261 research outputs found

    Even Orientations and Pfaffian graphs

    Full text link
    We give a characterization of Pfaffian graphs in terms of even orientations, extending the characterization of near bipartite non--pfaffian graphs by Fischer and Little \cite{FL}. Our graph theoretical characterization is equivalent to the one proved by Little in \cite{L73} (cf. \cite{LR}) using linear algebra arguments

    N=2 Gauge Theories: Congruence Subgroups, Coset Graphs and Modular Surfaces

    Get PDF
    We establish a correspondence between generalized quiver gauge theories in four dimensions and congruence subgroups of the modular group, hinging upon the trivalent graphs which arise in both. The gauge theories and the graphs are enumerated and their numbers are compared. The correspondence is particularly striking for genus zero torsion-free congruence subgroups as exemplified by those which arise in Moonshine. We analyze in detail the case of index 24, where modular elliptic K3 surfaces emerge: here, the elliptic j-invariants can be recast as dessins d'enfant which dictate the Seiberg-Witten curves.Comment: 42+1 pages, 5 figures; various helpful comments incorporate

    On the Sombor characteristic polynomial and Sombor energy of a graph

    Get PDF
    Let G be a simple graph with vertex set V(G)={v1,v2,…,vn}. The Sombor matrix of G, denoted by ASO(G), is defined as the n×n matrix whose (i, j)-entry is d2i+d2j−−−−−−√ if vi and vj are adjacent and 0 for another cases. Let the eigenvalues of the Sombor matrix ASO(G) be ρ1≥ρ2≥⋯≥ρn which are the roots of the Sombor characteristic polynomial ∏ni=1(ρ−ρi). The Sombor energy ESO of G is the sum of absolute values of the eigenvalues of ASO(G). In this paper, we compute the Sombor characteristic polynomial and the Sombor energy for some graph classes, define Sombor energy unique and propose a conjecture on Sombor energy.publishedVersio

    Structure of Cubic Lehman Matrices

    Full text link
    A pair (A,B)(A,B) of square (0,1)(0,1)-matrices is called a \emph{Lehman pair} if ABT=J+kIAB^T=J+kI for some integer k{1,1,2,3,}k\in\{-1,1,2,3,\ldots\}. In this case AA and BB are called \emph{Lehman matrices}. This terminology arises because Lehman showed that the rows with the fewest ones in any non-degenerate minimally nonideal (mni) matrix MM form a square Lehman submatrix of MM. Lehman matrices with k=1k=-1 are essentially equivalent to \emph{partitionable graphs} (also known as (α,ω)(\alpha,\omega)-graphs), so have been heavily studied as part of attempts to directly classify minimal imperfect graphs. In this paper, we view a Lehman matrix as the bipartite adjacency matrix of a regular bipartite graph, focusing in particular on the case where the graph is cubic. From this perspective, we identify two constructions that generate cubic Lehman graphs from smaller Lehman graphs. The most prolific of these constructions involves repeatedly replacing suitable pairs of edges with a particular 66-vertex subgraph that we call a 33-rung ladder segment. Two decades ago, L\"{u}tolf \& Margot initiated a computational study of mni matrices and constructed a catalogue containing (among other things) a listing of all cubic Lehman matrices with k=1k =1 of order up to 17×1717 \times 17. We verify their catalogue (which has just one omission), and extend the computational results to 20×2020 \times 20 matrices. Of the 908908 cubic Lehman matrices (with k=1k=1) of order up to 20×2020 \times 20, only two do not arise from our 33-rung ladder construction. However these exceptions can be derived from our second construction, and so our two constructions cover all known cubic Lehman matrices with k=1k=1
    corecore