67 research outputs found

    Scheduling for next generation WLANs: filling the gap between offered and observed data rates

    Get PDF
    In wireless networks, opportunistic scheduling is used to increase system throughput by exploiting multi-user diversity. Although recent advances have increased physical layer data rates supported in wireless local area networks (WLANs), actual throughput realized are significantly lower due to overhead. Accordingly, the frame aggregation concept is used in next generation WLANs to improve efficiency. However, with frame aggregation, traditional opportunistic schemes are no longer optimal. In this paper, we propose schedulers that take queue and channel conditions into account jointly, to maximize throughput observed at the users for next generation WLANs. We also extend this work to design two schedulers that perform block scheduling for maximizing network throughput over multiple transmission sequences. For these schedulers, which make decisions over long time durations, we model the system using queueing theory and determine users' temporal access proportions according to this model. Through detailed simulations, we show that all our proposed algorithms offer significant throughput improvement, better fairness, and much lower delay compared with traditional opportunistic schedulers, facilitating the practical use of the evolving standard for next generation wireless networks

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable pĂșblic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version

    Contributions to QoS and energy efficiency in wi-fi networks

    Get PDF
    The Wi-Fi technology has been in the recent years fostering the proliferation of attractive mobile computing devices with broadband capabilities. Current Wi-Fi radios though severely impact the battery duration of these devices thus limiting their potential applications. In this thesis we present a set of contributions that address the challenge of increasing energy efficiency in Wi-Fi networks. In particular, we consider the problem of how to optimize the trade-off between performance and energy effciency in a wide variety of use cases and applications. In this context, we introduce novel energy effcient algorithms for real-time and data applications, for distributed and centralized Wi-Fi QoS and power saving protocols and for Wi-Fi stations and Access Points. In addition, the diÂżerent algorithms presented in this thesis adhere to the following design guidelines: i) they are implemented entirely at layer two, and can hence be easily re-used in any device with a Wi-Fi interface, ii) they do not require modiÂżcations to current 802.11 standards, and can hence be readily deployed in existing Wi-Fi devices, and iii) whenever possible they favor client side solutions, and hence mobile computing devices implementing them can benefit from an increased energy efficiency regardless of the Access Point they connect to. Each of our proposed algorithms is thoroughly evaluated by means of both theoretical analysis and packet level simulations. Thus, the contributions presented in this thesis provide a realistic set of tools to improve energy efficiency in current Wi-Fi networks

    A VOICE PRIORITY QUEUE (VPQ) SCHEDULER FOR VOIP OVER WLANs

    Get PDF
    The Voice over Internet Protocol (VoIP) application has observed the fastest growth in the world of telecommunication. The Wireless Local Area Network (WLAN) is the most assuring of technologies among the wireless networks, which has facilitated high-rate voice services at low cost and good flexibility. In a voice conversation, each client works as a sender and as a receiver depending on the direction of traffic flow over the network. A VoIP application requires a higher throughput, less packet loss and a higher fairness index over the network. The packets of VoIP streaming may experience drops because of the competition among the different kinds of traffic flow over the network. A VoIP application is also sensitive to delay and requires the voice packets to arrive on time from the sender to the receiver side without any delay over WLANs. The scheduling system model for VoIP traffic is still an unresolved problem. A new traffic scheduler is necessary to offer higher throughput and a higher fairness index for a VoIP application. The objectives of this thesis are to propose a new scheduler and algorithms that support the VoIP application and to evaluate, validate and verify the newly proposed scheduler and algorithms with the existing scheduling algorithms over WLANs through simulation and experimental environment. We proposed a new Voice Priority Queue (VPQ) scheduling system model and algorithms to solve scheduling issues. VPQ system model is implemented in three stages. The first stage of the model is to ensure efficiency by producing a higher throughput and fairness for VoIP packets. The second stage will be designed for bursty Virtual-VoIP Flow (Virtual-VF) while the third stage is a Switch Movement (SM) technique. Furthermore, we compared the VPQ scheduler with other well known schedulers and algorithms. We observed in our simulation and experimental environment that the VPQ provides better results for the VoIP over WLANs

    Control-theoretic approaches for efficient transmission on IEEE 802.11e wireless networks

    Get PDF
    With the increasing use of multimedia applications on the wireless network, the functionalities of the IEEE 802.11 WLAN was extended to allow traffic differentiation so that priority traffic gets quicker service time depending on their Quality of Service (QoS) requirements. The extended functionalities contained in the IEEE Medium Access Control (MAC) and Physical Layer (PHY) Specifications, i.e. the IEEE 802.11e specifications, are recommended values for channel access parameters along traffic lines and the channel access parameters are: the Minimum Contention Window CWmin, Maximum Contention Window CWmax, Arbitration inter-frame space number, (AIFSN) and the Transmission Opportunity (TXOP). These default Enhanced Distributed Channel Access (EDCA) contention values used by each traffic type in accessing the wireless medium are only recommended values which could be adjusted or changed based on the condition of number of associated nodes on the network. In particular, we focus on the Contention Window (CW) parameter and it has been shown that when the number of nodes on the network is small, a smaller value of CWmin should be used for channel access in order to avoid underutilization of channel time and when the number of associated nodes is large, a larger value of CWmin should be used in order to avoid large collisions and retransmissions on the network. Fortunately, allowance was made for these default values to be adjusted or changed but the challenge has been in designing an algorithm that constantly and automatically tunes the CWmin value so that the Access Point (AP) gives out the right CWmin value to be used on the WLAN and this value should be derived based on the level of activity experienced on the network or predefined QoS constraints while considering the dynamic nature of the WLAN. In this thesis, we propose the use of feedback based control and we design a controller for wireless medium access. The controller will give an output which will be the EDCA CWmin value to be used by contending stations/nodes in accessing the medium and this value will be based on current WLAN conditions. We propose the use of feedback control due to its established mathematical concepts particularly for single-input-single-output systems and multi-variable systems which are scenarios that apply to the WLAN

    Adaptive multimedia streaming control algorithm in wireless LANs and 4G networks

    Get PDF
    E-learning has become an important service offered over the Internet. Lately many users are accessing learning content via wireless networks and using mobile devices. Most content is rich media-based and often puts significant pressure on the existing wireless networks in order to support high quality of delivery. In this context, offering a solution for improving user quality of experience when multimedia content is delivered over wireless networks is already a challenging task. Additionally, to support this for mobile e-learning over wireless LANs becomes even more difficult. If we want to increase the end-used perceived quality, we have to take into account the users’ individual set of characteristics. The fact that users have subjective opinions on the quality of a multimedia application can be used to increase their QoE by setting a minimum quality threshold below which the connection is considered to be undesired. Like this, the use of precious radio resources can be optimized in order to simultaneously satisfy an increased number of users. In this thesis a new user-oriented adaptive algorithm based on QOAS was designed and developed in order to address the user satisfaction problem. Simulations have been carried out with different adaptation schemes to compare the performances and benefits of the DQOAS mechanism. The simulation results are showing that using a dynamic stream granularity with a minimum threshold for the transmission rate, improves the overall quality of the multimedia delivery process, increasing the total number of satisfied users and the link utilization The good results obtained by the algorithm in IEEE 802.11 wireless environment, motivated the research about the utility of the newly proposed algorithm in another wireless environment, LTE. The study shows that DQOAS algorithm can obtain good results in terms of application perceived quality, when the considered application generates multiple streams. These results can be improved by using a new QoS parameters mapping scheme able to modify the streams’ priority and thus allowing the algorithms decisions to not be overridden by the systems’ scheduler

    Modular software architecture for flexible reservation mechanisms on heterogeneous resources

    Get PDF
    Management, allocation and scheduling of heterogeneous resources for complex distributed real-time applications is a chal- lenging problem. Timing constraints of applications may be fulfilled by a proper use of real-time scheduling policies, admission control and enforcement of timing constraints. However, it is not easy to design basic infrastructure services that allow for an easy access to the allocation of multiple heterogeneous resources in a distributed environment. In this paper, we present a middleware for providing distributed soft real-time applications with a uniform API for reserving heterogeneous resources with real-time scheduling capabilities in a distributed environment. The architecture relies on standard POSIX OS facilities, such as time management and standard TCP/IP networking services, and it is designed around CORBA, in order to facilitate modularity, flexibility and portability of the applications using it. However, real-time scheduling is supported by proper extensions at the kernel-level, plugged within the framework by means of dedicated resource managers. Our current implementation on Linux supports reservation of CPU, disk and network bandwidth. However, additional resource managers supporting alternative real-time schedulers for these resources, as well as additional types of resources, may be easily added. We present experimental results gathered on both synthetic applications and a real multimedia video streaming case study, showing advantages deriving from the use of the proposed middleware. Finally, overhead figures are reported, showing sustainability of the approach for a wide class of complex, distributed, soft real-time applications

    Proceedings of the Third Edition of the Annual Conference on Wireless On-demand Network Systems and Services (WONS 2006)

    Get PDF
    Ce fichier regroupe en un seul documents l'ensemble des articles accéptés pour la conférences WONS2006/http://citi.insa-lyon.fr/wons2006/index.htmlThis year, 56 papers were submitted. From the Open Call submissions we accepted 16 papers as full papers (up to 12 pages) and 8 papers as short papers (up to 6 pages). All the accepted papers will be presented orally in the Workshop sessions. More precisely, the selected papers have been organized in 7 session: Channel access and scheduling, Energy-aware Protocols, QoS in Mobile Ad-Hoc networks, Multihop Performance Issues, Wireless Internet, Applications and finally Security Issues. The papers (and authors) come from all parts of the world, confirming the international stature of this Workshop. The majority of the contributions are from Europe (France, Germany, Greece, Italy, Netherlands, Norway, Switzerland, UK). However, a significant number is from Australia, Brazil, Canada, Iran, Korea and USA. The proceedings also include two invited papers. We take this opportunity to thank all the authors who submitted their papers to WONS 2006. You helped make this event again a success
    • 

    corecore