reliable 3D ground truth is available, our network can

be fine-tuned to learn to reconstruct the detailed shapes, overcoming the limited rep-

resentational power of LBS based parametric models.

We further improve the reconstruction quality of our network by utilising the pre-
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trained mesh autoencoder as a mesh prior to enforce plausible reconstructions. While

training the image to mesh network, the mesh autoencoder is fine-tuned to learn a

vertex reconstruction error based adversarial loss on the meshes, demonstrating for

the first time the merit of convolutional mesh autoencoders in adversarial training.

We perform detailed evaluation on the task of 3D pose estimation and compare our

proposed approach to several baseline methods. We show that our mesh convolutional

decoder based network outperforms the baseline method that regresses SMPL model

parameters, while our mesh autoencoder based discriminator further improves the

reconstruction results. We also evaluate and compare to several state of the art method

on in the wild images, demonstrating the effectiveness and potential of our proposed

approach.

4.2 Related Work

Human Body Mesh Recovery

The approaches for recovering a 3D human body mesh from a single input image can

be categorised into optimisation based method and learning based method. Optimi-

sation based methods fit a parametric model to the image by finding the optimal set

of model parameters that minimises some objective function based on features such

as 2D keypoints and silhouette. Whereas learning based methods typically use con-

volutional neural networks to regress the model parameters or the 3D location of the

mesh vertices.

Early works of optimisation based approaches mainly rely on manual annotations

[89][90][91]. These methods have restricted usage in the case of in the wild images

where manual annotations of silhouette or dense correspondences cannot be obtained.

Beyond the limited use case, since optimisation based approaches typically require

solving a challenging non-convex optimisation problem, these works have also focused

on developing approaches to solve the optimisation problem itself. SMPLify [66] at-

tempts to automate this pipeline where 2D keypoints detected using CNNs are used

as the main objective when fitting the SMPL model to the image. They also use an

automatic differentiation tool [92] to solve the optimisation problem. [86] improved

the shape estimation of SMPLify by also including landmarks on the body surface and

a silhouette matching term in the objective function.
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Using 2D keypoints and segmentations as objective could lead to implausible recon-

structions due to ambiguities. This issue has been addressed in the form of pose priors

[66] in the model parameter space. Another major drawback of such optimisation

based methods is the inference speed. Since for each input image, an iterative opti-

misation process is required to solve the parameters, the methods cannot be used for

real time applications. The results also rely on reasonable initialisation and keypoints

detection or segmentations.

On the contrary, learning based method seeks to train a network with the 2D or 3D

supervisions that minimises the reconstruction objective function. During inference,

the results can be obtained by simply forward-passing the image through the network,

significantly reducing the inference time. Moreover, while additional manual annota-

tion or component for automatic inference of the 2D keypoints/silhouettes is needed

during inference for the optimisation based method, learning based methods are typi-

cally independent from these as all the inference is done by one network.

Some learning based reconstruction approach are independent from parametric models,

where the network directly outputs 3D vertex locations [28], voxelised representation of

the mesh [93][94] or dense image to vertex correspondences [95]. These non-parametric

approaches do not typically regularise the output, which could lead to implausible or

noisy reconstructions for challenging poses. Another line of work utilise parametric

models for mesh generation, while the network attempts to regress pose and shape

parameters from the input image. To deal with pose ambiguities, either adversarial

training on the parameters [10] or pose priors [96] are required. [88] extended the net-

work to perform part segmentation which is then used for model parameter regression.

While optimisation based method often produce reliable results and learning based

method can perform fast real time inference, some works have attempted to combine

these two. [67] use a model parameter regression network [10] to produce initial pa-

rameter estimations, which is then improved by optimisation based method [66], this

enables the possibility to use 3D mesh supervision when only 2D keypoints annota-

tions are available. [96] use a multitask network to regress model parameters as well as

dense correspondences, 2D and 3D keypoints, which are then used as complementary

cues to refine the model based reconstruction.

In this work, instead of focusing on improving the parametric model predictions by

using different source of supervision or network architecture, we introduce the use of
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mesh convolutional networks that directly outputs the vertex coordinates given an

input image encoding. Our approach do not rely on supervision of parametric model

parameters, and the network is trained end to end given 3D ground truth of the

training images, hence the performance is not limited by the representational power

of the parametric model itself.

Geometric Deep Learning

We have presented a detailed survey on deep neural network based 3D human body

modelling in Chapter 2, here we focus instead the development on geometric deep

learning for 3D shape modelling with convolutional operations on meshes.

One direction of work uses the spectrum of the mesh given by the eigenvectors of

the mesh laplacian [97]. The disadvantage of such method is the high computational

complexity due to the expensive matrix multiplications required. [51] reduced the

complexity by representing the filters as polynomial expansion and using Chebyshev

expansion to compute the polynomials recursively. [98] utilised the fast spectral con-

volution filters to build convolutional mesh autoencoders for generating and recon-

structing 3D human faces. [52] further extended the use of mesh autoencoder to build

a 3D mesh GAN that generates more detailed high resolution faces.

Another category of approaches such as [99][100] and [101] focus on generalising convo-

lutional operations on meshes in the spatial domain, where a set of weighting functions

are defined for the each position in a patch localised to a point. [27] proposed a spiral

operator that constructs the local patch in the spiral ordering of the neighbouring

vertices for the task of learning correspondences between 3D meshes. [7] extended this

work to build a neural 3D morphable model of human faces and bodies. In this work,

we employ the setting of [7], but for the task of 3D reconstruction from RGB images

instead of directly from 3D shapes.

4.3 Mesh Convolutional Networks

4.3.1 Spiral Convolution

Suppose a 3D mesh is represented by a graph G = (V, E), where V ∈ RN×3 represents

the vertices coordinates in 3D Euclidean space, and E is the set of edges that defines

the connectivity of the vertices. Mesh convolutional filters can either be defined from

the spatial approach or the spectral approach. Here we consider mesh convolutional
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filters defined on the spatial domain, where a set of local weighting functions w1, ..., wL

is defined on the local system of coordinates u(x, y) for each vertex y in the neighbour-

hood N(x) of a vertex x. The convolutional filter is then defined as a patch operator

where the features f(y) are aggregated as:

(f ∗ g)x =
L∑
l=1

gl
∑

y∈N(x)

wl(u(x, y))f(y) (4.1)

where gl is the filter weights. Here wl(u(x, y)) are a set of learnable soft-attention

weights that performs a all-to-all mapping since a one-to-one mapping cannot be ob-

tained due to the absence of a global coordinate system.

However, when considering a mesh of fixed topology, the neighbouring vertices of a

point can be ordered in a way such that the local order is fixed. In this case, the

convolutional operation can be defined as follows:

(f ∗ g)x =
L∑
l=1

glf(xl) (4.2)

where x1, ..., xL are the neighbours of x ordered in a fixed way, which is equivalent of

having a patch operator on a single neighbouring vertex. Following [7], we use the

setting where the vertex ordering is obtained using spiral trajectories. Suppose Rd(x)

is the d-ring of vertex x, and Rd
j (x) is the jth element in the ring. The spiral patch

operator is defined as the ordered sequence:

S(x) = x,R1
1(x), R

1
2(x), ..., R

h
∥Rh∥(x) (4.3)

where h is the patch radius or kernal size. The spiral convolution is then computed

as:

(f ∗ g)x =
L∑
l=1

glf(Sl(x)) (4.4)

The ordering is defined by the direction of ring and the starting vertex R1
1(x). Here

the ordering is pre-computed on a template mesh, where R1
1(x) is chosen to be the

closest vertex of each x, and the rest of the sequence is deduced by going through the

d-ring counterclockwise.
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4.3.2 Mesh Pooling

The pooling operation on mesh is equivalent to mesh down-sampling. We adopt the

implementation of [6]. At each pooling layer, the feature map X ∈ Rn×F is multiplied

by selection matrix Qd ∈ Rn×m, where Qd
ij = 1 indicates that the i-th vertex is pre-

served during the down-sampling operation, and correspond to the j-th vertex in the

next layer.
∑

j Q
d
ij = 0 means that the vertex is discarded.

The unpooling operation can be seen as subdividing the surface to increase the reso-

lution of the mesh. However in order to preserve the template topology and enforce

symmetry when used in a mesh autoencoder, an up-sampling matrix Qu can be built

simultaneously as the down-sampling matrix.

For each vertex that is preserved in the down-sampling operation, i.e. Qd
ij = 1, Qu

ji

is set to be 1. For each discarded vertex, the vertex is projected to the nearest tri-

angle in the down-sampled mesh, and retrieved with the corresponding barycentric

coordinate during up-sampling. Assume a vertex i is discarded and its closest triangle

on the down-sampled mesh is (p, q, r), and its corresponding barycentric coordinate is

[u, v, w], then the up-sampling matrix is constructed such that Qu
pi = u, Qu

qi = v, and

Qu
ri = w.

Since all the input meshes share the same topology and semantic ordering of vertices,

the down-sampling and up sampling matrix can be computed only once on the tem-

plate mesh. [6] computed the down-sampled vertices using a quadric error based edge

collapse method on the reference face. We observe that when applied to mesh of hu-

man bodies, the choice of reference mesh is crucial and has considerable impact on the

reconstruction quality of the result. Fig. 4.2 shows our choice of reference mesh and

the down-sampled meshes with factor of 4, 2, 2, 2 respectively. The reference mesh is

posed such that after down-sampling, vertices around the joints are preserved.
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Figure 4.2: Our choice of reference mesh and the downsampled meshes with factor of
4, 2, 2, 2. By posing the template mesh as illustrated, vertices around the joints are
preserved after down-sampling, subsequently helping the network to learn human body
articulations in a coarse level.

4.3.3 Mesh Convolutional Autoencoder

Having specified all the components of the network, we now describe the structure we

used to build the mesh convolutional autoencoder.

Each building block of the network consists of one spiral convolutional layer and one

pooling/unpooling layer. The input layer is a convolutional layer with kernal size 2

and 16 channels, followed by 4 blocks of layers with channel size (16, 32, 64, 128),

kernel size (2, 1, 1, 1) and down-sampling factor of (4, 2, 2, 2) respectively. Then

we use a fully connected layer to obtain the latent code of size 128. The decoder is

symmetric to the encoder. We use biased Elu activation for the convolutional layers,

except for the output layer. Figure Fig. 4.3 illustrate the network structure, and the

hyperparameters of the network is summarised in table Table 4.1.

Figure 4.3: Illustration of our mesh convolutional autoencoder architecture.
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Layer Input Size Output Size Kernal size
Conv-elu 6890x3 6890x16 2
Conv-elu 6890x16 6890x16 2
Pool 6890x16 1724x16 -

Conv-elu 1724x16 1724x32 1
Pool 1724x32 863x32 -

Conv-elu 863x32 863x64 1
Pool 863x64 432x64 -

Conv-elu 432x64 432x128 1
Pool 432x128 217x128 -
FC 217x128 128 -

Layer Input Size Output Size Kernal size
FC 128 217x128 -

Unpool 217x128 432x128 -
Conv-elu 432x128 432x64 1
Unpool 432x64 863x64 -
Conv-elu 863x64 863x32 1
Unpool 863x32 1724x32 -
Conv-elu 1724x32 1724x16 1
Unpool 1724x16 6890x16 -
Conv-elu 6890x16 6890x16 2
Conv-elu 6890x16 6890x3 2

Table 4.1: Architecture of our mesh convolutional autoencoder.

Given a set of N meshes {Vi}, we first normalise the vertices to obtain the normalised

deformations V̂i by substracting the mean shape and dividing by the per-vertex stan-

dard deviation computed over all the training samples. The autoencoder is then

trained to minimise the L1 reconstruction error:

N∑
i=1

∥V̂i − AE(V̂i)∥ (4.5)

where AE denotes the autoencoder network.

4.4 3D Reconstruction of Human Body from Single

Image

The mesh autoencoder can act as a parametric model for shape generation and re-

construction. Similar to the approaches that utilise the SMPL model in deep neural

networks [88][10], we use the decoder part of the autoencoder for reconstructing 3D

meshes of human body from monocular images. More specifically, we use an image

CNN to compute a latent code given an image, then the latent code is sent to the de-

coder to output a mesh. Except for the latent code, the CNN also predicts parameters

of a weak perspective camera that projects the output 3D mesh back to the original

input image. The network architecture is as illustrated in Fig. 4.4.

Given pairs of 2D image and the ground truth 3D mesh (Ii,Vi) with 2D keypoint

locations in the image as J2D
i , we train the network by minimising the following error:

Ldata = L3D + Lproj (4.6)
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Figure 4.4: Illustration of our image to mesh network architecture. A CNN is used
to encode image features given a RGB image. The image features are then sent to two
separate fully connected network modules to compute the mesh embedding and camera
embedding. The 3D mesh is then decoded from the mesh embedding with the spiral
mesh decoder, and projected back to the image with the predicted camera parameters.

where

L3D =
N∑
i=1

∥Vi −Dmesh(Eim(Ii))∥ (4.7)

is the L1 reconstruction loss of the 3D mesh and

Lproj =
N∑
i=1

∥J2D
i − JΠ(Dmesh(Eim(Ii)), Ecam(Eim(Ii)))∥ (4.8)

encourages the projected keypoints to match the ground truth annotations. Here

Π(V, cam) is the weak perspective projection operation.

During training, the network learns to regress vertex locations given the input images,

however, this is a challenging task as the autoencoder is designed for the task of re-

construction instead of generation. In this case, the output shape might have a low

vertex reconstruction error, but low fidelity, resulting in shapes with non-smooth or

noisy surface. In order to enforce the network to generate valid shapes, we introduce

a discriminator network. Unlike approaches that are based on the SMPL model, the

latent space of our autoencoder do not correspond to any semantically meaningful
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parameters, thus ground truth supervision for the latent space of ’real shape’ is not

available. Thus instead of discriminating the latent space like [10], we directly train

the discriminator network on meshes.

While many GAN works use discriminator networks that output a logit indicating

whether the input sample is real or fake, we use an mesh autoencoder network to

compute the dense adversarial loss. Here we employ the setup of [102]. Suppose we

have discriminator network DAE, where for an input sample V, the reconstruction loss

given by DAE is defined as follows:

LAE = ∥V −DAE(V)∥ (4.9)

The discriminator network is then trained to minimise the following loss:

LDAE
= LAE(Vi)− ktLAE(Dmesh(Eim(Ii)) (4.10)

and an adversarial loss term is added to the image to mesh generator objective:

L = Ldata + LGadv

= Ldata + LAE(Dmesh(Eim(Ii))

(4.11)

The term kt maintains the balance between the real and fake loss, at each training

step t, the value of kt is updated as:

kt = kt−1 + λk(γLAE(Vi)− LAE(Dmesh(Eim(Ii))) (4.12)

where γ and λk are hyperparameters that can be set experimentally.

4.5 Evaluation

In this section we provide experimental results of our proposed mesh recovery ap-

proach. We compare the results to several baseline method on the Human3.6M dataset,

so as to investigate the effect of our proposed losses and different training setups. For

all experiments we evaluate the performance quantitatively by reporting the per-vertex

mean reconstruction error. Additionally we report the mean joint reconstruction error

since this is the most standard error metric for most of the 3D body reconstruction

methods. Finally we perform experiments on in the wild images and compare the
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results to several popular approaches. We also provide qualitative results for all ex-

periments.

4.5.1 Implementation Details

For all of our experiments we use ResNet-50 pretrained on ImageNet as the image

encoder. The last layer of the ResNet is replaced with 2 fully connected layers that

outputs 1024D features. The feature is sent to the latent code regressor to produce a

latent vector of 128D, which is then used in the mesh decoder to generate a mesh. The

camera branch takes the extracted image features as input, and outputs a 7D camera

vector which contains a 4D quaternion rotation, 2D translation and a scaling factor.

For the mesh decoder and autoencoder discriminator we use the architecture specified

in Table 4.1.

All input images are cropped and scaled to 224x224 using the tight bounding boxes

of the ground truth 2D keypoints while preserving the aspect ratio of the person. For

training we use batch size of 16. The mesh generator is trained with Adam optimizer

of learning rate 5× 10−5, while the autoencoder discriminator is trained with learning

rate 10−5. We use weight decay of 10−5 for both networks. We choose hyperparameter

values of λk = 0.001 and γ = 0.7 for the discriminator, with the initial k0 = 0.

4.5.2 Experimental Setup

In order to investigate the merit of our proposed mesh convolutional network over

linear blend skinning based models, as well as the effectiveness of the autoencoder

based discriminator, we train multiple networks with different mesh generation com-

ponent (mesh convolutional decoder vs SMPL) and loss functions. State-of-the-art

pose estimation methods often train on different combinations of datasets, as well as

with different input formats (RGB, RGBD, part segmentations, 2D + 3D supervision,

etc.). In order to obtain comparable results, we use only Human3.6M [103] for training

and evaluation in this experiment. The ground truth 3D mesh annotations are ob-

tained from MoSh [104]. We remove global rotations of the ground truth 3D mesh by

setting the root joint rotation provided as SMPL parameter by MoSh to zero. For all

configurations, We train on subjects S1, S5, S6, S7 and S8 for 20 epochs, and evaluate

on subjects S9 and S11. For fast training we downsample the training set from 50fps

to 5fps. The training images are randomly rotated and translated.
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Network Discriminator Loss Pretrain

Config A ResNet + SMPL - 3D+parameter+2D -

Config B [10] ResNet + SMPL + IEF [10] 3D+parameter+2D+adv -

Config C ResNet + Decoder - 3D+2D -

Config D ResNet + Decoder - 3D+2D Decoder

Config E ResNet + Decoder Mesh AE 3D+2D+BEGAN adv -

Config F ResNet + Decoder Mesh AE 3D+2D+BEGAN adv Decoder + AE

Table 4.2: Our ablative experiments setup. ’AE’ refers to our proposed mesh convo-
lutional autoencoder. ’Decoder’ refers to the mesh convolutional decoder. ’IEF’ refers
to the iterative error feedback component used in HMR[10]. ’BEGAN adv’ refers to our
proposed dense mesh autoencoder adversarial loss.

Table 4.2 lists the network structure and training loss that are used for our ablation

study. Note that all configurations use the same ResNet pretrained on ImageNet, and

the ’Pretrain’ column only list the pretraining configuration of additional components.

Config A To assess the reconstruction ability of our mesh convolutional decoder, we

train a baseline network that regresses the SMPL model parameters from ResNet. For

this configuration, the latent code regressor outputs a 79D parameter vector, which

correspond to the 10 shape parameters β and the 23 axis-angle rotation for the joints

θ of SMPL model. Since the camera branch outputs a quaternion rotation, we did not

use root joint rotation of the SMPL model. For training loss, we added the following

SMPL parameter regression term:

∥β − β′∥2 + ∥θ − θ′∥2 (4.13)

where β,θ are the network’s latent code prediction and β′,θ′ are the ground truth

parameter vector obtained from MoSh. We have observed that without the parameter

supervision the network would take longer to converge and tend to generate invalid

shapes at the early stage of training. The network is trained with the Adam optimizer

of learning rate 10−5 following [10].

Config B This configuration is the exact implementation of Human Mesh Recovery

(HMR) [10], except that we now only train on our crops and downsamples of Hu-

man3.6M. Compare to Config A, an itarative error feedback (IEF) layer is added

to the latent code regressor. Instead of regressing directly β and θ, the latent code

regressor takes the image feature and current estimate of β and θ, and outputs a
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residual ∆β and ∆θ. The residual is then added to the previous estimate to produce

an estimate of the current iteration. In our experiments, we use 3 iterations for the

IEF layer. The final estimate are used for computing the 3D, parameter regression

and 2D keypoint loss. The intermediate parameter estimates are sent to the factorised

discriminator network to ensure each update produce a valid human body mesh. We

use the same discriminator network implementation as [10], and train the discrimina-

tor with an Adam optimizer of learning rate 10−4 while training the generator network

simultaneously as specified by Config A.

Config C For Config C we use the network structure as described in section 4.4

without using the discriminator network. This setup is to be compared with Config A

to show the effectiveness of our mesh convolutional decoder over linear blend skinning

method. However for the mesh decoder, there does not exist ground truth latent vector

supervision, thus only 3D mesh reconstruction and 2D keypoint loss are used. While

training this network, weights and bias for the mesh decoder are randomly initialised

with a normal distribution.

Config D In this configuration the network structure and losses used for training

are the same as Config C, except that we pretrain the mesh convolutional decoder

and freeze its weights while training with images. Therefore the only learnable param-

eters during training are the ResNet parameters, the fully connected layers for image

feature extraction, the latent code regressor and the camera parameter regressor.

The mesh decoder is pretrained by training a mesh convolutional autoencoder on a

collection of ground truth 3D meshes plus synthetic meshes. We use randomly sampled

SMPL shape and pose parameters from a mixture of experts prior proposed by [96]

for generating synthetic meshes of valid body shape and poses. At each training step,

we construct the input mini batch in a balanced manner such that it consists of half

Human3.6M meshes and half synthetic meshes. The decoder part of this autoencoder

is then plugged into the image to mesh network for further training.

Config E This configuration is our proposed method as described in section 4.4 and

4.5.1.

Config F The network structure used in this experiment is the same as Config

E, except that the mesh decoder and mesh convolutional discriminator network is

pretrained as in Config D. After pretraining the mesh autoencoder, the decoder
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weights are used to initialise the mesh decoder in the image to mesh network, and the

autoencoder weights are used to initialise the discriminator network. When training

on images, we freeze the weights of the decoder part in the image to mesh network, as

well as in the discriminator network.

4.5.3 Results and Discussion

Recons. Err. Config A Config B Config C Config D Config E Config F

Joint (mm) 96.37 88.75 88.62 90.66 81.76 85.76

Vertex (mm) 109.10 100.83 95.08 102.44 93.69 96.34

Table 4.3: Mean joint reconstruction errors and mean vertex reconstruction errors on
Human3.6M dataset for the configurations of our ablation study described in Table 4.2.
Using the proposed convolutional mesh decoder, simple mesh regression training (Config
C) performs better compared to linear blend skinning based models (Config A and B).
Adversarial training with mesh autoencoder further improves the results (Config E and
F).

In Table 4.3 we report the mean joint and vertex reconstruction error on the Hu-

man3.6M testset. We observe that with our proposed mesh decoding method, naive

mesh regression training (Config C) achieves comparable results to SMPL parameter

regression with adversarial training (Config B) in terms of 3D joint reconstruction

error, while performing better on per-vertex reconstruction error. Our proposed dense

mesh autoencoder based adversarial training further improves the result (Config E).

Mesh Convolution vs Linear Blend Skinning

Fig. 4.5 visualises results of our proposed image to mesh network (Config D) compared

to results obtained from the SMPL parameter regression baseline (Config A). As

suggested by [10], directly predicting SMPL parameters is a difficult problem. While

using SMPL parameters as regression target of the image encoder during training,

small error in the axis angle representation of the joint rotations could lead to visually

very different results. Such method also relies on ground truth parameter supervision

while the discriminator network in Config B is not used. We have observed that when

training without parameter supervision, even with per-vertex reconstruction loss, the

network cannot be trained stably and will produce invalid shapes. On the contrary,

our mesh decoder do not rely on latent vector supervision and can be directly trained

to regress 3D vertex locations, which is more stable and reliable compared to the

parameter regression method.
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Adversarial Prior on parameters vs Dense adversarial loss

In Fig. 4.6 we visualise the reconstruction results of our proposed dense mesh autoen-

coder based adversarial training compared to the factorised adversarial prior. While

the SMPL parameter regression result is improved by performing adversarial training

on all the parameters predicted by the iterative error feedback loop, our autoencoder

based dicriminator also improves the reconstruction quality of the mesh decoder. As

a result, our proposed method achieves better reconstruction quality for both joints

and vertices.

With or without pretraining

The numerical evaluation on Human3.6M suggests that our proposed network achieves

lower reconstruction error when trained from scratch (Config C and Config E). In

Fig. 4.8, we visualise some examples of reconstruction predicted by networks Config F

(pretrained) and Config E (trained from scratch). During training, we observed that

although the pretrained mesh autoencoder can produce perfect reconstruction by for-

ward passing an input mesh through the encoder-decoder structure, while attempting

to reconstruct a mesh with the decoder only, the reconstruction loss is often relatively

high and requires more iterations to converge. In other words, error backpropagation

from the output layer to the latent code layer is not as effective. Since the autoencoder

is pretrained only for the reconstruction task, the latent space is highly unstructured

due to the complexity of the human body variation space. As a result of lack of

ground truth latent code supervision, it is difficult for the image encoder to learn to

regress the latent code that will produce the desired output through the mesh decoder.

This holds even when we attempt to finetune the pretrained mesh decoder together

with the image decoder. On the other hand, the training converges faster while using

randomly initialised weights for the mesh decoder. However, without pretraining, the

mesh decoder often produces noisy and spiky surface, as the discriminator network

needs more samples to be properly trained.
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Figure 4.5: Left two columns: results from network D (our image to mesh network).
Right two columns: results on the same image from network A (SMPL baseline).
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Figure 4.6: Left two columns: results from network F (our proposed approach). Right
two columns: results on the same image from network B (HMR).
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4.5.4 Results on in the wild images

For experiments on in the wild images, we train our network on the UP-3D [86] dataset.

In order to compare the performance with various state-of-the-art approaches which

report performance on the Human3.6M dataset, we also include the Human3.6M train-

ing set during training. In Table 4.4, we report per-vertex mean reconstruction error

on UP-3D dataset, and per-joint mean reconstruction error on Human3.6M dataset

(Protocol 2). We also show example reconstructions sampled from different error quar-

tiles on the testsets (Fig. 4.7).

We observe that our approach outperforms optimisation based method by a large mar-

gin. This is also the case when comparing to learning based methods that use RGB

images as input and regress SMPL model parameters (*SMPL param. reg. [88] and

Pavlakos [87]), this suggests that the mesh convolutional decoder is a more suitable

structure compared to linear blend skinning based models in deep neural networks in

the task of mesh recovery from images. On Human3.6M dataset, Neural Body Fit-

ting (NBF) [88] and HMR [10] achieved better performance than us, however NBF

also use a proxy network to produce part segmentation maps as input to the pose

estimation network, while HMR was trained on a large number of images with 2D

keypoint supervisions and additionally 3D MoCap datasets. These network structure

and training techniques can also be used to improve the performance of our proposed

network, however we leave this for future work.

The most closely related work that we compare to is Convolutional Mesh Regres-

sion (CMR) [28], where they use the same image encoder to compute image features.

The image features are then attached to the downsampled template mesh graph, and

processed by a graph convolutional network and upsampled again to regress the 3D

vertex locations. Compared to their network, our mesh is decoded from a latent vector

through a fully connected layer, and the mesh is upsampled multiple times in a deeper

mesh convolutional network. Although CMR achieves better joint reconstruction er-

ror on Human3.6M dataset, we observe that our network outputs high fidelity meshes,

while the output of CMR is noisy and lack of details.
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UP-3D Vertex Error (mm)

Lassner et al. [86] 169.8

Pavlakos et al. [87] 117.7

* Tan et al. [105] 105

* SMPL param. reg. [88] 98.5

Ours 80.2

Human3.6M (Protocol 2) Joint Error (mm)

Bogo et al. [66] 82.3

Lassner et al. [86] 80.7

Pavlakos et al. [87] 75.9

Ours 70.3

Kanazawa et al. [10] 56.8

Omran et al. [88] 59.9

Kolotouros et al. [28] 50.1

Table 4.4: Comparison to state-of-the-art on UP-3D dataset and Human3.6M dataset
(Protocol 2). Errors are measured in millimetres. (*) indicates that the vertex loss is
measured on a sparse set of points (landmark or keypoint loss).

Figure 4.7: Qualitative results on Human3.6M Protocol 1 testset (1st row) and UP-3D
testset by error quartile in terms of per-vertex mean reconstruction error. The columns
show examples from different error quartiles, from left to right: 0-25%, 25-50%, 50-75%,
75-100%.

4.6 Conclusion

In this chapter we proposed a network structure that utilise a powerful deep mesh

convolutional decoder to reconstruct 3D human body meshes from single RGB image

input. We learn the shape and pose variabilities of the 3D human body space by pre-

training a mesh convolutional autoencoder. The decoder part is then combined with
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an image encoder and trained end-to-end to minimise the 3D vertex reconstruction

loss. We also proposed to use the pretrained mesh autoencoder as a mesh prior to

enforce plausible reconstructions.

We performed evaluations on Human3.6M and UP-3D dataset on the task of 3D pose

estimation and compared our proposed approach to several baseline methods. Our

network outperforms the baseline method that regresses SMPL model parameters,

with considerable improvement while using our mesh autoencoder based discriminator

in the training.

Our major contribution in this chapter is to demonstrate that mesh convolutions can

outperform linear blend skinning based models in the task of human mesh recovery

from images. The merit of mesh convolutional decoder is that it can be trained and

fine-tuned end-to-end together with the image encoder, while the most commonly used

linear blend skinning models are typically fixed when used in a deep neural network,

restricting the representational power of the network to the model space.

The performance of our network can be further improved by training on more data in

weakly supervised manner or with synthetic data, as well as by using a more compli-

cated image encoding network structure that uses intermediate image representations.

With more 3D ground truth data, our method can also be used to reconstruct more

detailed meshes with different facial expressions and hand poses.
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Figure 4.8: Qualitative results from network Config F (with mesh decoder pretraining)
and Config E (training from scratch). From left to right: results of Config F network
overlaid on the input image, Config F result from a different angle, results of Config E
network, Config E result from a different angle.
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Chapter 5

BLSM: A Bone-Level Skinned

Model of the Human Mesh

In this chapter we introduce BLSM, a bone-level skinned model of the human body

mesh where bone scales are set prior to template synthesis, rather than the common,

inverse practice. BLSM first sets bone lengths and joint angles to specify the skele-

ton, then specifies identity-specific surface variation, and finally bundles them together

through linear blend skinning. We design these steps by constraining the joint angles

to respect the kinematic constraints of the human body and by using accurate mesh

convolution-based networks to capture identity-specific surface variation.

We provide quantitative results on the problem of reconstructing a collection of 3D

human scans, and show that we obtain improvements in reconstruction accuracy when

comparing to a SMPL-type [3] baseline. Our decoupled bone and shape representa-

tion also allows for out-of-box integration with standard graphics packages like Unity,

facilitating full-body Augmented Reality (AR) effects and image-driven character an-

imation.

5.1 Introduction

Mesh-level representations of the human body form a bridge between computer graph-

ics and computer vision, facilitating a broad array of applications in motion capture,

monocular 3D reconstruction, human synthesis, character animation, and augmented

reality. The articulated human body deformations can be captured by rigged mod-

elling where a skeleton animates a template shape; this is used in all graphics packages

for human modelling and animation, and also in state-of-the-art statistical models such
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pose
parameters

bone scale
parameters

bone
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mean skeleton scaled skeleton scaled & posed 
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CNN
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scale correction
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Figure 5.1: Overview of our Bone-Level Skinned Model (BLSM): The top row shows
skeleton synthesis: starting from a canonical, bind pose, we first scale the bone lengths
and then apply an articulated transformation. The bottom row shows shape control: the
canonical mesh template is affected by the bone scaling transform through Bone-Scaling
Blend Shapes, and then further updated to capture identity-specific shape variation.
The skeleton drives the deformation of the resulting template through Linear Blend
Skinning, yielding the posed shape.

as SMPL or SCAPE [3, 30].

Our work aims at increasing the accuracy of data-driven rigged mesh representations.

Our major contribution consists in revisiting the template synthesis process prior to

rigging. Current models, such as SMPL, first synthesize the template mesh in a canoni-

cal pose through an expansion on a linear basis. The skeleton joints are then estimated

post-hoc by regressing from the synthesized mesh to the joints. Our approach instead

disentangles bone length variability from acquired body traits dependent e.g. on ex-

ercise or dietary habits.

Based on this, we first model bone length-driven mesh variability in isolation, and then

combine it with identity-specific updates to represent the full distribution of bodies.

As we show experimentally, this disentangled representation results in more compact

models, allowing us to obtain highly-accurate reconstructions with a low parameter

count.

Beyond this intuitive motivation, decoupling bone lengths from identity-specific varia-

tion is important when either is fixed; e.g. when re-targeting an outfit to a person we
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can scale the rigged outfit’s lengths to match those of the person, while preserving the

bone length-independent part of the outfit shape. In particular, we model the mesh

synthesis as the sequential specification of identity-specific bone length, pose-specific

joint angles, and identity-specific surface variation, bundled together through linear

blend skinning.

We further control and strengthen the individual components of this process: Firstly,

we constrain joint angles to respect the kinematic constraints of human body, reduc-

ing body motion to 47 pose atoms, amounting to joint rotations around a single axis.

Alternative techniques require either restricting the form of the regressor [96] or pe-

nalizing wrong estimates through adversarial training [10].

Secondly, we introduce accurate mesh convolution-based networks to capture identity-

specific surface variation. We show that these largely outperform their linear basis

counterparts, demonstrating for the first time the merit of mesh convolutions in rigged

full-body modelling (earlier works [106] were applied to the setup of the face mesh).

We provide quantitative results on the problem of reconstructing a collection of 3D

human scans, and show that we obtain systematic gains in average vertex reconstruc-

tion accuracy when comparing to a SMPL-type baseline. We note that this is true

even though we do not use the pose-corrective blendshapes of [3]; these can be easily

integrated, but we leave this for future work.

Beyond quantitative evaluation, we also show that our decoupled bone and shape

representation facilitates accurate character animation in-the-wild. Our model formu-

lation allows for out-of-box integration with standard graphics packages like Unity,

leading to full-body augmented reality experiences.

The rest of the chapter is structured as follows: we first provide a brief literature

survey about 3D human mesh models and mesh convolutional networks. We then

describe in details our proposed model formulation, followed by technical approach

on model training, including the registration method we used to process our training

data. Finally we provides quantitative and qualitative evaluations on the task of 3D

scan reconstructions and character animation in the wild.
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5.2 Related Work

3D Human Body Modelling

Linear Blend Skinning (LBS) is widely used to model 3D human bodies due to its

ability to represent articulated motions. Some early works have focused on synthesiz-

ing realistic 3D humans by modifying the LBS formulation. Pose Space Deformation

(PSD) [107] defines deformations as a function of articulated pose. [108] use the PSD

approach learned from 3D scans of real human bodies. Other authors have focused

on learning parametric model of human body shapes independently from the pose

[41, 33, 109]. Following these works, [30, 110, 23, 31, 111] model both body shape and

pose changes with triangle deformations. These work has been extended to also model

dynamic soft-tissue motion [112].

Closely related to [113], SMPL [3] propose an LBS-based statistical model of the hu-

man mesh, working directly on a vertex coordinate space: T-posed shapes are first

generated from a PCA-based basis, and then posed after updating joint locations.

More recent works have focused on improving the representational power of the model

by combining part models, e.g. for face and hands [114, 115], without however mod-

ifying the body model. One further contribution of [3] consists in handling artefacts

caused by LBS around the joints when posing the template through the use of pose-

corrective blend shapes [3]. Our formulation can be easily extended to incorporate

these, but in this work we focus on our main contribution which is modelling of the

shape at the bone level.

Graph Convolutions for 3D Human Bodies

Different approaches have been proposed to extend convolutional neural networks to

non-euclidean data such as graphs and manifolds [51, 100, 26, 7, 27, 6]. Among these,

[100, 26, 27, 7] have attempted to model and reconstruct 3D human bodies using

convolutional operators defined on meshes. While these methods achieve good perfor-

mance on shape reconstruction and learning correspondences, their generalisation is

not comparable to LBS based methods. Furthermore, the process of synthesising new

articulated bodies using mesh convolutional networks is not easy to control since the

latent vector typically encodes both shape and pose information.
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5.3. Bone-Level Skinned Model

5.3 Bone-Level Skinned Model

We start with a high-level overview, before presenting in detail the components of our

approach. As shown in Fig. 5.1, when seen as a system, our model takes as input bone

scales, joint angles, and shape coefficients and returns an array of 3-D vertex locations.

In particular, BLSM operates along two streams, whose results are combined in the

last stage. The upper stream, detailed in Sec. 5.3.1, determines the internal skeleton

by first setting the bone scales through bone scaling coefficients cb, delivering a bind

pose. This is in turn converted to a new pose by specifying joint angles θ, yielding

the final skeleton T (cb,θ).

The bottom stream, detailed in Sec. 5.3.2, models the person-specific template syn-

thesis process: Starting from a mesh corresponding to an average body type, V̄, we

first absorb the impact of bone scaling by adding a shape correction term, Vb. This

is in turn augmented by an identity-specific shape update Vs, modelled by a mesh-

convolutional network. The person template is obtained as

V = V̄ +Vb +Vs . (5.1)

Finally, we bundle the results of these two streams using Linear Blend Skinning, as

described in Sec. 5.3.3, delivering the posed template V̂:

V̂ = LBS(V, T (cb,θ)) . (5.2)

5.3.1 Skeleton Modeling

Kinematic Model

Our starting point for human mesh modelling is the skeleton. As is common in graph-

ics, the skeleton is determined by a tree-structured graph that ties together human

bones through joint connections.

Starting with a single bone, its ‘bind pose’ is expressed by a template rotation matrix

Rt and translation vector Ot that indicate the displacement and rotation between the

coordinate systems at the two bone joints. We model the transformation with respect

to the bind pose through a rotation matrix R and a scaling factor s, bundled together

in a 4× 4 matrix T:
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T =

 sI 0

0 1


 R 0

0 1


︸ ︷︷ ︸

deformation

 Rt Ot

0 1


︸ ︷︷ ︸

resting bone

. (5.3)

We note that common models for character modelling use s = 1 and only allow for

limb rotation. Any change in object scale, or bone length is modelled by modifying

the displacement at the bind pose, O. This is done only implicitly, by regressing the

bind pose joints from a 3D synthesized shape. By contrast, our approach gives us a

handle on the scale of a limb through the parameter s, making the synthesis of the

human skeleton explicitly controllable.

The full skeleton is constructed recursively, propagating from the root node to the leaf

nodes along a kinematic chain. Every bone transformation encodes a displacement,

rotation, and scaling between two adjacent bones, i and j, where i is the parent and j

is the child node. To simplify notation, we will describe the modelling along a single

kinematic chain, meaning j = i+ 1, and denote the local transformation of a bone by

Ti.

The global transformation Tj from the local coordinates of bone j to world coordinates

is given by: Tj =
∏

i≤j T
i, where we compose the transformations for every bone on

the path from the root to the j-th node. This product accumulates the effects of

consecutive transformations: for instance a change in the scale of a bone will incur the

same scaling for all of its descendants. These descendants can in turn have their own

scale parameters, which are combined with those of their ancestors. The 3D position

of each bone j can be read from the last column of Tj, while the upper-left 3× 3 part

of Tj provides the scaling and orientation of its coordinate system.

Parametric Bone Scaling

Wemodel human proportions by explicitly scaling each bone. For this we perform PCA

on bone lengths, as detailed in Sec. 5.4.2 and use the resulting principal components

to express individual bone scales as:

b = b̄+ cbPb (5.4)

where cb are the bone scaling coefficients, Pb is the bone-scaling matrix, and b̄ is the

mean bone scale.
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From Eq. 5.4 we obtain individual bone scales. However, the bone scales s that appear

in Eq. 5.3 are meant to be used through the kinematic chain recursion, meaning that

the product of parent scales delivers the actual bone scale, bj =
∏

i≤j si; this can be

used to transform the predictions of Eq. 5.4 into a form that can be used in Eq. 5.3:

si =


bi/bi−1, i > 0

1 i = 0

(5.5)

Kinematically Feasible Posing

We refine our modeling of joint angles to account for the kinematic constraints of the

human body. For instance the knee has one degree of freedom, the wrist has two,

and the neck has three. For each joint we set the invalid degrees of freedom to be

identically equal to zero, and constrain the remaining angles to be in a plausble range

(e.g. ±45 degrees for an elbow). In Fig. 5.2 we show sample meshes synthesized by

posing a template along one valid degree of freedom.

Right-Wrist Down
Right-Arm Twist Upper-Spine Down

Left-Shoulder Up
Left-Leg Up

Left-Leg Left Spine Left

Figure 5.2: 7 out of the 47 degrees of freedom corresponding to kinematically feasible
joint rotations for our skeleton.

For this, for each such degree of freedom we use an unconstrained variable x ∈ R and

map it to a valid Euler angle θ ∈ [θmin, θmax] by using a hyperbolic tangent unit:

θ =
θmax − θmin

2
tanh(x) +

θmin + θmax

2
(5.6)

This allows us to perform unconstrained optimization when fitting our model to data,

while delivering kinematically feasible poses. The resulting per-joint Euler angles are

converted into a rotation matrix, delivering the matrix R in Eq. 5.3.

Using Eq. 5.6 alleviates the need for restricting the regressor form [96] or adversar-

ial training [10], while at the same time providing us with a compact, interpretable
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dictionary of 47 body motions.

5.3.2 Template Synthesis

Having detailed skeleton posing, we now turn to template synthesis. We start by

modeling the effect of bone length on body shape, and then turn to modelling identity-

specific variability.

Bone-Dependent Shape Variations

Bone length can be used to account for a substantial part of body shape variability.

For example, longer bones correlate with a male body-shape, while limb proportions

can correlate with ectomorph, endomorph and mesomorph body-type variability. We

represent the bone-length dependent deformation of the template surface through a

linear update:

Vb = cbPbc (5.7)

where Pbc is the matrix of bone-corrective blendshapes.

-3σ            +3σ -3σ            +3σ -3σ            +3σ-3σ            +3σ

LBS 
bone scaling

LBS 
bone scaling + 

corrective blendshapes

LBS 
bone scaling

LBS 
bone scaling + 

corrective blendshapes

Bone Coeff. 1 Bone Coeff. 2

Figure 5.3: Impact of bone length variation on the template. Plain linear blend
skinning results in artifacts. The linear, bone-corrective blendshapes eliminate these
artifacts, and capture correlations of bone lengths with gender and body type.

Graph Convolutional Shape Modelling

Having accounted for the bone length-dependent part of shape variability, we turn

to the remainder of the person-specific variability. The simplest approach is to use a

linear update:

Vs = csPs (5.8)
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where cs are the shape coefficients, and Ps is the matrix of shape components; we

refer to this baseline as the linear model. By contrast, we propose a more powerful,

mesh-convolutional update. For this we use multi-layer mesh convolution decoder that

precisely models the nonlinear manifold of plausible shapes in its output space.

We represent the triangular mesh as a graph (V, E) with vertices V and edges E and

denote the convolution operator on a mesh as:

(f ⋆ g)x =
L∑
l=1

glf(xl) (5.9)

where gl denotes the filter weights, and f(xl) denotes the feature of the l-th neighbour

of vertex x. The neighbours are ordered consistently across all meshes, allowing us

to construct a one-to-one mapping between the neighbouring features and the filter

weights. Here we adapt the setting of [7], where the ordering is defined by a spiral

starting from the vertex x, followed by the d-ring of the vertex, i.e. for a vertex x, xl

is defined by the ordered sequence:

S(x) = {x,R1
1(x), R

1
2(x), ...., R

h
∥Rh∥}, (5.10)

where h is the patch radius and Rd
j (x) is the j-th element in the d-ring.

We use a convolutional mesh decoder to model the normalised deformations from the

bone-updated shape. The network consists of blocks of convolution-upsampling layers

similar to [6]. We pre-compute the decimated version of the template shape with

quadratic edge collapse decimation to obtain the upsampling matrix. Given the latent

vector z, shape variation is represented as

Vs = D(z) (5.11)

where D is the learned mesh convolutional decoder.

5.3.3 Linear Blend Skinning

Having detailed the skeleton and template synthesis processes, we now turn to posing

the synthesized template based on the skeleton. We use Linear Blend Skinning (LBS),

where the deformation of a template mesh V is determined by the transformations

of the skeleton. We consider that the bind pose of the skeleton is described by the

matrices T̂j, where the 3D mesh vertices take their canonical values vi ∈ V, while the
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target pose is described by Tj.

According to LBS, each vertex is influenced by every bone j according to a weight wij;

the positions of the vertices v̂i at the target pose are given by:

v̂k =
∑
j

wijTjT̂
−1
j vk. (5.12)

In the special case where T = T̂, we recover the template shape, while in the general

case, Eq. 5.12 can be understood as first charting every point vk with respect to the

bind bone (by multiplying it with T̂−1
j ), and then transporting to the target bone (by

multiplying with Tj).

5.4 Model training

Having specified BLSM, we now turn to learning its parameters from data. For this we

use the Civilian American and European Surface Anthropometry Resource (CAESAR)

dataset [12] to train the shape model, which contains high resolution 3D scans of 4400

subjects wearing tight clothing. This minimal complexity due to extraneous factors

has made CAESAR appropriate for the estimation of statistical body models, such

as SMPL. For training skinning weights we use D-FAUST [11] dataset. Our training

process consists in minimising the reconstruction error of CAESAR and D-FAUST

through BLSM.

Since BLSM is implemented as a multi-layer network in pytorch, one could try to

directly minimize the reconstruction loss with respect to the model parameters using

any standard solver. Unfortunately however, this is a nonlinear optimisation problem

with multiple local minima; we therefore use a carefully engineered pipeline that solves

successively demanding optimization problems, as detailed below, and use automatic

differentiation to efficiently compute any derivatives required during optimization.

5.4.1 Unconstrained Landmark-based Alignment

Each CAESAR scan Sn is associated with 73 anatomical landmarks, Xn
lm that have

been localised in 3D. We start by fitting our template to these landmarks by gradient

descent on the joint angles θn and bone scales sn, so as to minimize the 3D distances

between the landmark positions and the respective template vertices. More specifically,
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Figure 5.4: Example of one registered CAESAR instance. We first fit our rigged
template to the landmarks on the scan surface by optimising over the joint angles and
bone scales, then non-rigidly deform the vertices freely to align the scan surface.

the following optimization problem is solved:

θn, sn = argminθ,s∥Alm LBS(VT , T (s,θ))−Xn
lm∥2 (5.13)

where Alm selects the subset of landmarks from the template.

This delivers an initial fitting which we further refine by registering our BLSM-based

prediction Ŝn
T = LBS(VT , T (s

n,θn)) to each scan Sn. The final registration Ŝn =

LBS(VT +Vn
D, T (s

n,θn)) is obtained by iteratively solving for Vn
D that minimises the

following error:

E = Edata + Esmoothness + Ereg + Erigid (5.14)

where Edata is the data term, Esmoothness enforces the surface of the registered mesh to

be smooth, Ereg is the regularization term, and Erigid enforces some parts of Ŝn
BLSM

to deform rigidly.

Data Loss The data loss encourages the surface of Ŝn to be as close to Sn as possible.

At each iteration, we sample 50k points Sn
p on the surface of Sn, and 20k points Ŝn

p on

the surface of Ŝn. The data loss is then defined as:

Edata = λmnn

∑
(vr,vs)∈M(Ŝn

p ,S
n
p )

∥vr − vs∥2 + λlm∥AŜn −Xn
lm∥2 (5.15)
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where M(Ŝn
p ,S

n
p ) denotes the set of mutual nearest neighbours (MNNs) between the

two sampled pointcloud:

M(Ŝn
p ,S

n
p ) = {(vr,vs) ∈ (Ŝn

p ,S
n
p )|NN(vs, Ŝ

n
p ) == vr ∧NN(vr,S

n
p ) == vs} (5.16)

and NN(v,S) return the nearest neighbour of v in a set of points S. Mutual nearest

neighbours are used here since it is robust to holes on the scan compared to chamfer

loss. (Fig. 5.5) illustrates an example. MNNs use sparse yet more reliable correspon-

dences, and since we use densely sampled points on the surface, MNNs are sufficient to

drive the template vertices towards the scan surface. To account for potential missing

correspondences for the template vertices, we introduce several regularisation terms,

which are explained in the following paragraphs.

Figure 5.5: Comparison between mutual nearest neighbour (MNN) loss and chamfer
loss. Red represents points on the scan, and blue for points on the model. Left: MNN
loss. Right: chamfer loss. With chamfer loss the blue points would collapse around the
edge of holes, while MNN loss only considers more confident correspondences.

Smoothness Loss The smoothness term Esmoothness penalize non-smooth surfaces.

Here we use mesh Laplacian smoothing. Denote each registration Ŝn = (V, E) where
V ∈ RN×3 is the set of vertices and E is the set of edges, the Laplacian δi for vertex

vi is defined as [116]:

δi =
∑

(i,j)∈E

wij(vj − vi) (5.17)

where

wij =
ωij∑

(i,k)∈E ωik

(5.18)

Here we use ’uniform laplacian’ where ωij = 1. The Laplacian can then be written in

the matrix form:

∆(Ŝn) = LV (5.19)
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where L is the N ×N matrix:

Lij =


−1, i = j

wij, (i, j) ∈ E

0, otherwise

(5.20)

The mesh smoothness loss is then defined as:

Esmoothness = λsmoothness∥∆(Ŝn)∥ (5.21)

Regularization Loss The regularization loss is defined as:

Ereg = λEV ∥EV (Ŝn)− EV (Ŝn
T )∥2 + λEL∥EL(Ŝn)− EL(Ŝn

T )∥2 (5.22)

where EV (S) is the function that computes the edges for a given mesh S with edges

E = (i1, j1), ...(ie, je):

EV (S) = [vi1 − vj1, ...,vie − vje]
T (5.23)

This term enforces neighbouring vertices that share the same edge to have similar

deformations. And EL(S) returns the lengths of all such edges:

EL(S) = [∥vi1 − vj1∥2, ..., ∥vie − vje∥2]T (5.24)

which preserves the topology of the template.

Rigid Loss The CAESAR meshes do not have landmarks for fingers, therefore the

landmark based BLSM alignment do not capture pose of the subjects’ hands correctly,

and subsequently the registered hands will be noisy. In order to avoid these artefacts,

we enforce the hands to deform rigidly. This is done by adding extra weight for the

regularization loss described in the previous paragraph for the edges that belongs to

the hands:

Erigid = λrigid(∥EVH(Ŝ
n)− EVH(Ŝ

n
T )∥2 + ∥ELH(Ŝ

n)− ELH(Ŝ
n
T )∥2) (5.25)

where EVH and ELH denotes the edge losses masked for the hand edges only.

In our experiment we use λmnn = λlm = 1, λsmoothness = 0.007, λEV = 0.003,

λEL = 0.02 and λrigid = 0.01. The registration process is implemented with Py-
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torch3D [117] and thus benefits from efficient optimisation on GPU. We use the Adam

optimizer with initial learning rate of 0.005 to optimize Vn
D, and multiply the learning

rate by 0.9 on plateau.

Note that this alignment stage does not use yet a statistical model to constrain the

parameter estimates, and as such can be error-prone; the following steps recover shapes

that are more regularized, but the present result acts like a proxy to the scan that is

in correspondence with the template vertices.

5.4.2 Bone Basis and Bone-corrective Blendshapes

We start learning our model by estimating a linear basis for bone scales. For each

shape Ŝn we estimate the lengths of the bones obtained during the optimization pro-

cess described in the previous section.

We perform PCA on the full set of CAESAR subjects and observe that linear bases

capture 97% of bone length variability on the first three eigenvectors. We convert

the PCA-based mean vector and basis results from bone lengths into the mean bone

scaling factor b̄ and bone scaling basis Pb used in Eq. 5.4 by dividing them by the

mean length of the respective bone along each dimension.

Having set the bone scaling basis, we use it as a regularizer to re-estimate the pose θn

and bone scale coefficients cnb used to match our template VT to each registration Ŝn

by solving the following optimisation problem:

θn, cnb = argminθ,cb
∥LBS(VT , T (cb,θ))− Ŝn∥2 (5.26)

Finally we optimize over the bone-corrective basis Pb and mean shape V̄:

P∗
bc, V̄

∗ = argminPb,V̄

N∑
n=1

∥LBS(V̄ + cnbPbc, T (c
n
b ,θ

n))− Ŝn∥2 (5.27)

Given that VT and Ŝn are in one-to-one correspondence, we no longer need ICP to

optimize Eq. 5.26 and Eq. 5.27, allowing us instead to exploit automatic differentiation

and GPU computation for gradient descent-based optimization.
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5.4.3 Shape Blendshapes

Once bone-corrected blendshapes have been used to improve the fit of our model to the

registered shape Ŝn, the residual in the reconstruction is attributed only to identity-

specific shape variability. We model these residuals as vertex displacements VD
n and

estimate them for each registration Ŝn by setting:

LBS(V̄ +Vn
b +VD

n, T (cnb ,θ
n)) = Ŝn (5.28)

to ensure that the residual is defined in the T-pose coordinate system.

For the linear alternative described in Sec. 5.3.2 the shape basis Ps is computed by

performing PCA analysis of {VD
n}. To train the graph convolutional system described

in Sec. 5.3.2, we learn the parameters of the spiral mesh convolutional decoder D and

the latent vectors zn that minimize the following loss:

argminD,z

N∑
n=1

∥VD
n −D(zn)∥ (5.29)

5.4.4 Blending Weights

So far the blending weights of our LBS formulation are manually initialised, which can

be further improved from the data. For this purpose we use the D-FAUST dataset [11],

which contains registrations of a variety of identity and poses. For each registration

Sn in the dataset, we first estimate the parameters of our model, namely cnb , c
n
s , θ

n,

as well as the residual V̂n
D which is the error on the T-pose coordinate system after

taking into account the shape blendshapes. Then we optimize instead the blending

weights to minimize the following error:

argminW

N∑
n=1

∥Sn − LBSW(V̄ +Vn
b +Vn

s + V̂n
D, T (c

n
b ,θ

n))∥2 (5.30)

where we use the mapping:

W =
f(W′)∑
j f(W

′)ij
with f(X) =

√
X2 + ε (5.31)

to optimize freely W′ while ensuring the output weights W satisfy the LBS blending

weights constraints:
∑

j Wij = 1, and Wij ≥ 0.
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5.5 Evaluation

5.5.1 Implementation Details

Baseline Implementation

The publicly available SMPL model [3] has 10 shape bases, a mesh topology that is

different to that of our model, and pose-corrective blendshapes, making any direct

comparison to our model inconclusive. In order to have directly comparable results

across multiple shape coefficient dimensionalities we train a SMPL-like model (referred

to as SMPL-reimpl) using the mesh topology, kinematic structure, and blending weight

implementation of our model, and SMPL’s PCA-based modeling of shape variability in

the T-pose. We further remove any pose-corrective blendshape functionality, allowing

us to directly assess the impact of our disentangled, bone-driven modeling of mesh

variability against a baseline that does not use it.

In order to train SMPL-reimpl, we first define manually the joint regressor required by

[3] by taking the mean of the ring of vertex that lies around a certain joint; we then

train the blending weights and joint regressor on the D-FAUST dataset, as described

in [3]. The shape blendshapes are then trained with the CAESAR dataset using the

same method described in [3].

Mesh Convolutional Networks

For graph convolutional shape modelling, we train networks with 4 convolutional lay-

ers, with (48, 32, 32, 16) filters for each layer, respectively. Convolutional layers are

followed by batch normalisation and upsampling layers with factors (2, 2, 2, 4) respec-

tively. For the convolutional layers, we use ELU as the activation function. Finally,

the output layer is a convolutional layer with filter size 3 and linear activation, which

outputs the normalised vertex displacements. We train our network with an Adam

optimiser, with a learning rate of 1e-3 and weight decay of 5e-5 for the network pa-

rameters, and learning rate of 0.1 and weight decay 1e-7 for the latent vectors. The

learning rates are multiplied by a factor of 0.99 after each epoch.

5.5.2 Quantitative Evaluation

We evaluate the representation power of our proposed BLSM model on the CAESAR

dataset and compare its generalisation ability against the SMPL-type baseline on D-

FAUST dataset and our in-house testset. D-FAUST contains 10 subjects, each doing
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14 different motions. We further expand the testset with our in-house dataset. Cap-

tured with a custom-built multi-camera active stereo system (3dMD LLC, Atlanta,

GA), our in-house testset consists of 4D sequences at 30 FPS of 20 individuals span-

ning different body types and poses. Each instance contains around 50K vertices.

These scans are registered to our template as described in Sec. 5.4.1, while using also

temporal consistency constraints.

The models that we compare are aligned to the registered meshes by minimising the

L2 distance between each vertex. We use an Adam optimiser with learning rate 0.1

to optimise parameters for all models, and reduce the learning rate by a factor of 0.9

on plateau. To avoid local minima, we use a multi-stage optimization approach as in

[66]. We first fit the vertices on the torso (defined by the blending weights of the torso

bones on our template) by optimising over the shape coefficients and the joint angles

of the torso bones. Then for second and third stage, upper-limbs and lower-limbs are

added respectively. In the last stage, all the vertices are used to fine-tune the fitted

parameters. In the following, unless specified, we report the mean absolute vertex

errors (MABS) of gender neutral models.

CAESAR

In Fig. 5.6 we plot the fitting errors on the CAESAR dataset as a function of the

number of shape coefficients, namely shape blendshapes for SMPL-reimpl, bone blend-

shapes and shape blendshapes for BLSM-linear and latent space dimension for BLSM-

spiral.
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Figure 5.6: Mean absolute vertex error on the CAESAR dataset (left) and our in-house
testset (right) against number of shape coefficients.
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We observe that our BLSM-linear model attains lower reconstruction error compared

to the SMPL-reimpl baseline. The sharpest decrease happens for the first three co-

efficients, corresponding to bone-level variability modelling. Starting from the fourth

coefficient the error decreases more slowly for the linear model, but the BLSM-spiral

variant further reduces errors. These results suggest that our BLSM method captures

more of the shape variation with fewer coefficients compared to the SMPL-reimpl

baseline.

Reconstruction Performance Analysis on CAESAR We also evaluate the re-

construction performance of our proposed linear and graph convolutional model on

different demographic groups in the CAESAR dataset. We observe that the bias in

our proposed model reflects the biases in the dataset, specifically related to body type

variations. For example in the training set, only 0.9% of the subjects has BMI over

40, while our models have significantly higher reconstruction error on this group of

subjects. For other attributes (e.g. gender) that are less biased, our model performs

similar on all the groups while slightly better on the more common group (53.7%

female vs 46.3% male).

Group

Model BLSM-linear-125 BLSM-spiral-128

error (mm) error (mm)

BMI ≤ 40 1.224± 0.337 1.071± 0.426

BMI > 40 2.385± 0.429 1.369± 0.240

Height ≤ 200 cm 1.221± 0.338 1.064± 0.419

Height > 200 cm 2.160± 0.384 1.642± 0.399

Weight ≤ 120 kg 1.217± 0.329 1.065± 0.422

Weight > 120 kg 2.355± 0.377 1.534± 0.341

Female 1.283± 0.346 0.982± 0.385

Male 1.399± 0.332 1.204± 0.445

Table 5.1: Reconstruction error on groups of subjects with different BMI value, height,
weight and gender

D-FAUST

For D-FAUST, we select one male and one female subject (50009 and 50021) for eval-

uation, and the rest for training blending weights for both models and joint regressors

for SMPL-reimpl. We evaluate first shape generalisation error by fitting the models

to all sequences of the test subjects (Fig. 5.7 left). We observe that our BLSM-linear
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model obtain lower generalisation error compared to SMPL-reimpl baseline, and the

result is improved further with BLSM-spiral.

We also evaluate the pose generalisation error of our models (Fig. 5.7 right). The errors

are obtained by first fitting the models to one random frame of each subject, then fit

the pose parameter to rest of the frames while keeping the shape coefficients fixed.

This metric suggests how well a fitted shape generalise to new poses. We observe

that both of our linear and spiral models generalises better than our SMPL-reimpl

baseline. We argue that by introducing bone scales to the model, the fitted poses are

well regularized, thus during training it is more straight forward to decouple the shape

and pose variations in the dataset, while avoiding the need to learn subject specific

shapes and joints as in SMPL.

In-house Testset

In Fig. 5.6, we also report the average MABS across all sequences in our in-house

testset as a function of the number of shape coefficients used. We observe that our

proposed models are able to generalise better than the SMPL-reimpl model on our

testset. Our proposed models are compact and able to represent variations in our

testset with a smaller number of shape coefficients than SMPL-reimpl.

In Fig. 5.8, we show the mean per-vertex error heatmaps on all sequences and on some

example registrations in our testset. Compared to SMPL-reimpl, our proposed models

are able to fit closely across the full body, while the SMPL-reimpl model produces

larger error on some of the vertices. The result suggests that our proposed model
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Figure 5.7: Shape generalisation error (left) and pose generalisation error (right) on
D-FAUST dataset against number of shape coefficients.
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generalise better on surface details than the SMPL-reimpl baseline model.

Figure 5.8: Mean absolute vertex error and example of reconstructions on the testset.
Left to right: SMPL-reimpl, BLSM-Linear, BLSM-Spiral. For linear models we show
result with 125 coefficients allowed. For BLSM-spiral the latent size is 128.

Comparison to original SMPL implementation Here we compare to the pub-

licly available version of SMPL up to 10 shape bases. In order to evaluate the model

on our registrations, we transferred the SMPL learnt parameters, namely the tem-

plate, shape blendshapes, joint regressors and blending weights to our template topol-

ogy with barycentric correspondences between our template and the SMPL template,

while keeping the original SMPL kinematic structures. Poseblend shapes are excluded

in this comparison. Table 5.2 shows the errors when 10 and 32 coefficients are used, as

well as the area under curve for the cumulative per-vertex error distribution. We ob-

serve that SMPL has slightly higher errors than our SMPL-reimpl, we believe that this

is due to the topological difference and registration method difference presented in the

SMPL training set and our training set. Other than this difference, our SMPL-reimpl

performs in par with the publicly available SMPL.

Method
No. Bases 10 32

error (mm) AUC error (mm) AUC
SMPL 5.45± 3.51 0.695 - -

SMPL-reimpl 4.98± 3.64 0.686 4.09± 3.24 0.769
BLSM-linear 3.63± 2.33 0.794 3.46± 2.86 0.803
BLSM-spiral - - 2.74± 2.03 0.819

Table 5.2: Generalisation error and AUC for cumulative error distribution on our
in-house testset.
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Figure 5.9: Mean absolute vertex error of gender specific models on the CAESAR
dataset (left) and DFAUST dataset (right) against number of shape coefficients.

Gender-specific Models

Here we show results of the gender specific models. We plot the mean absolute vertex

reconstruction errors on CAESAR and generalisation error on DFAUST. The results

shows gender specific models obtain lower error compare to the gender neutral models.

5.5.3 Qualitative Evaluation

In Fig. 5.13 we show samples from our linear model by varying the bone bases, as well

as identity-specific shape coefficients from -3σ to +3σ. We observe that our model

captures a variety of body shapes and the method successfully decouples bone length-

dependent variations and identities specific shape variations.

Figure 5.11: Image-driven character animation: we rig two characters from [9] using
our model’s bone structure. This allows us to transform any person into these characters,
while preserving the pose and body type of the person in the image.

This decoupling allows us to perform simple and accurate character animation driven

by persons in unconstrained environments as shown in Fig. 5.11 and Fig. 5.12. In an
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offline stage, we rig several characters from [9] to our model’s skeleton. In Fig. 5.11,

given an image of a person, we first fit our model to it using a method similar to

[10]. For Fig. 5.12 we use the ground truth annotations of [118]. We then apply

the estimated bone transformations (scales and rotations) to the rigged characters.

This allows accurate image-driven character animation within any standard graphics

package like Unity. Alternative methods require either solving a deformation transfer

problem [2][119], fixed shape assumptions, or approximations to a constant skeleton,

while our approach can exactly recover the estimated skeleton position as it is part of

the mesh construction.

Please note that many recent works that predict model parameters for image align-

ment are applicable to our model [10][96][67]; in this work we focus on showing the

merit of our model once the alignment is obtained.

We also assess the representational power of our mesh convolutional networks by ex-

amining the samples from each dimension of the latent space (Fig. 5.13). We observe

that while capturing large deformations such as gender and body type, the network

also captures details such as different body fat distributions.

5.6 Conclusion and Future Work

In this chapter we propose BLSM, a bone-level skinned model of the 3D human body

mesh where bone modelling and identity-specific variations are decoupled. We intro-

duce a data-driven approach for learning skeleton, skeleton-conditioned shape vari-

ations and identity-specific variations. Our formulation facilitates the use of mesh

convolutional networks to capture identity specific variations, while explicitly model-

ing the range of articulated motion through built-in constraints.

We provide quantitative results showing that our model outperforms existing SMPL-

like baseline on the 3D reconstruction problem. Qualitatively, we also show that by

virtue of being bone-level our formulation allows us to perform accurate character

retargeting in-the-wild.
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Figure 5.10: Samples from reconstructions of D-Faust and our testset. Top to bottom:
ground truth, SMPL-reimpl (125), BLSM-lienar (125), BLSM-spiral (128)
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Figure 5.12: Pixel-accurate, image-driven character animation in-the-wild.
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Figure 5.13: Linear (top two rows) vs. graph convolutional (bottom two rows) mod-
eling of shape variation.
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Chapter 6

MeDigital: A Large Scale 4D

Dataset Of Human Body

Figure 6.1: Sample scans from our large scale 4D scan dataset. The dataset contains
over 1.3 million 3D scans of human body with high resolution textures, capturing with
over 4200 identities and 7500 dynamic sequences, the dataset surpasses most existing
scan datasets in terms of subject and pose varieties, as well as texture quality.

3D human body modelling facilitates a wide range of applications in computer vision

and human computer interaction. Current data-driven human body models are re-

stricted to model human body shapes under clothes due to the lack of high quality 3D

scan data of clothed human bodies. In this chapter we present the largest to date 4D

dataset of clothed human bodies. Our dataset contains over 1.3 million 3D scans of
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human body with high resolution textures, surpassing existing scan datasets both in

terms of subject and pose varieties, as well as texture quality.

We propose a registration pipeline for registering the large number of high resolution

3D scans. Our registration approach guarantees accurate and realistic registrations

even in the case of noisy scans. We evaluate the registration pipeline qualitatively

and quantitatively in two folds of our dataset, and perform detailed analysis on the

performance in extremely challenging cases. We then demonstrate two use cases of our

dataset, namely building parametric models of clothes human body, and monocular

3D reconstruction with synthetic training.

6.1 Introduction

Modelling 3D human body has numerous applications in the context of monocular 3D

reconstruction, human body synthesis, motion capture and AR/VR applications such

as virtual try-on and character animation. Currently the most widely used human

body models capture the variety of human body geometries by learning from 3D scan

data [3][30][111]. Building a compact data-driven 3D model requires large number of

scan data of varied body type and pose. Among existing large scale datasets, CAE-

SAR [12] and D-FAUST [11] are most commonly used for learning body shape and

pose deformations respectively. However in both datasets the subjects are captured in

minimum clothing with additional markers or stamps attached to the body, resulting

in models of near naked 3D body meshes. While applied to tasks such as monocular

3D reconstruction of in the wild images, the result lacks realism without details such

as clothing and hair even after further processing from image cues.

Motivated by the aforementioned problem, we present a large scale 4D dataset of

clothed human bodies. The dataset contains 7566 4D sequences of 4205 subjects cap-

tured in their daily clothes, resulting in over 1.3 million high resolution textured 3D

scans. To the best of our knowledge, this is the largest dataset of 3D human bodies to

date, while existing datasets either contains small number of static or dynamic pose

variations, small number of subjects, no texture information or low resolution syn-

thetic meshes (Table 6.2).

We design a fast and robust multi-stage scan registration pipeline. We first detect

3D joints of each scan by taking advantage of an accurate 2D keypoint localisation

network and perform linear triangulation of the keypoints from rendered 2D image
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from multiple views. We then fit a parametric models to a sparse set of points sam-

pled from the scan surface to roughly estimate the subject’s body shape and pose.

The estimation is optionally refined with a multiview DensePose [95] projection based

optimisation pipeline for better body shape fitting. The parametric model estimation

is then used as an initialisation to register the set of dense surface points to provide

accurate surface alignment.

We carefully regularise the registration process to deal with missing and noisy data

in the captured scans. Holes and missing parts in the raw scans are completed in

our registration process, resulting in accurate yet realistic meshes. Since the regis-

tration process is based on the use of a parametric model, the resulting meshes are

parameterised by the model parameters, which also provides markerless motion cap-

ture and automatic scan rigging results apart from the dense surface correspondences.

Moreover, all the steps of this pipeline are formulated and implemented as batch op-

timisation problems for each 4D sequence in pytorch, apart from being able to exploit

the temporal information in the scan sequences, this implementation also guarantees

fast computation while the fitting and alignment process for each 4D sequence can be

done with a standard solver in 5 minutes on a single GPU.

We evaluate our proposed registration pipeline quantitatively and qualitatively on two

subsets of our dataset, and show that our approach provides high quality results even

when the data is extremely noisy. We provide detailed analysis for the registration per-

formance on some extreme cases and demonstrate the merit of our proposed method.

We then perform two more experiments to demonstrate the merit of our dataset. We

first build a parametric model from our registered meshes, and show qualitatively that

the model captures a wide variety of human body shapes, demonstrating the diversity

of our dataset. We also show that our dataset facilitates attribute driven 3D human

synthesis. We then propose a 3 stream synthetic image and annotation generation

pipeline for monocular motion capture and 3D reconstruction. We train a human

mesh recovery system with our parametric model and the synthetic images, and show

that training with our synthetic image dataset improves the reconstruction results

both qualitatively and quantitatively on in the wild images.
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6.2 Dataset Overview

6.2.1 Data Acquisition

The dataset was captured with a custom-built multi-camera active stereo system

(3dMD LLC, Atlanta, GA). The system has 14 camera units, each consists of a pair of

stereo cameras, a RGB camera and a speckle projector (Fig. 6.2). Speckle patterns are

projected to the subject for geometry acquisition with the stereo cameras. Textures

are captured with the RGB camera with a lighting system of 12 LED panels which

provides uniform lighting. Sequences are captured at 30 frames per-second (FPS),

while the system iterates between speckle pattern projection and texture acquisition

with a delay of milliseconds. Each reconstructed frame contains a 3D mesh of 50K -

200K vertices depending on the reconstruction quality, together with a high quality

texture map of resolution between 6000 to 8000 pixels. Fig. 6.3 shows an example

frame of a subject.

Figure 6.2: The data capturing system consists of 14 Modular Camera Units of 42
cameras synchronised with a lighting system of 12 LED panels.

The dataset contains 4205 individuals spanning different ages, body types and ethnic

groups. The subjects were captured in their daily clothes. Each subject was asked to

provide metadata about themselves, including age, height, weight, and ethnic group.

During recording, the subjects were asked to perform a sequence of free motion of their

choice for approximately 10 seconds, and a motion from our designed protocols. The

protocols cover a wide range of motions for all the human body joints that a person

could perform on a daily basis. Table 6.1 lists all the protocols that we have used.
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Figure 6.3: An example scan frame from our dataset. At the top row we show the
geometry of the scan, the textured scan and the UV parameterization. At the bottom
row, we show the collage of raw captured images of this frame, and wireframe of the
scan.

7566 sequences were recorded in total with 4205 sequences containing free motions and

3361 sequences containing our protocol motions.
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Protocol ID Description No. Sequences
01 Neck exercise 96
02 Spine exercise 157
03 Knee exercise 178
04 Squat with arms up 169
05 Macarena dance 238
06 Elbow exercise 201
07 Playing drums 9
08 Scratch back 240
09 Touch ankles 235
10 Pick up object from floor 204
11 Check under feet 196
12 Cross legs (standing) 227
13 Pick up object from shelf, place on the floor 176
14 Cover eyes, mouth, ears 277
15 Sit down and cross legs 265
16 Crunch 393
21 Two person greet 99
22 Two person hug 42
23 Two person interaction 15

Table 6.1: List of motion protocols and number of sequences captured for each protocol.
The protocols were designed to capture most of the feasible human joint motions.

Subjects Poses / Motions Frames / duration Dynamic Texture
Raw scan
available No. vertices

Real
people

Daily
clothes

Demographic
Info Note

Ours 4205 7566 1316719 (12h+) ✓ ✓ ✓ 50K - 200K ✓ ✓ ✓
4205 free motion and
20+ designed pose

CAESAR [12] 4400 3 13200 ✗ ✓ ✓ 150K ✓ ✗ ✓

Human3.6M [103] 11 17 5h ✓ ✗ ✗ - ✓ ✗ ✗
mocap motions,
static scan per actor

HUMBI [120] 772 - 230k ✓ ✓ ✗ 4129 ✓ ✓ ✓
GHUM [49] 48 55 - ✓ ✗ - 10,168 ✓ ✗ ✗

3DPW [118] 7 60 51000 ✓ ✗ ✗ 6890 ✓ ✓ ✗
SMPL shape w.
mocap motions

AMASS [121] 344 11265 40h ✓ ✗ ✗ 6890 ✗ ✗ ✗
SMPL shape w.
mocap motions

3DBodyTex [13] 200 35 400 ✗ ✓ ✓ 300K ✓ ✗ ✗
SCAPE [30] 1 70 70 ✗ ✗ ✗ 12500 ✓ ✗ ✗
SPRING [122] 3000 1 3000 ✗ ✗ ✗ 12500 ✓ ✗ ✗ Registered CAESAR mesh
MPI [31] 114 35 520 ✗ ✗ ✓ 180K - 450K ✓ ✗ ✗
MPII [33] 4300 1 4300 ✗ ✗ ✗ 6449 ✓ ✗ ✗ Registered CAESAR mesh
FAUST [56] 10 30 300 ✗ ✗ ✓ 180K ✓ ✗ ✗
D-FAUST [11] 10 14 40000 ✓ ✗ ✗ 6890 ✓ ✗ ✗
K3D-hub [123] 50 5 250 ✗ ✗ ✓ 150K ✓ ✗ ✗
TOSCA [124] 3 20 39 ✗ ✗ ✗ 90K (tris) ✗ ✗ ✗

Table 6.2: Overview of existing 3D/4D human body datasets

6.2.2 Comparison to Existing Datasets

In Table 6.2 we provide an overview of existing 3D and 4D human body datasets com-

pared to ours. We observe that most of the datasets do not capture a large number

of subjects and motions. While for CAESAR [12], over 4000 subjects were captured,

however the dataset is not dynamic and contains only 3 different poses. Moreover, the

CAESAR subjects were captured with minimum clothing, as such, the geometry and

texture information do not represent human bodies in the form they appear in the

commonly seen daily scenarios.

We further demonstrate the merit of our dataset by comparing the subjects age, gen-
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Figure 6.4: Subjects age, gender, height, weight, and ethinic group distribution of our
dataset and CAESAR.
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der, height, weight, and ethinic group distributions to the CAESAR subjects (Fig. 6.4).

We include subjects that are under 18 years old, which are not present in CAESAR.

In addition, our dataset covers a wider range of ethnicity, and the distribution is less

biased compare to CAESAR.

6.3 Registration

𝐶 views

Stage 1: 𝐜𝑏 , 𝛉
𝒕

𝑇
frames

…

triangulate

HR-net

KP loss

Stage 3: 𝐕𝑫
𝒕

weighted
Chamfer loss

+
regularisation

losses

Stage 2: 𝐜𝑏 , 𝐜𝑠, 𝛉
𝒕

𝑇
frames

…

DensePose

reprojection loss

MNN loss
+

Figure 6.5: Our proposed registration pipeline.

We use a three stage method to register our BLSM model to each sequence in the

dataset. At the first stage, we detect 3D keypoints for each frame, and fit the BLSM

bone parameters to these keypoints. At the second stage, we include the BLSM shape

parameters to fit to pointclouds that are sparsely sampled from the scan surface.

The shape is then further refined with multiview image based dense correspondences.

And finally, we deform the fitted BLSM model vertices freely to capture the clothes

deformations. In the following sections we denote the BLSM model output as:

BLSM(cb, cs;VD;θ) (6.1)

which is equivalent to:

LBS(V̄ + cbPbc + csPs +VD, T (cb,θ)) (6.2)
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For simplicity, BLSM parameters that are not optimised in the corresponding registra-

tion stages are omitted from Eq. 6.1. We also assume the subject’s shape (described

by cb and cs) do not change between frames, only pose θ and vertex displacement VD

describing the clothes deformations would vary over time.

6.3.1 Stage 1: 3D Keypoints Based Alignment

Detecting 3D keypoints directly from the scan could be computationally expensive

given the high resolution nature of the scans and the large amount of data that need

to be processed. Moreover, the detected keypoints may not be robust to the noisy

scan surfaces — objects other than human body could be present in the scan, such as

chairs, markers on the floor, and stairs for young subjects to step on so that their faces

are visible in all pairs of cameras — and subsequently affect performance of the whole

registration pipeline. Therefore we take advantage of the robustness and compactness

of 2D image CNNs.

We render each scan from multiple views where the cameras are sampled uniformly

from a sphere. Then we run a 2D human body keypoint detector [125] for each

rendered image. With the known camera parameters for each rendered view, we can

then perform linear triangulation to find the 3D coordinates for the keypoints. Suppose

we have C cameras, where the projection matrix for camera i is Pi, the mesh at frame

t is rendered from this camera as Iti, and 2D keypoints detected from Iti are denoted

as L̂t
i. The 3D coordinates of keypoints at frame t Lt can be computed by solving the

following linear equation system:

L̂t
i = PiLt, ∀i ∈ {1, ..., C} (6.3)

After each estimate, for each keypoint we remove 25% of the views with the largest

reprojection error, and re-estimate Lt. This is repeated for 3 iterations before we ob-

tain the final estimate of Lt. The confidence score cf ti of the survived keypoints are

then averaged to obtain confidence cf t for frame t.

Once keypoints for all frames are computed, the BLSM bone parameters cb for the

subject in this sequence and θt at each frame can be estimated as:

θt, cb = argminθ,c∗b

T∑
t=1

(cf t∥AkpBLSM(c∗b ;θ)− Lt∥2 + S(θ)) (6.4)
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where Akp is a linear matrix that regresses keypoints from a BLSM mesh, and S is

the temporal smoothing function that encourages smooth and slow changes of pose

between frames.

6.3.2 Stage 2: Shape Initialisation with Sparse Correspon-

dences

The keypoints based stage provides a good initialisation for bone dependent shape

fittings. We then optimise over non-bone dependent shape parameters. For each

frame we sparsely sample 10K points Ss
t evenly from the scan vertices, then the BLSM

shape parameter cs of this subject is estimated by minimising the following loss:

T∑
t=1

(λkpcf
t∥AkpBLSM(cb, cs;θ

t)− Lt∥2 +
∑

(vr,vs)∈MNN

∥vr − vs∥2 + S(θt)) (6.5)

with λkp is the keypoint term weight and

MNN = M(BLSM(cb, cs;θ
t),Ss

t) (6.6)

where function M is the mutual nearest neighbour operation defined in Eq. 5.16.

In practice we initialise cb and θt with results from the previous stage, and jointly

optimise them with cs. We use λkp = 0.1 to regularise the shape fitting with the

keypoints while emphasising more on the surface loss.

6.3.3 Shape Refinement Based on Multiview Dense Corre-

spondences

The previous two stages guarantee fast and robust fittings that can act as a prior for

the following registration steps. However the fitting may not be accurate enough due to

noise in the scans. In particular, some body parts, such as bottom of the feet, that are

not visible in most of the camera views are sparsely represented in the reconstructed

3D scans due to lack of correspondence evidence in the raw captured images. As such,

these vertices contribute less to the loss in Eq. 6.5, and the optimisation process will

be purely driven by the estimated keypoints which is also prune to errors. Moreover,

in some cases, with the mutual nearest neighbour approach, wrong correspondences

could be established due to bad initialisation from stage 1 (Fig. 6.6).

We observe that even though the vertices might be missing for certain body parts, the
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Figure 6.6: (a) Example of a scan instance where vertices at bottom of the feet are
missing. (b) BLSM fitting result at stage 2. Wrong correspondences are established due
to bad initialisation from stage 1. (c) DensePose result from multiple views. (d) BLSM
fitting result with DensePose reprojection loss.

textures are still present in the sparsely connected faces, and could be used as evidence

to refine our shape estimations. Therefore we propose to obtain dense correspondences

from the previously rendered multiview images. For this purpose, we run DensePose

[95] to estimate 2D coordinates of the BLSM vertices DP (Iti) in each rendered image

Iti, then add the following reprojection loss to Eq. 6.5:

T∑
t=1

C∑
i=1

∥PiBLSM(cb, cs;θ
t)−DP (Iti)∥2 (6.7)

6.3.4 Stage 3: Refining Surface Details

Finally, we optimise over vertex displacements Vt
D to capture details such as clothes

deformations and shape variability from subject groups that are not present in the

BLSM model built from the CAESAR dataset. The loss function used here is similar

to what we have used for registering the CAESAR scans in Sec. 5.4.1:

E =
T∑
t=1

(Edata + Esmoothness + Ereg + Erigid) (6.8)

We use the same smoothness, regularisation and rigidity term for each frame as in

Sec. 5.4.1, while using instead the result from stage 3 for initialisation and replacing
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Figure 6.7: Registration result of one example frame. (a) Triangles with area larger
than a certain threshold is omitted to deal with missing parts and noise in the scans.
(b) Registration result with pointcloud evenly sampled from the scan surface. (c) Reg-
istration result with pointcloud sampled from triangles smaller than 5× 10−4 m3

the data term with the following loss:

Edata = λscan

∑
vr∈Sds

BLSMt

∑
vs∈NN(vr,Sds

t )

∥vr−vs∥2+λmodel

∑
vs∈Sds

t

∑
vr∈NN(vs,Sds

BLSMt
)

∥vr−vs∥2

(6.9)

where SBLSMt = BLSM(cb, cs;θ
t;Vt

D) and the superscription ds represents densely

sampled surface points. Here we use weighted chamfer loss instead of the mutual

nearest neighbour loss so as to capture the surface details resulted from clothes defor-

mations. At each frame, both the BLSM model surface and scan surface are densely

sampled, resulting in 20K and 50K points respectively. In order to be robust to miss-

ing parts, for the scan surface, we only sample from triangles whose area is smaller

than a certain threshold (Fig. 6.7).

6.4 Evaluation

6.4.1 Registration Quality

In this section we evaluate the quality of the registration results provided by our

proposed pipeline. Since there is no ground truth registration available for our dataset,

we evaluate in terms of model to scan distance. More specifically, for each vertex in

our registered mesh, we compute its distance to the closest vertex in the raw scan. For

this experiment, we split the dataset into 2 groups. One group is the multi-subject

set that contains the first frame from the free motion sequence of all subjects. This
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is to evaluate how well our registration pipeline captures the variety in the subjects’

body types. Another group is the multi-pose set, for which we evaluate a subset of

all the recorded sequences downsampled to 10 fps. In the rest of this experiment, we

report mean per-vertex euclidean errors.

Protocols 01 02 03 04 05 06 07 08 09 10 Multi-subject
Mean vert. err. (mm) 8.46 15.81 9.41 8.91 10.50 12.91 9.95 12.19 13.13 10.74 9.65
Protocols Free 11 12 13 14 15 16 21* 22* 23* Multi-pose
Mean vert. err (mm). 13.62 9.15 16.24 13.78 10.30 21.13 18.03 42.02 31.69 45.14 14.17

Table 6.3: Mean vertex to scan registration error in (mm) on the multi-subject and
multi-pose subset of the dataset. Protocols (01-23) are as listed in Table 6.1. Here (*)
indicates that sequences of this protocol contains two persons.

Figure 6.8: Left: Error heatmaps on the multi-subject (top row) and multi-pose (bot-
tom row) subset visualised on the mean BLSM template. Colors are shown in millime-
tres. Right: cumulative per-vertex error plot. Blue line: multi-subject subset, red line:
multi-pose subset.

In Table 6.3 we report the mean vertex to scan registration error on the multi-subject

set and multi-pose set, as well as detailed result for each motion protocols. The per-

vertex errors are visualised as error heatmaps in Fig. 6.8, as well as the cumulative

error for the multi-subject set (blue line) and multi-pose set (red line). For the multi-

subject set, the mean model vertex to scan vertex error is 9.65 mm. For this set,

largest errors occur on the fingers and feet, as well as between the legs. These regions

typically have sparse points in the raw scan, and since we compute the errors from
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Figure 6.9: Visualisation of some example frames from the multi-pose subset where
the registration error is large. Samples are from protocol 15, 16, 12, 02 respectively.
For each frame we show: raw scan with texture (with face of the subject occluded),
registration result, error heatmap visualised on the registration overlaid with the raw
scan from front and back view.

model vertex to scan points instead of the scan surface, it is expected that the errors

will be large for these parts. Same reason applies for the large error on the under arm

regions in the multi-pose set.

For the multi-pose set, we obtain the error of 14.17 mm. Largest errors occur for

protocols 21, 22 and 23, which contains scene of more than one person. Since the

keypoint detector we used in stage 1 are trained for single person, wrong keypoints

are detected for the multiperson cases, resulting in bad initialisation for sequences of

these protocol. Moreover, the data capturing system are designed for capturing one

person, while multiple persons are present in the scene, mutual occlusions between

the subjects results in large missing parts and noise in the raw scan, which also cause

large registration errors.

For protocols with one person, the largest errors are from sequences of Protocol 15

(21.13 mm), 16 (18.03 mm), 12 (16.24 mm) and 02 (15.81 mm). These protocols

correspond to the motion of sit down and cross legs, crunch, cross legs (standing), and

spine exercise. In Fig. 6.9 we visualise example frames from these protocols where the

registration error is large. Large motions from these protocols cause self occlusions
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of the subjects, result in poor reconstruction quality in the raw scan of the occluded

parts. In extreme cases, e.g. the first example shown in Fig. 6.9, half of the limb is

missing and our keypoint detector from registration stage 1 provides false detections,

consequently harms the registration results in the upcoming stages. Self occlusion

of the subjects also causes sparse reconstruction in some parts (back of neck in first

example, torso of second example, head and legs of fourth example in Fig. 6.9), however

our pipeline provides plausible and more realistic registrations despite the large model

to scan points error that we evaluate and visualise.

6.4.2 Attribute-driven 3D Mesh Synthesis

When modelling meshes of clothed human bodies, decoupling shape and bone mod-

elling is particularly useful. Prior work either model the garments as a standalone

mesh [23], or as vertex offsets on top of the shape model [24][22]. This requires es-

timating the body shape under the clothes, which is a difficult problem itself. The

BLSM formulation we proposed in the previous chapter is more suitable for modelling

clothed human bodies, since the bones are modelled separately and are not influenced

by the clothes deformations.

We build BLSM on the resulting registrations following the pipeline described previ-

ously. For each subject, we take the first frame from one of the recorded sequences,

which is the T-pose frame of the subject as instructed during the recording. In figure

Fig. 6.10 we visualise the bone and shape bases varying from −3σ to +3σ.

We could attempt to interpret the semantic meaning of each BLSM bases from this

visualisation. For example, when sampling along the first bone bases from +3σ to

−3σ, the height of the person increases, and we can see that the corresponding bone

corrective blendshape varies from children to adult, then female to male. However

there is no true semantic meanings associated to any of the BLSM parameters. In this

experiment, we attempt to close the gap between semantically meaningful parameters,

which in our case, are the demographical information we collected from the subjects

(age, height, weight and gender), and the BLSM parameters.

More specifically, our goal is to build a mapping to obtain BLSM parameters that

could result in a shape which could be interpreted by the input attribute values. In

the experiment, we evaluate several different approaches and show qualitative results.

Note that there are prior works [31][122] that attempts to edit meshes based on detailed
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mean
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mean
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Figure 6.10: First 3 bone bases and first 5 shape bases from −3σ to +3σ

semantic parameters (e.g. limb lengths, circumference of each body parts), here we

focus instead on the more generic and interpretable semantic parameters, and leave

the detailed semantic mesh editing for future work.

Regressing BLSM parameters from attribute values

The most straightforward method to obtain a mapping from attribute values to BLSM

parameters is regression as proposed in [41]. We first obtain the BLSM shape param-

eter vector we intend to regress [cnb , c
n
s ] and the pose parameter θn for all of the

registered meshes Sn by minimising the following loss:

∥BLSM(cnb , c
n
s ;θ

n)− Sn∥2 (6.10)
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Then the mapping is obtained by training a 3-layer fully connected network Nr with

512 unit for each layer. Denote the normalised attribute values as xn ∈ R4, the network

is trained by minimising the following loss:

N∑
n=1

∥Nr(x
n)− [cnb , c

n
s ]∥2 + λdecay∥Nr∥2 (6.11)

where λdecay is the weight for the L2-norm term.

In Fig. 6.14 we visualise meshes generated from the attribute values as indicated for

each example in the figure. We use [5, 15, 30, 50, 80] for age, [80, 130, 160, 180, 200]

(cm) for height, [20, 50, 80, 100, 120] (kg) for weight and [female, male] for gender.

We observe that the network do not generalise well to values that are not presented

in the dataset (for example, 5 years old kid that is 165 cm tall), and the network has

overfit to the correlations in the input attribute values.

Mapping PCA subspaces

Inspired by [31], we have attempted another approach which is to map the PCA

subspace of the attribute values and the BLSM shape parameters. More specifically,

we perform PCA analysis on the input attribute values, and regress the projected

PCA coefficents to obtain the BLSM shape parameters. We use the same network

architecture as before, and the results are shown in Fig. 6.15. Compared to the direct

regression approach, we observe that the results are improved. However invalid body

shapes can still occur when the input value is extreme.

Generating BLSM parameters with a conditional GAN

Having observed the artefacts that could occur when using the previously described

methods, we now turn to a method that can generate valid shapes while being able

to model the mapping between the attribute values and the BLSM shape parameters.

For this purpose we propose to use a conditional GAN with reconstruction losses.

Given a vector of attribute values x and the target BLSM parameters c = [cb, cs], a

discriminator network D and a generator network G are trained by minimising the

following loss:

ED =
N∑

n=1

((D(cn,xn)− 1) +D(G(z,xn),xn)) (6.12)
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EG =
N∑

n=1

((D(G(z,xn),xn)− 1) + ∥G(z,xn)− cn∥2) (6.13)

where z ∼ pz(z) is random noise sampled from the noise distribution.

In Fig. 6.16 we show random samples from our trained generator conditioned on the

attribute values as indicated in the figure. We observe that all the generated shapes

are valid shapes for human bodies. In addition, the shapes exhibits some properties

of the input attribute values. In the case where the combination of input values are

extreme (e.g. the first instance in the first row), the network is able to generate a valid

interpolate between the shapes that exhibits both of the properties.

6.4.3 Single Image Mesh Recovery with Synthetic Training

In this experiment we demonstrate an application of our dataset for the task of human

mesh recovery from single image. One challenge in learning based single image mesh

recovery is the lack of ground truth 3D annotation, which can be tackled by using

synthetic images. Prior works such as [126] uses MoCap data to generate meshes with

a parametric model. In this case, the synthesised images have limited realism since the

parametric model only captures surface variations of minimum clothed human bod-

ies. Moreover, meshes synthesised with parametric models have low resolution, which

cannot be used for training systems that outputs 3D reconstructions with fine details.

Synthetic Image Generation Our dataset can be used to improve the quality of

synthetic images. In Fig. 6.11 we show 3 different synthetic image generation pipelines

that can be applied given our dataset. One possibility is to directly render the raw

3D scans into background images (Fig. 6.11 black). The raw 3D scans provide high

resolution 3D ground truth meshes, which can be useful for systems such as [29] that

requires ground truth surface with fine details, and does not require the vertices to be

in one-to-one correspondence.

Similarly, the raw 3D scan set can be expanded by modifying the pose of each scans,

resulting in exponential growth of the dataset size (Fig. 6.11 blue). Our registration

pipeline can act as an automatic rigging system, where the blending weights of each

vertex in the raw scan is painted by finding its closest vertex in the BLSM registra-

tion. We then solve for the high-resolution subject specific T-pose template by fixing

the pose parameter and optimising over the template’s vertex locations. The high-
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Figure 6.11: Variations of synthetic image generation pipelines using our scan dataset.

poly subject specific BLSM model can then be posed with MoCap data from other

sequences in our dataset or from other datasets.

The major artefact in the high-poly synthetic images is the missing parts in the raw

scans. In order to obtain noise free synthetic images, the registered BLSM mesh can

be used (Fig. 6.11 red). Since our registration pipeline was implemented in the BLSM

model space, the pose of the registered mesh can be changed simply by modifying the

BLSM pose parameter. Texture and normal maps from the raw scans are transferred

to the BLSM UV space using correspondences obtained from the registered mesh to

improve rendering quality in the synthetic image. While providing noise free synthetic

images, this approach also provides one to one correspondence of the image pixels to

the BLSM template mesh, facilitating parametric model based mesh recovery methods.

Resolution of the 3D annotations can be improved by subdividing the BLSM model

surface.

Experimental Setup For this experiment we generate synthetic images using the

raw scans only. Fig. 6.12 shows samples from the synthetic image dataset we used for

training the human mesh recovery system. We reuse the rendered raw scans obtained

in Section 6.3.1 and place the rendered subjects onto background images from the
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Place365 dataset [127]. Each sequence is downsampled to 5 fps to reduce redundancy.

We also exclude subjects whose raw scan reconstruction quality is poor (e.g. whole

limb missing).

Figure 6.12: Samples from our synthetic image dataset.

The mesh recovery architecture we used in this experiment is HMR [10]. Since the

synthetic images are annotated in the BLSM model space, we replaced the SMPL

mesh generation head of HMR with BLSM. Each pose atom of BLSM is by design

in a kinematically plausible range, therefore the pose embedding and individual joint

rotation discriminator network are not needed in our experiment. More specifically,

our pose discriminator only consists of one network with 2 layers of fully connected
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UP-3D
LSP

Fg vs Bg Parts
Training Data Joint Reconst. Err. (mm) Acc (%) F1 Acc (%) F1
Real only 72.44 85.65 0.79 82.86 0.49
Real + Synthetic 68.67 86.17 0.79 83.95 0.52

Table 6.4: Joint reconstruction results on UP-3D dataset and segmentation results on
LSP dataset. Segmentation results are evaluated for both foreground vs background
segmentation as well as part segmentations (6 parts + background). Network trained
on synthetic + real image outperforms the network trained only with real images on all
tasks.

layers of 1024 neurons. The network takes the 47D BLSM pose parameter as input,

and outputs 1 binary value.

Results We train the network on the synthetic images with 3D joints, 2D joints, pose

and shape parameter supervision. The network is then fine-tuned on UP-3D dataset

to incorporate real in the wild images. In the following experiments, we compare the

performance of this network (real + synthetic) to the same network trained only on

the UP-3D dataset (real only).

We evaluate each network on the UP-3D testset and LSP dataset [86]. For UP-3D

testset, we compare the 3D joint reconstruction error in millimetres. For LSP dataset,

we evaluate foreground vs background segmentation results as well as 6 body parts

segmentations. The results are shown in Table 6.4. The network trained with real +

synthetic images outperforms network trained only with real images on all the tasks.

This is expected since the UP-3D training set only contains 8K images in total, which

is not sufficient for the challenging task of mesh recovery from raw RGB images. Our

synthetic dataset expanded the training set by over 130K images, thus guarantees

better performance.

In Fig. 6.13, we show example reconstructions from both networks. The network

pretrained on the synthetic images outperforms the other network in most of the

cases. For cases such as challenging pose or up side down person, the network trained

with real images typically fails, while the network pretrained on the synthetic dataset

successfully reconstructs the person. The synthetic dataset is particularly useful for

these cases as we can synthesis as many images with hard poses and rare camera setups

as needed.
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Figure 6.13: Qualitative results on LSP dataset. For each example in the figure:
left: input image, middle: result from real + synthetic images trained network, right:
result from real images trained network. Qualitatively the network trained with real +
synthetic images outperforms the network trained with only real images.

6.5 Conclusion

In this chapter we presented the largest to date 4D dataset of clothed human bodies.

The dataset contains over 1.3 million 3D scans of human body with high resolution

textures. 7566 dynamic sequences of 3D meshes were captured in 30 FPS from 4205

subjects, resulting in over 12 hours of recordings in total.

We presented a robust and fast registration pipeline for registering the large number

of high resolution 3D scans. Our registration approach exploits both 3D geometry

information and texture information through 2D multiview rendered images which fa-

cilitates the use of deep CNNs for sparse keypoints and dense landmark localisation.
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We evaluated the registration pipeline qualitatively and quantitatively and performed

detailed analysis on the performance in extremely challenging cases. We showed that

our proposed registration method guarantees accurate and realistic registrations even

in the case of noisy scans.

We then demonstrated two use cases of our dataset in the context of 3D mesh synthesis

and reconstruction. Our dataset covers a wide range of subjects in terms of age and

ethnicity, facilitates the task of attribute driven mesh synthesis. We further exploit

our parametric model based registration pipeline as a markerless motion capture and

automatic rigging method for synthetic image and annotation generation, improving

the performance of model based 3D human mesh recovery in monocular images.

116



6.5. Conclusion

Figure 6.14: Shapes synthesised by regressing from the input attribute values to BLSM
shape parameters.
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Figure 6.15: Shapes synthesised by regressing the PCA coefficents of the input at-
tribute values to the BLSM shape parameters.
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Figure 6.16: Shapes synthesised with a conditional GAN.
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Chapter 7

Conclusion

7.1 Summary

In this thesis we aim at increasing the accuracy and exploring the applications of 3D

human body modelling with deep deformable models.

Firstly a method for reparameterising 3D statistical shape models given a new tem-

plate is proposed. Given a linear statistical shape model and a template of a different

topology, we exploited the probabilistic nature of statistical shape models to compute

a model in the new topology space without information loss. Throughout the thesis,

this method provides the foundation for training downsteam methods with datasets

annotated by parametric models with different topology and for comparing between

models without the need of rebuilding the model with the original data.

We then presented a deep mesh convolutional network based parametric model for

3D human mesh recovery from monocular images. While most of the deep neural

network based approach uses a linear blend skinning based head for mesh generation,

we proposed to use a light weighted mesh convolutional decoder that directly operates

on the 3D vertex locations, instead of the common practise that relies on regressing

parametric model parameters.

We performed qualitative evaluation and demonstrated that the network outperforms

the baseline method that regresses SMPL model parameters in the task of 3D pose

estimation and 3D mesh reconstruction. We further improved the robustness of our

network by using a mesh autoencoder based discriminator for dense adversarial train-

ing. The proposed network is also more flexible compared to the classic parametric
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models in the sense that they can be trained end-to-end and fine-tuned given 3D mesh

annotations, while linear blend skinning model based method requires pre-building

a parametric model from 3D data and can only be fixed while used in deep neural

networks.

However the downside of mesh convolutional based parametric model is that synthe-

sising new meshes is not explicitly controllable. With the decoder we proposed, pose

and shape variations of the human body are modelled in a single latent code space.

Moreover, in order to train a network that is able to reconstruct fine details on extreme

human poses, a large number of training data is needed.

To address this issue while exploting the advantage of mesh convolutional networks,

we proposed a bone-level skinned model (BLSM). The key contribution of BLSM is

the formulation where bone modelling and identity-specific variations are decoupled.

Such formulation facilitates the use of mesh convolutional networks for capturing de-

tailed identity specific variations, while explicitly controlling and modelling the pose

variations through linear blend skinning with built-in motion constraints. Apart from

being more accurate in the task of reconstructing 3D scans, we also demonstrated that

the bone-level formulation which is compatible with any standard graphic packages

allows for accurate in the wild character animation and retargetting.

So far the models we built were restricted to model human bodies in minimum clothing

due to the limitations in the datasets. This leads to issues when applied to real world

applications such as mesh recovery from images, as the reconstruction cannot capture

details such as hair and clothing. To resolve this issue we presented the MeDigital

dataset which contains over 1.3 million 3D scans of human body in daily clothing with

high resolution textures. The dataset contains over 12 hours of 4D recordings at 30

FPS, consisting of 7566 dynamic sequences of 3D meshes from 4205 subjects. We

proposed a fast and accurate sequence registration pipeline where the BLSM model is

aligned to every frame of the dataset. While representing the raw scans in a low-poly

common template and completing the noisy parts in the original data, our registration

pipeline also facilitates markerless motion capture and automatic rigging of the raw

scans, leading to automatic large scale synthetic image and annotation generation.
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7.2 Future Work

The work in this thesis leads to many open questions and directions for future work,

among which the most attracting direction could be representing, modelling and re-

constructing high fidelity 3D human body meshes.

7.2.1 High Fidelity Clothed Human Modelling

Currently most of the parametric models of human body has limited resolution of 6K

to 10K vertices. One consideration is the fact that the storage space required for linear

blend skinning models grows linearly as the resolution of the template increases, con-

sequently the inference time also increases. Apart from this, having a more detailed

template has little gains in downstream applications as the models are built on scans

of minimum clothed human bodies that lack of high frequency details. Following our

work on capturing high resolution scans of clothed human bodies, the natural question

to ask is then are the existing modelling methods sufficient and suitable for modelling

clothed human bodies?

In the research community many approaches have been proposed to address the prob-

lem of clothes modelling. Unlike physics based clothes simulation that is commonly

used in graphics community, the computer vision community has attempted to learn

the clothes deformations in a data driven manner.

One line of work models the clothed human body as one mesh in a non-parametric

manner [128][29]. Such methods could lead to high resolution reconstructions, however

the result is not animatable and do not captures the relationship between the clothes

deformation and the underlying human body.

Another line of work models the clothes and underlying human body as one mesh,

however in which the clothes are represented as vertex displacements on top of a para-

metric model of human body [22][24][129]. In this case the clothes deformation can

be represented as a blendshape controlled by the model’s shape and pose parameter.

Meshes generated from such models could suffer from the linear blend skinning arte-

facts as well as overly smoothed details.

Approaches such as [130][23] obtain realistic clothes that is modelled as a separate

mesh, however such method could be difficult to apply to downstream applications
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as the clothes need to be combined with the underlying body mesh, potentially by

solving a complex optimisation problem.

In the mean time progress has been made on modelling and reconstructing high fidelity

human faces. Mesh convolutional neural networks have been applied for generating

high resolution 3D faces due to its light weight nauture [52][131]. Apart from mesh

representations, representing shapes in UV space can also lead to high resolution shape

generation by exploiting powerful image GANs [132][133].

Similar representations has been used to generate normal maps of clothes for more

realistic rendering [130], but not on the whole body. Given the articulated nature of

the human body, it could be difficult to model the shapes purely from mesh convo-

lutional networks or shape UV images, however one interesting direction could be to

combine linear blend skinning, which offers controllable articulated object modelling,

with clothes deformation modelling through mesh convolutions or UV GANs for high

resolution detail generation.

7.2.2 Robust Registration of Scans

One issue that could lead to problems while modelling clothed human bodies is the

fact that reliable registrations of clothed human body scans are difficult to obtain.

Some researchers attempted to place markers on the clothes while capturing clothes

human body scans to guide the registration process [130], however such method lead

to unrealistic textures. Segmentations could be performed on the raw scan to separate

the clothes from the body region [134], however this requires learning from ground

truth labels and potentially could not generalise well on all clothes types.

The registration pipeline we proposed in this thesis is good for capturing the shape and

pose of the scan, however the registrations might suffer from vertex sliding and lead

to noisy or overly smoothed meshes while trying to build high resolution models or

synthesising clothes deformations. One thing that we did not attempt is to explicitly

include a texture alignment term in the losses as this could significantly slow down

the registration process. However this could be used as an extra refinement step on

top of the geometry based results by exploiting the temporal information in the raw

scan data. How to deal with noisy and flickering or missing patch in the texture maps

remains a challenge for future research.
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7.2.3 Monocular Human Mesh Recovery

What follows after modelling high fidelity clothed human body is to be able to re-

construct this from monocular images. First of all, monocular human mesh recovery

performance could be boosted by exploiting the texture information in our presented

dataset either by including a texture model in the training process or using differen-

tiable renderers for detail refinment.

Another interesting problem to tackle is to generate realistic synthetic images from the

3D data and models. The synthetic data generation pipeline presented in this thesis

do not take into account appropriate lighting, camera position and background. As

a result, there exist domain gaps between the synthetic and real in the wild images,

thus the performance gains from synthetic training is not considerable. A more reliable

approach would be to synthesise images with camera approximation from real in the

wild images. As such, the images could also be synthesised to simulate the real images

that target the specific use case of the application. Alternatively, the synthetic image

generation pipeline could focus on challenging cases that the current system fails to

predict to compensate for the lack of hard training samples.
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[2] Robert W Sumner and Jovan Popović. Deformation Transfer for Triangle

Meshes. ACM Transactions on graphics (TOG), 23(3):399–405, 2004. 6, 24,

90

[3] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and

Michael J Black. SMPL: A Skinned Multi-person Linear Model. ACM transac-

tions on graphics (TOG), 34(6):248, 2015. 6, 24, 25, 26, 36, 37, 39, 40, 47, 69,

70, 71, 72, 84, 95

[4] Chao Zhang, Behrend Heeren, Martin Rumpf, and William AP Smith. Shell

PCA: Statistical Shape Modelling in Shell Space. In Proceedings of the IEEE

International Conference on Computer Vision, pages 1671–1679, 2015. 6, 26,

27, 37
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