15 research outputs found

    Extending Glitch-Free Multiparty Protocols to Resist Fault Injection Attacks

    Get PDF
    Side channel analysis and fault attacks are two powerful methods to analyze and break cryptographic implementations. Recently, secure multiparty computation has been applied to prevent side channel attacks. While multiparty computation is known to be fault resistant as well, the particular schemes popular for side channel protection do not currently offer this feature. In this paper we introduce a new secure multiparty circuit to prevent both fault attacks and side channel analysis. The new scheme builds on an existing side channel countermeasure and extends it to preserve errors and propagate them until the end of the circuit. A new recombination operation ensures randomization of the output in the case of an error, ensuring that nothing can be learned from the faulty output. After introducing the new secure multiparty circuit, we show how it can be applied to AES and present the performance and security analysis

    Leakage Assessment in Fault Attacks: A Deep Learning Perspective

    Get PDF
    Generic vulnerability assessment of cipher implementations against fault attacks (FA) is a largely unexplored research area to date. Security assessment against FA is particularly important in the context of FA countermeasures because, on several occasions, countermeasures fail to fulfil their sole purpose of preventing FA due to flawed design or implementation. In this paper, we propose a generic, simulation-based, statistical yes/no experiment for evaluating fault-assisted information leakage based on the principle of non-interference. The proposed exper- iment is oblivious to the structure of countermeasure/cipher under test and detects fault-induced leakage solely by observing the ciphertext dis- tributions. Unlike a recently proposed approach that utilizes t-test and its higher-order variants for detecting leakage at different moments of ciphertext distributions, in this work, we present a Deep Learning (DL) based leakage detection test. Our DL-based detection test is not specific to only moment-based leakages and thus can expose leakages in several cases where t-test based technique demands a prohibitively large number of ciphertexts. We also present a systematic approach to interpret the leakages from DL models. Apart from improving the leak- age detection test, we explore two generalizations of the leakage assess- ment experiment itself – one for evaluating against the Statistical ineffec- tive fault model (SIFA), and another for assessing fault-induced leakages originating from “non-cryptographic” peripheral components of a secu- rity module. Finally, we present techniques for efficiently covering the fault space of a block cipher by exploiting logic-level and cipher-level fault equivalences. The efficacy of DL-based leakage detection, as well as the proposed generalizations, has been evaluated on a rich test-suite of hardened implementations from several countermeasure classes, includ- ing open-source SIFA countermeasures and a hardware security module called Secured-Hardware-Extension (SHE)

    Fault Attacks In Symmetric Key Cryptosystems

    Get PDF
    Fault attacks are among the well-studied topics in the area of cryptography. These attacks constitute a powerful tool to recover the secret key used in the encryption process. Fault attacks work by forcing a device to work under non-ideal environmental conditions (such as high temperature) or external disturbances (such as glitch in the power supply) while performing a cryptographic operation. The recent trend shows that the amount of research in this direction; which ranges from attacking a particular primitive, proposing a fault countermeasure, to attacking countermeasures; has grown up substantially and going to stay as an active research interest for a foreseeable future. Hence, it becomes apparent to have a comprehensive yet compact study of the (major) works. This work, which covers a wide spectrum in the present day research on fault attacks that fall under the purview of the symmetric key cryptography, aims at fulfilling the absence of an up-to-date survey. We present mostly all aspects of the topic in a way which is not only understandable for a non-expert reader, but also helpful for an expert as a reference

    Fault Space Transformation: A Generic Approach to Counter Differential Fault Analysis and Differential Fault Intensity Analysis on AES-like Block Ciphers

    Get PDF
    Classical fault attacks such as Differential Fault Analysis~(DFA) as well as biased fault attacks such as the Differential Fault Intensity Analysis~(DFIA) have been a major threat to cryptosystems in recent times. DFA uses pairs of fault-free and faulty ciphertexts to recover the secret key. DFIA, on the other hand, combines principles of side channel analysis and fault attacks to try and extract the key using faulty ciphertexts only. Till date, no effective countermeasure that can thwart both DFA as well as DFIA based attacks has been reported in the literature to the best of our knowledge. In particular, traditional redundancy based countermeasures that assume uniform fault distribution are found to be vulnerable against DFIA due to its use of biased fault models. In this work, we propose a novel generic countermeasure strategy that combines the principles of redundancy with that of fault space transformation to achieve security against both DFA and DFIA based attacks on AES-like block ciphers. As a case study, we have applied our proposed technique to to obtain temporal and spatial redundancy based countermeasures for AES-128, and have evaluated their security against both DFA and DFIA via practical experiments on a SASEBO-GII board. Results show that our proposed countermeasure makes it practically infeasible to obtain a single instance of successful fault injection, even in the presence of biased fault models

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license

    Principles of Security and Trust: 7th International Conference, POST 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings

    Get PDF
    authentication; computer science; computer software selection and evaluation; cryptography; data privacy; formal logic; formal methods; formal specification; internet; privacy; program compilers; programming languages; security analysis; security systems; semantics; separation logic; software engineering; specifications; verification; world wide we

    Foundations of Security Analysis and Design III, FOSAD 2004/2005- Tutorial Lectures

    Get PDF
    he increasing relevance of security to real-life applications, such as electronic commerce and Internet banking, is attested by the fast-growing number of research groups, events, conferences, and summer schools that address the study of foundations for the analysis and the design of security aspects. This book presents thoroughly revised versions of eight tutorial lectures given by leading researchers during two International Schools on Foundations of Security Analysis and Design, FOSAD 2004/2005, held in Bertinoro, Italy, in September 2004 and September 2005. The lectures are devoted to: Justifying a Dolev-Yao Model under Active Attacks, Model-based Security Engineering with UML, Physical Security and Side-Channel Attacks, Static Analysis of Authentication, Formal Methods for Smartcard Security, Privacy-Preserving Database Systems, Intrusion Detection, Security and Trust Requirements Engineering

    Authentication and Integrity Protection at Data and Physical layer for Critical Infrastructures

    Get PDF
    This thesis examines the authentication and the data integrity services in two prominent emerging contexts such as Global Navigation Satellite Systems (GNSS) and the Internet of Things (IoT), analyzing various techniques proposed in the literature and proposing novel methods. GNSS, among which Global Positioning System (GPS) is the most widely used, provide affordable access to accurate positioning and timing with global coverage. There are several motivations to attack GNSS: from personal privacy reasons, to disrupting critical infrastructures for terrorist purposes. The generation and transmission of spoofing signals either for research purpose or for actually mounting attacks has become easier in recent years with the increase of the computational power and with the availability on the market of Software Defined Radios (SDRs), general purpose radio devices that can be programmed to both receive and transmit RF signals. In this thesis a security analysis of the main currently proposed data and signal level authentication mechanisms for GNSS is performed. A novel GNSS data level authentication scheme, SigAm, that combines the security of asymmetric cryptographic primitives with the performance of hash functions or symmetric key cryptographic primitives is proposed. Moreover, a generalization of GNSS signal layer security code estimation attacks and defenses is provided, improving their performance, and an autonomous anti-spoofing technique that exploits semi-codeless tracking techniques is introduced. Finally, physical layer authentication techniques for IoT are discussed, providing a trade-off between the performance of the authentication protocol and energy expenditure of the authentication process

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others
    corecore