4 research outputs found

    Semi-Supervised Fuzzily Weighted Adaptive Boosting for Classification

    Get PDF
    Fuzzy systems offer a formal and practically popular methodology for modelling nonlinear problems with inherent uncertainties, entailing strong performance and model interpretability. Particularly, semi-supervised boosting is widely recognised as a powerful approach for creating stronger ensemble classification models in the absence of sufficient labelled data without introducing any modification to the employed base classifiers. However, the potential of fuzzy systems in semi-supervised boosting has not been systematically explored yet. In this study, a novel semi-supervised boosting algorithm devised for zero-order evolving fuzzy systems is proposed. It ensures both the consistence amongst predictions made by individual base classifiers at successive boosting iterations and the respective levels of confidence towards their predictions throughout the process of sample weight updating and ensemble output generation. In so doing, the base classifiers are empowered to gradually focus more on challenging samples that are otherwise hard to generalise, enabling the development of more precise integrated classification boundaries. Numerical evaluations on a range of benchmark problems are carried out, demonstrating the efficacy of the proposed semi-supervised boosting algorithm for constructing ensemble fuzzy classifiers with high accuracy.</p

    Multi-Class Fuzzily Weighted Adaptive Boosting-based Self-Organizing Fuzzy Inference Ensemble Systems for Classification

    Get PDF
    Adaptive boosting (AdaBoost) is a widely used technique to construct a stronger ensemble classifier by combining a set of weaker ones. Zero-order fuzzy inference systems (FISs) are very powerful prototype-based predictive models for classification, offering both great prediction precision and high user-interpretability. However, the use of zero-order FISs as base classifiers in AdaBoost has not been explored yet. To bridge the gap, in this paper, a novel multi-class fuzzily weighted AdaBoost (FWAdaBoost)-based ensemble system with self-organising fuzzy inference system (SOFIS) as the ensemble component is proposed. To better incorporate SOFIS, FWAdaBoost utilises the confidence scores produced by SOFIS in both sample weight updating and ensemble output generation, resulting in more accurate classification boundaries and greater prediction precision. Numerical examples on a wide range of benchmark classification problems demonstrate the efficacy of the proposed approach

    Semi-Supervised Fuzzily Weighted Adaptive Boosting for Classification

    Get PDF
    Fuzzy systems offer a formal and practically popular methodology for modelling nonlinear problems with inherent uncertainties, entailing strong performance and model interpretability. Particularly, semi-supervised boosting is widely recognised as a powerful approach for creating stronger ensemble classification models in the absence of sufficient labelled data without introducing any modification to the employed base classifiers. However, the potential of fuzzy systems in semi-supervised boosting has not been systematically explored yet. In this study, a novel semi-supervised boosting algorithm devised for zero-order evolving fuzzy systems is proposed. It ensures both the consistence amongst predictions made by individual base classifiers at successive boosting iterations and the respective levels of confidence towards their predictions throughout the process of sample weight updating and ensemble output generation. In so doing, the base classifiers are empowered to gradually focus more on challenging samples that are otherwise hard to generalise, enabling the development of more precise integrated classification boundaries. Numerical evaluations on a range of benchmark problems are carried out, demonstrating the efficacy of the proposed semi-supervised boosting algorithm for constructing ensemble fuzzy classifiers with high accuracy

    Machine learning methods for discriminating natural targets in seabed imagery

    Get PDF
    The research in this thesis concerns feature-based machine learning processes and methods for discriminating qualitative natural targets in seabed imagery. The applications considered, typically involve time-consuming manual processing stages in an industrial setting. An aim of the research is to facilitate a means of assisting human analysts by expediting the tedious interpretative tasks, using machine methods. Some novel approaches are devised and investigated for solving the application problems. These investigations are compartmentalised in four coherent case studies linked by common underlying technical themes and methods. The first study addresses pockmark discrimination in a digital bathymetry model. Manual identification and mapping of even a relatively small number of these landform objects is an expensive process. A novel, supervised machine learning approach to automating the task is presented. The process maps the boundaries of β‰ˆ 2000 pockmarks in seconds - a task that would take days for a human analyst to complete. The second case study investigates different feature creation methods for automatically discriminating sidescan sonar image textures characteristic of Sabellaria spinulosa colonisation. Results from a comparison of several textural feature creation methods on sonar waterfall imagery show that Gabor filter banks yield some of the best results. A further empirical investigation into the filter bank features created on sonar mosaic imagery leads to the identification of a useful configuration and filter parameter ranges for discriminating the target textures in the imagery. Feature saliency estimation is a vital stage in the machine process. Case study three concerns distance measures for the evaluation and ranking of features on sonar imagery. Two novel consensus methods for creating a more robust ranking are proposed. Experimental results show that the consensus methods can improve robustness over a range of feature parameterisations and various seabed texture classification tasks. The final case study is more qualitative in nature and brings together a number of ideas, applied to the classification of target regions in real-world sonar mosaic imagery. A number of technical challenges arose and these were surmounted by devising a novel, hybrid unsupervised method. This fully automated machine approach was compared with a supervised approach in an application to the problem of image-based sediment type discrimination. The hybrid unsupervised method produces a plausible class map in a few minutes of processing time. It is concluded that the versatile, novel process should be generalisable to the discrimination of other subjective natural targets in real-world seabed imagery, such as Sabellaria textures and pockmarks (with appropriate features and feature tuning.) Further, the full automation of pockmark and Sabellaria discrimination is feasible within this framework
    corecore