10,626 research outputs found

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    360 Quantified Self

    Get PDF
    Wearable devices with a wide range of sensors have contributed to the rise of the Quantified Self movement, where individuals log everything ranging from the number of steps they have taken, to their heart rate, to their sleeping patterns. Sensors do not, however, typically sense the social and ambient environment of the users, such as general life style attributes or information about their social network. This means that the users themselves, and the medical practitioners, privy to the wearable sensor data, only have a narrow view of the individual, limited mainly to certain aspects of their physical condition. In this paper we describe a number of use cases for how social media can be used to complement the check-up data and those from sensors to gain a more holistic view on individuals' health, a perspective we call the 360 Quantified Self. Health-related information can be obtained from sources as diverse as food photo sharing, location check-ins, or profile pictures. Additionally, information from a person's ego network can shed light on the social dimension of wellbeing which is widely acknowledged to be of utmost importance, even though they are currently rarely used for medical diagnosis. We articulate a long-term vision describing the desirable list of technical advances and variety of data to achieve an integrated system encompassing Electronic Health Records (EHR), data from wearable devices, alongside information derived from social media data.Comment: QCRI Technical Repor

    Tactons: structured tactile messages for non-visual information display

    Get PDF
    Tactile displays are now becoming available in a form that can be easily used in a user interface. This paper describes a new form of tactile output. Tactons, or tactile icons, are structured, abstract messages that can be used to communicate messages non-visually. A range of different parameters can be used for Tacton construction including: frequency, amplitude and duration of a tactile pulse, plus other parameters such as rhythm and location. Tactons have the potential to improve interaction in a range of different areas, particularly where the visual display is overloaded, limited in size or not available, such as interfaces for blind people or in mobile and wearable devices. This paper describes Tactons, the parameters used to construct them and some possible ways to design them. Examples of where Tactons might prove useful in user interfaces are given

    Multiple multimodal mobile devices: Lessons learned from engineering lifelog solutions

    Get PDF
    For lifelogging, or the recording of oneā€™s life history through digital means, to be successful, a range of separate multimodal mobile devices must be employed. These include smartphones such as the N95, the Microsoft SenseCam ā€“ a wearable passive photo capture device, or wearable biometric devices. Each collects a facet of the bigger picture, through, for example, personal digital photos, mobile messages and documents access history, but unfortunately, they operate independently and unaware of each other. This creates significant challenges for the practical application of these devices, the use and integration of their data and their operation by a user. In this chapter we discuss the software engineering challenges and their implications for individuals working on integration of data from multiple ubiquitous mobile devices drawing on our experiences working with such technology over the past several years for the development of integrated personal lifelogs. The chapter serves as an engineering guide to those considering working in the domain of lifelogging and more generally to those working with multiple multimodal devices and integration of their data

    Challenges of Multi-Factor Authentication for Securing Advanced IoT (A-IoT) Applications

    Full text link
    The unprecedented proliferation of smart devices together with novel communication, computing, and control technologies have paved the way for the Advanced Internet of Things~(A-IoT). This development involves new categories of capable devices, such as high-end wearables, smart vehicles, and consumer drones aiming to enable efficient and collaborative utilization within the Smart City paradigm. While massive deployments of these objects may enrich people's lives, unauthorized access to the said equipment is potentially dangerous. Hence, highly-secure human authentication mechanisms have to be designed. At the same time, human beings desire comfortable interaction with their owned devices on a daily basis, thus demanding the authentication procedures to be seamless and user-friendly, mindful of the contemporary urban dynamics. In response to these unique challenges, this work advocates for the adoption of multi-factor authentication for A-IoT, such that multiple heterogeneous methods - both well-established and emerging - are combined intelligently to grant or deny access reliably. We thus discuss the pros and cons of various solutions as well as introduce tools to combine the authentication factors, with an emphasis on challenging Smart City environments. We finally outline the open questions to shape future research efforts in this emerging field.Comment: 7 pages, 4 figures, 2 tables. The work has been accepted for publication in IEEE Network, 2019. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Supporting Self-Regulation of Children with ADHD Using Wearables: Tensions and Design Challenges

    Get PDF
    The design of wearable applications supporting children with Attention Deficit Hyperactivity Disorders (ADHD) requires a deep understanding not only of what is possible from a clinical standpoint but also how the children might understand and orient towards wearable technologies, such as a smartwatch. Through a series of participatory design workshops with children with ADHD and their caregivers, we identified tensions and challenges in designing wearable applications supporting the self-regulation of children with ADHD. In this paper, we describe the specific challenges of smartwatches for this population, the balance between self-regulation and co-regulation, and tensions when receiving notifications on a smartwatch in various contexts. These results indicate key considerationsā€”from both the child and caregiver viewpointsā€”for designing technological interventions supporting children with ADHD

    The Design of Not-so-everyday Things: Designing for Emerging Experiences

    Get PDF
    In this paper, we explore how emerging technologies and experiences challenge previous theories and practices to grow and adopt and, thus, address new and unique challenges, such as designing across macro-level ecosystems, new devices, and interaction models that enable user control of data in an increasingly complex digital world. We discuss these topics with respect to real and future examples, the unique challenges they present, and how academia and industry must collaborate to adapt current frameworks and develop new methods to address these challenges. This partnership will ensure both parties better understand the problem space for designing emerging experiences in today\u27s digital economy. Further, this partnership enables scholars and practitioners to more effectively explore the solution space for designing novel products and developing advanced theories that help craft meaningful user experiences. Finally, we argue that the partnership between academia and industry can develop future talent and upskill current practitioners, which is paramount in successfully meeting the challenges inherent in the design of emerging technologies
    • ā€¦
    corecore