715 research outputs found

    Cybersecurity Engineering: Bridging the Security Gaps in Avionics Architectures and DO-326A/ED-202A

    Get PDF
    Urban Air Mobility is envisioned as an on-demand, highly automated and autonomous air transportation modality. It requires the use of advanced sensing and data communication technologies to gather, process, and share flight-critical data. Where this sharing of mix-critical data brings opportunities, if compromised, presents serious cybersecurity threats and safety risks due to the cyber-physical nature of the airborne vehicles. Therefore the avionics system design approach of adhering to functional safety standards (DO-178C) alone is inadequate to protect the mission-critical avionics functions from cyber-attacks. To approach this challenge, the DO-326A/ED-202A standard provides a baseline to effectively manage cybersecurity risks and to ensure the airworthiness of airborne systems. In this regard, this paper pursues a holistic cybersecurity engineering and bridges the security gap by mapping the DO-326A/ED-202A system security risk assessment activities to the Threat Analysis and Risk Assessment process. It introduces Resilient Avionics Architecture as an experimental use case for Urban Air Mobility by apprehending the DO-326A/ED-202A standard guidelines. It also presents a comprehensive system security risk assessment of the use case and derives appropriate risk mitigation strategies. The presented work facilitates avionics system designers to identify, assess, protect, and manage the cybersecurity risks across the avionics system life cycle

    Cybersecurity Architectural Analysis for Complex Cyber-Physical Systems

    Get PDF
    In the modern military’s highly interconnected and technology-reliant operational environment, cybersecurity is rapidly growing in importance. Moreover, as a number of highly publicized attacks have occurred against complex cyber-physical systems such as automobiles and airplanes, cybersecurity is no longer limited to traditional computer systems and IT networks. While architectural analysis approaches are critical to improving cybersecurity, these approaches are often poorly understood and applied in ad hoc fashion. This work addresses these gaps by answering the questions: 1. “What is cybersecurity architectural analysis?” and 2. “How can architectural analysis be used to more effectively support cybersecurity decision making for complex cyber-physical systems?” First, a readily understandable description of key architectural concepts and definitions is provided which culminates in a working definition of “cybersecurity architectural analysis,” since none is available in the literature. Next, we survey several architectural analysis approaches to provide the reader with an understanding of the various approaches being used across government and industry. Based on our proposed definition, the previously introduced key concepts, and our survey results, we establish desirable characteristics for evaluating cybersecurity architectural analysis approaches. Lastly, each of the surveyed approaches is assessed against the characteristics and areas of future work are identified

    Aviation and Cybersecurity: Opportunities for Applied Research

    Get PDF
    Aviation connects the global community and is moving more people and payloads faster than ever. The next decade will experience an increase in manned and unmanned aircraft and systems with new features and unprecedented applications. Cybertechnologies—including software, computer networks, and information technology—are critical and fundamental to these advances in meeting the needs of the aviation ecosystem of aircraft, pilots, personnel, passengers, stakeholders, and society. This article discusses current and evolving threats as well as opportunities for applied research to improve the global cybersecurity stance in the aviation and connected transportation industry of tomorrow

    Next Generation Aircraft Architecture and Digital Forensic

    Get PDF
    The focus of this research is to establish a baseline understanding of the Supervisory Control and Data Acquisition (SCADA) systems that enable air travel. This includes the digital forensics needed to identify vulnerabilities, mitigate those vulnerabilities, and develop processes to mitigate the introduction of vulnerabilities into those systems. The pre-Next Generation Air Transportation System (NextGen) notional aircraft architecture uses air gap interconnection, non-IP-based communications, and non-integrated modular avionics. The degree of digital forensics accessibility is determined by the comparison of pre-NextGen Notional Aircraft Architecture and NextGen Notional Aircraft Architecture. Digital forensics accessibility is defined by addressing Eden\u27s five challenges facing SCADA forensic investigators. The propositional and predicate logic analysis indicates that the NextGen Notional Aircraft Architecture is not digital forensic accessible

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India
    • …
    corecore