5 research outputs found

    Simulating the behavior of the human brain on GPUS

    Get PDF
    The simulation of the behavior of the Human Brain is one of the most important challenges in computing today. The main problem consists of finding efficient ways to manipulate and compute the huge volume of data that this kind of simulations need, using the current technology. In this sense, this work is focused on one of the main steps of such simulation, which consists of computing the Voltage on neurons’ morphology. This is carried out using the Hines Algorithm and, although this algorithm is the optimum method in terms of number of operations, it is in need of non-trivial modifications to be efficiently parallelized on GPUs. We proposed several optimizations to accelerate this algorithm on GPU-based architectures, exploring the limitations of both, method and architecture, to be able to solve efficiently a high number of Hines systems (neurons). Each of the optimizations are deeply analyzed and described. Two different approaches are studied, one for mono-morphology simulations (batch of neurons with the same shape) and one for multi-morphology simulations (batch of neurons where every neuron has a different shape). In mono-morphology simulations we obtain a good performance using just a single kernel to compute all the neurons. However this turns out to be inefficient on multi-morphology simulations. Unlike the previous scenario, in multi-morphology simulations a much more complex implementation is necessary to obtain a good performance. In this case, we must execute more than one single GPU kernel. In every execution (kernel call) one specific part of the batch of the neurons is solved. These parts can be seen as multiple and independent tridiagonal systems. Although the present paper is focused on the simulation of the behavior of the Human Brain, some of these techniques, in particular those related to the solving of tridiagonal systems, can be also used for multiple oil and gas simulations. Our studies have proven that the optimizations proposed in the present work can achieve high performance on those computations with a high number of neurons, being our GPU implementations about 4× and 8× faster than the OpenMP multicore implementation (16 cores), using one and two NVIDIA K80 GPUs respectively. Also, it is important to highlight that these optimizations can continue scaling, even when dealing with a very high number of neurons.This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 720270 (HBP SGA1), from the Spanish Ministry of Economy and Competitiveness under the project Computación de Altas Prestaciones VII (TIN2015-65316-P), the Departament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Programació i Entorns d’Execució Parallels (2014-SGR-1051). We thank the support of NVIDIA through the BSC/UPC NVIDIA GPU Center of Excellence, and the European Union’s Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement No. 749516.Peer ReviewedPostprint (published version

    Code Generation for High Performance PDE Solvers on Modern Architectures

    Get PDF
    Numerical simulation with partial differential equations is an important discipline in high performance computing. Notable application areas include geosciences, fluid dynamics, solid mechanics and electromagnetics. Recent hardware developments have made it increasingly hard to achieve very good performance. This is both due to a lack of numerical algorithms suited for the hardware and efficient implementations of these algorithms not being available. Modern CPUs require a sufficiently high arithmetic intensity in order to unfold their full potential. In this thesis, we use a numerical scheme that is well-suited for this scenario: The Discontinuous Galerkin Finite Element Method on cuboid meshes can be implemented with optimal complexity exploiting the tensor product structure of basis functions and quadrature formulae using a technique called sum factorization. A matrix-free implementation of this scheme significantly lowers the memory footprint of the method and delivers a fully compute-bound algorithm. An efficient implementation of this scheme for a modern CPU requires maximum use of the processor’s SIMD units. General purpose compilers are not capable of autovectorizing traditional PDE simulation codes, requiring high performance implementations to explicitly spell out SIMD instructions. With the SIMD width increasing in the last years (reaching its current peak at 512 bits in the Intel Skylake architecture) and programming languages not providing tools to directly target SIMD units, such code suffers from a performance portability issue. This work proposes generative programming as a solution to this issue. To this end, we develop a toolchain that translates a PDE problem expressed in a domain specific language into a piece of machine-dependent, optimized C++ code. This toolchain is embedded into the existing user workflow of the DUNE project, an open source framework for the numerical solution of PDEs. Compared to other such toolchains, special emphasis is put on an intermediate representation that enables performance-oriented transformations. Furthermore, this thesis defines a new class of SIMD vectorization strategies that operate on batches of subkernels within one integration kernel. The space of these vectorization strategies is explored systematically from within the code generator in an autotuning procedure. We demonstrate the performance of our vectorization strategies and their implementation by providing measurements on the Intel Haswell and Intel Skylake architectures. We present numbers for the diffusion-reaction equation, the Stokes equations and Maxwell’s equations, achieving up to 40% of the machine’s theoretical floating point performance for an application of the DG operator
    corecore