209 research outputs found

    Designing touch-enabled electronic flight bags in SAR helicopter operations

    Get PDF
    In order to benefit from potential reduced operational costs and crew workload airlines are increasingly interested in touchscreen-based Electronic Flight Bags (EFB). This paper focuses on the specific domain of Search and Rescue (SAR) Helicopters. A first set of results aiming to explore and understand potential benefits and challenges of an EFB in a SAR environment will be presented. A review of related work, operational observations and interviews with pilots were conducted to understand and specify the use context. Digital Human Modelling (DHM) software was used to determine physical constraints of an EFB in this type of flight deck. A scenario was developed which will be used in future to define features, content and functionality that a SAR pilot may wish to see in an EFB. Developed initial interface design guidelines are presented

    Designing touch-enabled electronic flight bags in SAR helicopter operations

    Full text link
    In order to benefit from potential reduced operational costs and crew workload airlines are increasingly interested in touchscreen-based Electronic Flight Bags (EFB). This paper focuses on the specific domain of Search and Rescue (SAR) Helicopters. A first set of results aiming to explore and understand potential benefits and challenges of an EFB in a SAR environment will be presented. A review of related work, operational observations and interviews with pilots were conducted to understand and specify the use context. Digital Human Modelling (DHM) software was used to determine physical constraints of an EFB in this type of flight deck. A scenario was developed which will be used in future to define features, content and functionality that a SAR pilot may wish to see in an EFB. Developed initial interface design guidelines are presented

    Mixed method approach in designing flight decks with touch screens: a framework

    Get PDF
    Touch screen technology’s first public appearance was in the early 2000s. Touch screens became a part of the daily life with the invention of smartphones and tablets. Now, this technology has the potential to be the next big change in flight deck design. To date, mobile devices are deployed by several air carriers to perform a host of non-safety critical pre-flight and in-flight tasks. Due to high safety requirements requested by authorities, new technologies cannot be adopted as fast as in other settings. Flight deck evolution, which is briefly presented in this paper, is reflecting this natural time delay. Avionics manufacturers are exploring and working on future concepts with touch screen displays. This paper investigates the potential benefits and challenges of touch screen technology on flight decks by means of a variety of qualitative and quantitative research methods (mixed method approach). On the basis of this, a framework was constructed showing the relation between various aspects that could impact the usability of touch screens on the flight deck. This paper concludes with a preliminary questionnaire that can help avionic designers to evaluate whether a touch screen is an appropriate user interface for their system

    Exploring potential benefits and challenges of touch screens on the flight deck

    Get PDF
    As the avionics industry is seeking to introduce touch screens into most flight decks, it is vital to understand the interactional challenges and benefits of doing so. The potential benefits and challenges of touch screen technology on flight decks was investigated by means of a variety of qualitative and quantitative research methods (mixed methods approach). A number of research questions are addressed, which have been iteratively developed from the literature, interviews with avionics experts and pilots. This work presents one field study, two lab studies, one observational study, one simulation study and one comparative user study, all investigating various factors/variables that could affect touch screen usability on the flight deck. The first field study investigated interactive displays on the flight deck with search and rescue (SAR) crew members in an operational setting in helicopters. This was the first in-flight experiment where touch screens were evaluated under real conditions. The results showed the impact of target size, device placement and in-flight vibration on targeting accuracy and performance. Presented statistical analyses and observations are essential to understand how to design effective touch screen interfaces for the flight deck. One of the lab studies evaluated (more in depth) the potential impact of display position of touch screens within a simulated cockpit. This was the first experiment that investigated the impact of various display positions on performance following Fitts’ Law experiment. Results revealed that display location has a significant impact on touch screen usability. Qualitative findings from semi-structured interviews and post-experiment questionnaires supported the understanding of interactional issues on a flight deck environment which extended initial design guidelines. Pilots brought attention to the impact of increased G-force (+Gz) as an additional environmental factor that might affect touch screen usability on agile aircrafts. Therefore, a Fitts’ law experiment was conducted to understand the effect of +Gz on touch screen usability. +Gz conditions were simulated with a weight-adjustable wristband, which was the first approach to simulate increased G-force in lab environment. Empirical results and subjective ratings showed a large impact of +Gz on performance and fatigue indices. An observational study focused on Electronic Flight Bag (EFB) (mobile device) usage on the specific domain of Search and Rescue (SAR) helicopters. The novelty in this study was the focus group in which the aim was to find features, content and functionality that a SAR pilot may wish to see in an EFB. From operational observations and interviews with pilot’s operational requirements were defined. A Digital Human Modelling Software was used to define physical constraints of an EFB and develop interface design guidelines. A scenario and virtual prototype was created and presented to pilots. A new way of interaction to manipulate radio frequencies of avionics systems was developed based on findings achieved in this work and other relevant studies. A usability experiment simulating departures and approaches to airports was used to evaluate the interface and compare it with the current system (Flight Management System). In addition, interviews with pilots were conducted to find out their personal impressions and to reveal problem areas of the interface. Analyses of task completion time and error rates showed that the touch interface is significantly faster and less prone to user input errors than the conventional input method (via physical or virtual keypad). Potential problem areas were identified and an improved interface is suggested. Overall, the main contribution of this research is a framework showing the relation between various aspects that could impact the usability of touch screens on the flight deck. Furthermore, design guidelines were developed that should support the usability of interactive displays on the flight deck. This work concludes with a preliminary questionnaire that can help avionic designers to evaluate whether a touch screen is an appropriate user interface for their system

    Exploring potential benefits and challenges of touch screens on the flight deck

    Get PDF
    As the avionics industry is seeking to introduce touch screens into most flight decks, it is vital to understand the interactional challenges and benefits of doing so. The potential benefits and challenges of touch screen technology on flight decks was investigated by means of a variety of qualitative and quantitative research methods (mixed methods approach). A number of research questions are addressed, which have been iteratively developed from the literature, interviews with avionics experts and pilots. This work presents one field study, two lab studies, one observational study, one simulation study and one comparative user study, all investigating various factors/variables that could affect touch screen usability on the flight deck. The first field study investigated interactive displays on the flight deck with search and rescue (SAR) crew members in an operational setting in helicopters. This was the first in-flight experiment where touch screens were evaluated under real conditions. The results showed the impact of target size, device placement and in-flight vibration on targeting accuracy and performance. Presented statistical analyses and observations are essential to understand how to design effective touch screen interfaces for the flight deck. One of the lab studies evaluated (more in depth) the potential impact of display position of touch screens within a simulated cockpit. This was the first experiment that investigated the impact of various display positions on performance following Fitts’ Law experiment. Results revealed that display location has a significant impact on touch screen usability. Qualitative findings from semi-structured interviews and post-experiment questionnaires supported the understanding of interactional issues on a flight deck environment which extended initial design guidelines. Pilots brought attention to the impact of increased G-force (+Gz) as an additional environmental factor that might affect touch screen usability on agile aircrafts. Therefore, a Fitts’ law experiment was conducted to understand the effect of +Gz on touch screen usability. +Gz conditions were simulated with a weight-adjustable wristband, which was the first approach to simulate increased G-force in lab environment. Empirical results and subjective ratings showed a large impact of +Gz on performance and fatigue indices. An observational study focused on Electronic Flight Bag (EFB) (mobile device) usage on the specific domain of Search and Rescue (SAR) helicopters. The novelty in this study was the focus group in which the aim was to find features, content and functionality that a SAR pilot may wish to see in an EFB. From operational observations and interviews with pilot’s operational requirements were defined. A Digital Human Modelling Software was used to define physical constraints of an EFB and develop interface design guidelines. A scenario and virtual prototype was created and presented to pilots. A new way of interaction to manipulate radio frequencies of avionics systems was developed based on findings achieved in this work and other relevant studies. A usability experiment simulating departures and approaches to airports was used to evaluate the interface and compare it with the current system (Flight Management System). In addition, interviews with pilots were conducted to find out their personal impressions and to reveal problem areas of the interface. Analyses of task completion time and error rates showed that the touch interface is significantly faster and less prone to user input errors than the conventional input method (via physical or virtual keypad). Potential problem areas were identified and an improved interface is suggested. Overall, the main contribution of this research is a framework showing the relation between various aspects that could impact the usability of touch screens on the flight deck. Furthermore, design guidelines were developed that should support the usability of interactive displays on the flight deck. This work concludes with a preliminary questionnaire that can help avionic designers to evaluate whether a touch screen is an appropriate user interface for their system

    Mixed method approach in designing flight decks with touch screens: A framework

    Full text link

    Designing touch screen user interfaces for future flight deck operations

    Get PDF
    Many interactional issues with Flight Management Systems (FMS) in modern flight decks have been reported. Avionics designers are seeking for ways to reduce cognitive load of pilots with the aim to reduce the potential for human error. Academic research showed that touch screen interfaces reduce cognitive effort and provide an intuitive way of interaction. A new way of interaction to manipulate radio frequencies of avionics systems is presented in this paper. A usability experiment simulating departures and approaches to airports was used to evaluate the interface and compare it with the current system (FMS). In addition, interviews with pilots were conducted to find out their personal impressions and to reveal problem areas of the interface. Analyses of task completion time and error rates showed that the touch interface is significantly faster and less prone to user input errors than the conventional input method (via physical or virtual keypad). Potential problem areas were identified and an improved interface is suggested

    Stabilising touch interactions in cockpits, aerospace, and vibrating environments

    Get PDF
    © Springer International Publishing AG, part of Springer Nature 2018. Incorporating touch screen interaction into cockpit flight systems is increasingly gaining traction given its several potential advantages to design as well as usability to pilots. However, perturbations to the user input are prevalent in such environments due to vibrations, turbulence and high accelerations. This poses particular challenges for interacting with displays in the cockpit, for example, accidental activation during turbulence or high levels of distraction from the primary task of airplane control to accomplish selection tasks. On the other hand, predictive displays have emerged as a solution to minimize the effort as well as cognitive, visual and physical workload associated with using in-vehicle displays under perturbations, induced by road and driving conditions. This technology employs gesture tracking in 3D and potentially eye-gaze as well as other sensory data to substantially facilitate the acquisition (pointing and selection) of an interface component by predicting the item the user intents to select on the display, early in the movements towards the screen. A key aspect is utilising principled Bayesian modelling to incorporate and treat the present perturbation, thus, it is a software-based solution that showed promising results when applied to automotive applications. This paper explores the potential of applying this technology to applications in aerospace and vibrating environments in general and presents design recommendations for such an approach to enhance interactions accuracy as well as safety

    Future flight decks: impact of +Gz on touchscreen usability

    Get PDF
    Future flight deck designs from various avionics manufacturer incorporate touchscreen technology. There is little published research investigating the impact of inflight vibrations and increased G-Force (+Gz) on touchscreen usability. A Fitts’ law experiment was conducted to understand the effect of +Gz on touchscreen usability. 2-Gz and 3-Gz conditions were simulated with a weight-adjustable wristband. Empirical results and subjective ratings showed a large impact of +Gz on performance and fatigue indices. While the simulated +Gz increased linearly, throughput decreased exponentially, and movement time increased exponentially. This was also reflected by subjective ratings across all conditions. Findings suggest to transfer the experimental setting into a more realistic environment (human centrifuge) where ecological validity can be achieved

    Design and evaluation of braced touch for touchscreen input stabilisation.

    Get PDF
    Incorporating touchscreen interaction into cockpit flight systems offers several potential advantages to aircraft manufacturers, airlines, and pilots. However, vibration and turbulence are challenges to reliable interaction. We examine the design space for braced touch interaction, which allows users to mechanically stabilise selections by bracing multiple fingers on the touchscreen before completing selection. Our goal is to enable fast and accurate target selection during high levels of vibration, without impeding interaction performance when vibration is absent. Three variant methods of braced touch are evaluated, using doubletap, dwell, or a force threshold in combination with heuristic selection criteria to discriminate intentional selection from concurrent braced contacts. We carried out an experiment to test the performance of these methods in both abstract selection tasks and more realistic flight tasks. The study results confirm that bracing improves performance during vibration, and show that doubletap was the best of the tested methods
    • …
    corecore