20 research outputs found

    On the eigenfilter design method and its applications: a tutorial

    Get PDF
    The eigenfilter method for digital filter design involves the computation of filter coefficients as the eigenvector of an appropriate Hermitian matrix. Because of its low complexity as compared to other methods as well as its ability to incorporate various time and frequency-domain constraints easily, the eigenfilter method has been found to be very useful. In this paper, we present a review of the eigenfilter design method for a wide variety of filters, including linear-phase finite impulse response (FIR) filters, nonlinear-phase FIR filters, all-pass infinite impulse response (IIR) filters, arbitrary response IIR filters, and multidimensional filters. Also, we focus on applications of the eigenfilter method in multistage filter design, spectral/spacial beamforming, and in the design of channel-shortening equalizers for communications applications

    A new class of two-channel biorthogonal filter banks and wavelet bases

    Get PDF
    We propose a novel framework for a new class of two-channel biorthogonal filter banks. The framework covers two useful subclasses: i) causal stable IIR filter banks. ii) linear phase FIR filter banks. There exists a very efficient structurally perfect reconstruction implementation for such a class. Filter banks of high frequency selectivity can be achieved by using the proposed framework with low complexity. The properties of such a class are discussed in detail. The design of the analysis/synthesis systems reduces to the design of a single transfer function. Very simple design methods are given both for FIR and IIR cases. Zeros of arbitrary multiplicity at aliasing frequency can be easily imposed, for the purpose of generating wavelets with regularity property. In the IIR case, two new classes of IIR maximally flat filters different from Butterworth filters are introduced. The filter coefficients are given in closed form. The wavelet bases corresponding to the biorthogonal systems are generated. the authors also provide a novel mapping of the proposed 1-D framework into 2-D. The mapping preserves the following: i) perfect reconstruction; ii) stability in the IIR case; iii) linear phase in the FIR case; iv) zeros at aliasing frequency; v) frequency characteristic of the filters

    The design and multiplier-less realization of software radio receivers with reduced system delay

    Get PDF
    This paper studies the design and multiplier-less realization of a new software radio receiver (SRR) with reduced system delay. It employs low-delay finite-impulse response (FIR) and digital allpass filters to effectively reduce the system delay of the multistage decimators in SRRs. The optimal least-square and minimax designs of these low-delay FIR and allpass-based filters are formulated as a semidefinite programming (SDP) problem, which allows zero magnitude constraint at ω = π to be incorporated readily as additional linear matrix inequalities (LMIs). By implementing the sampling rate converter (SRC) using a variable digital filter (VDF) immediately after the integer decimators, the needs for an expensive programmable FIR filter in the traditional SRR is avoided. A new method for the optimal minimax design of this VDF-based SRC using SDP is also proposed and compared with traditional weight least squares method. Other implementation issues including the multiplier-less and digital signal processor (DSP) realizations of the SRR and the generation of the clock signal in the SRC are also studied. Design results show that the system delay and implementation complexities (especially in terms of high-speed variable multipliers) of the proposed architecture are considerably reduced as compared with conventional approaches. © 2004 IEEE.published_or_final_versio

    Digital filter design using root moments for sum-of-all-pass structures from complete and partial specifications

    Get PDF
    Published versio

    New design method for two-channel perfect reconstruction IIR filter banks

    Get PDF
    In this paper, a new method for designing perfect reconstruction (PR) two-channel causal stable IIR filter banks is introduced. It is based on a structure previously proposed by Phoong et al. [2]. By using a combination of allpass and linear-phase FIR functions, the bumping problem found in the conventional structural PR filter bank is significantly suppressed. The design problem is formulated as a polynomial approximation problem and is solved effectively using the Remez exchange algorithm. Filter banks with flexible stopband attenuation and system delay can readily be obtained using the proposed algorithm.published_or_final_versio

    Critical analysis of the eigenfilter method for the design of FIR filters and wideband beamformers

    Get PDF
    The least squares based eigenfilter method has been applied to the design of both finite impulse response (FIR) filters and wideband beamformers successfully. It involves calculating the resultant filter coefficients as the eigenvector of an appropriate Hermitian matrix, and offers lower complexity and less computation time with better numerical stability as compared to the standard least squares method. In this paper, we revisit the method and critically analyze the eigenfilter approach by revealing a serious performance issue in the passband of the designed FIR filter and the mainlobe of the wideband beamformer, which occurs due to a formulation problem. A solution is then proposed to mitigate this issue, and design examples for both FIR filters and wideband beamformers are provided to demonstrate the effectiveness of the proposed method

    A new class of two-channel biorthogonal filter banks and wavelet bases

    Full text link

    Optimal design of all-pass variable fractional-delay digital filters

    Get PDF
    This paper presents a computational method for the optimal design of all-pass variable fractional-delay (VFD) filters aiming to minimize the squared error of the fractional group delay subject to a low level of squared error in the phase response. The constrained optimization problem thus formulated is converted to an unconstrained least-squares (LS) optimization problem which is highly nonlinear. However, it can be approximated by a linear LS optimization problem which in turn simply requires the solution of a linear system. The proposed method can efficiently minimize the total error energy of the fractional group delay while maintaining constraints on the level of the error energy of the phase response. To make the error distribution as flat as possible, a weighted LS (WLS) design method is also developed. An error weighting function is obtained according to the solution of the previous constrained LS design. The maximum peak error is then further reduced by an iterative updating of the error weighting function. Numerical examples are included in order to compare the performance of the filters designed using the proposed methods with those designed by several existing methods

    Revisit of the eigenfilter method for the design of FIR filters and wideband beamformers

    Get PDF
    The least squares-based eigenfilter method has been applied to the design of both finite impulse response (FIR) filters and wideband beamformers successfully. It involves calculating the resultant filter coefficients as the eigenvector of an appropriate Hermitian matrix, and offers lower complexity and less computation time with better numerical stability as compared to the standard least squares method. In this paper, we revisit the method and critically analyse the eigenfilter method by revealing a serious performance issue in the passband of the designed FIR filter and the mainlobe of the wideband beamformer, which occurs due to a formulation problem. A solution is then proposed to mitigate this issue by imposing an additional constraint to control the response at the passband/mainlobe, and design examples for both FIR filters and wideband beamformers are provided to demonstrate the effectiveness of the proposed method
    corecore