68 research outputs found

    Content-Aware Reduction of Bit Flips in Phase Change Memory

    Get PDF
    The energy costs of Phase Change Memory (PCM) depends almost completely on the number of bits written per time unit. By using an encoding, we can reduce the number of bit flips when overwriting low-entropy data with low-entropy data. This is achieved by using a frequency table for bytes in classes of data to select the encoding. Using various corpora of mainly HTML files, we show that we can reduce the number of bit flips by about 0.5 bit flips per byte

    A PUF based Lightweight Hardware Security Architecture for IoT

    Get PDF
    With an increasing number of hand-held electronics, gadgets, and other smart devices, data is present in a large number of platforms, thereby increasing the risk of security, privacy, and safety breach than ever before. Due to the extreme lightweight nature of these devices, commonly referred to as IoT or `Internet of Things\u27, providing any kind of security is prohibitive due to high overhead associated with any traditional and mathematically robust cryptographic techniques. Therefore, researchers have searched for alternative intuitive solutions for such devices. Hardware security, unlike traditional cryptography, can provide unique device-specific security solutions with little overhead, address vulnerability in hardware and, therefore, are attractive in this domain. As Moore\u27s law is almost at its end, different emerging devices are being explored more by researchers as they present opportunities to build better application-specific devices along with their challenges compared to CMOS technology. In this work, we have proposed emerging nanotechnology-based hardware security as a security solution for resource constrained IoT domain. Specifically, we have built two hardware security primitives i.e. physical unclonable function (PUF) and true random number generator (TRNG) and used these components as part of a security protocol proposed in this work as well. Both PUF and TRNG are built from metal-oxide memristors, an emerging nanoscale device and are generally lightweight compared to their CMOS counterparts in terms of area, power, and delay. Design challenges associated with designing these hardware security primitives and with memristive devices are properly addressed. Finally, a complete security protocol is proposed where all of these different pieces come together to provide a practical, robust, and device-specific security for resource-limited IoT systems

    Bit-Flip Aware Data Structures for Phase Change Memory

    Get PDF
    Big, non-volatile, byte-addressable, low-cost, and fast non-volatile memories like Phase Change Memory are appearing in the marketplace. They have the capability to unify both memory and storage and allow us to rethink the present memory hierarchy. An important draw-back to Phase Change Memory is limited write-endurance. In addition, Phase Change Memory shares with other Non-Volatile Random Access Memories an asym- metry in the energy costs of writes and reads. Best use of Non-Volatile Random Access Memories limits the number of times a Non-Volatile Random Access Memory cell changes contents, called a bit-flip. While the future of main memory is still unknown, we should already start to create data structures for them in order to shape the future era. This thesis investigates the creation of bit-flip aware data structures.The thesis first considers general ways in which a data structure can save bit- flips by smart overwrites and by using the exclusive-or of pointers. It then shows how a simple content dependent encoding can reduce bit-flips for web corpora. It then shows how to build hash based dictionary structures for Linear Hashing and Spiral Storage. Finally, the thesis presents Gray counters, close to bit-flip optimal counters that even enable age- based wear leveling with counters managed by the Non-Volatile Random Access Memories themselves instead of by the Operating Systems

    DESTINY: A Comprehensive Tool with 3D and Multi-Level Cell Memory Modeling Capability

    Get PDF
    To enable the design of large capacity memory structures, novel memory technologies such as non-volatile memory (NVM) and novel fabrication approaches, e.g., 3D stacking and multi-level cell (MLC) design have been explored. The existing modeling tools, however, cover only a few memory technologies, technology nodes and fabrication approaches. We present DESTINY, a tool for modeling 2D/3D memories designed using SRAM, resistive RAM (ReRAM), spin transfer torque RAM (STT-RAM), phase change RAM (PCM) and embedded DRAM (eDRAM) and 2D memories designed using spin orbit torque RAM (SOT-RAM), domain wall memory (DWM) and Flash memory. In addition to single-level cell (SLC) designs for all of these memories, DESTINY also supports modeling MLC designs for NVMs. We have extensively validated DESTINY against commercial and research prototypes of these memories. DESTINY is very useful for performing design-space exploration across several dimensions, such as optimizing for a target (e.g., latency, area or energy-delay product) for a given memory technology, choosing the suitable memory technology or fabrication method (i.e., 2D v/s 3D) for a given optimization target, etc. We believe that DESTINY will boost studies of next-generation memory architectures used in systems ranging from mobile devices to extreme-scale supercomputers. The latest source-code of DESTINY is available from the following git repository: https://bitbucket.org/sparsh_mittal/destiny_v2

    A vision for edge AI

    Get PDF
    Edge Artificial Intelligence is progressively pervading all aspects of our life. However, to perform complex tasks, a massive amount of matrix multiplications needs to be computed. At the same time, the available hardware resources for computation are highly limited. The pressing need for efficiency serves as the motivation for this dissertation. In this dissertation, we propose a vision for highly-resource constrained future intelligent systems that are comprised of robust Binarized Neural Networks operating with approximate memory and approximate computing units, while being able to be trained on the edge

    Saving Bit-flips through Smart Overwrites in NVRAM

    Get PDF
    New generations of non-volatile random access memories will combine the best features of memory (access times, byte addressability) with the best features of storage (non-volatility, low costs per byte). Some, like PCM, have a limited endurance. All will only consume energy when accessed, but writes will use much more energy than reads. These characteristics put a cost on flipping bits in memory. Bit-flip aware data structures lower the number of bits flipped by not resetting fields to zero to indicate a deleted record but by using bit-maps. If given a choice of where to over-write data, they will select the location which results in a lower number of bit-flips. We calculate the expected bit-flip savings of this strategy and derive a rule to determine the number of the possible candidate locations

    Mitigation of failures in high performance computing via runtime techniques

    Get PDF
    As machines increase in scale, it is predicted that failure rates of supercomputers will correspondingly increase. Even though the mean time to failure (MTTF) of individual component is high, the large number of components significantly decreases the system MTTF. Meanwhile, the decreasing size of transistors has been critical to the increase in capacity of supercomputers. The smaller the transistors are, silent data corruptions (SDC) are likely to occur more frequently. SDCs do not inhibit execution, but may silently lead to incorrect results. In this thesis, we leverage runtime system and compiler techniques to mitigate a significant fraction of failures automatically with low overhead. The main goals of various system-level fault tolerance strategies designed in this thesis are: reducing the extra cost added to application execution while improving system reliability; automatically adjusting fault tolerance decisions without user intervention based on environmental changes; protecting applications not only from fail-stop failures but also from silent data corruptions. The main contributions of this thesis are development of a semi-blocking checkpoint protocol that overlaps application execution with fault tolerance operation to reduce the overhead of checkpointing, a runtime system technique for automatic checkpoint and restart without user intervention, a holistic framework (ACR) for automatically detecting and recovering from silent data corruptions and a framework called FlipBack that provides targeted protection against silent data corruption with low cost
    corecore