3,466 research outputs found

    On the Deployment of Healthcare Applications over Fog Computing Infrastructure

    Get PDF
    Fog computing is considered as the most promising enhancement of the traditional cloud computing paradigm in order to handle potential issues introduced by the emerging Interned of Things (IoT) framework at the network edge. The heterogeneous nature, the extensive distribution and the hefty number of deployed IoT nodes will disrupt existing functional models, creating confusion. However, IoT will facilitate the rise of new applications, with automated healthcare monitoring platforms being amongst them. This paper presents the pillars of design for such applications, along with the evaluation of a working prototype that collects ECG traces from a tailor-made device and utilizes the patient's smartphone as a Fog gateway for securely sharing them to other authorized entities. This prototype will allow patients to share information to their physicians, monitor their health status independently and notify the authorities rapidly in emergency situations. Historical data will also be available for further analysis, towards identifying patterns that may improve medical diagnoses in the foreseeable future

    BPMN Security Extensions for Healthcare Process

    Get PDF
    The modelling of healthcare process is inherently complicated due to its multi-disciplinary character. Business Process Model and Notation (BPMN) has been considered and applied to model and demonstrate the flexibility and variability of the activities that involved in healthcare process. However, with the growing usage of digital information and IoT technology in the healthcare system, the issue of information security and privacy becomes the main concern in term of both store and management of electronic health record (EHR). Therefore, it is very important to capture the security requirements at conceptual level in order to identify the security needs in the first place. BPMN is lacking of the ability to model and present security concepts such as confidentiality, integrity, and availability in a suitable way. This will increase the vulnerability of the system and make the future development of security for the system more difficult. In this paper we provide a solution to model the security concepts in BPMN by extending it with new designed security elements, which can be integrated with the BPMN diagram smoothly. Index Terms — Security Requirement, BPMN, Healthcare, Internet of Things

    REISCH: incorporating lightweight and reliable algorithms into healthcare applications of WSNs

    Get PDF
    Healthcare institutions require advanced technology to collect patients' data accurately and continuously. The tradition technologies still suffer from two problems: performance and security efficiency. The existing research has serious drawbacks when using public-key mechanisms such as digital signature algorithms. In this paper, we propose Reliable and Efficient Integrity Scheme for Data Collection in HWSN (REISCH) to alleviate these problems by using secure and lightweight signature algorithms. The results of the performance analysis indicate that our scheme provides high efficiency in data integration between sensors and server (saves more than 24% of alive sensors compared to traditional algorithms). Additionally, we use Automated Validation of Internet Security Protocols and Applications (AVISPA) to validate the security procedures in our scheme. Security analysis results confirm that REISCH is safe against some well-known attacks

    Policy enforcement in cloud computing

    Get PDF
    Cloud Computing is an emerging technology, providing attractive way of hosting and delivering services over the Internet. Many organizations and individuals are utilizing Cloud services to share information and collaborate with partners. However, Cloud provides abstraction over the underlying physical infrastructure to the customers, that raises information security concerns, while storing data in a virtualized environment without having physical access to it. Additionally, certain standards have been issued to provide interoperability between users and various distributed systems(including Cloud infrastructures), in a standardized way. However, implementation and interoperability issues still exist and introduce new challenges. This thesis explores the feasibility of securing data in a cloud context, using existing standards and specifications, while retaining the benefits of the Cloud. The thesis provides a view on increasing security concerns of moving to the cloud and sharing data over it. First, we define security and privacy requirements for the data stored in the Cloud. Based on these requirements, we propose the requirements for an access control system in the Cloud. Furthermore, we evaluate the existing work in the area of currently available access control systems and mechanisms for secure data sharing over the Cloud, mostly focusing on policy enforcement and access control characteristics. Moreover, we determine existing mechanisms and standards to implement secure data sharing and collaborative systems over the Cloud. We propose an architecture supporting secure data sharing over the untrusted Cloud environment, based on our findings. The architecture ensures policy based access control inside and outside Cloud, while allowing the benefits of Cloud Computing to be utilized. We discuss the components involved in the architecture and their design considerations. To validate the proposed architecture, we construct the proof of concept prototype. We present a novel approach for implementing policy based access control, by achieving interoperability between existing standards and addressing certain issues, while constructing the system prototype. Furthermore, we deploy our solution in the Cloud and perform the performance tests to evaluate the performance of the system. Finally, we perform a case study by utilizing our system in a real-life scenario. To do this we slightly tailor our solution to meet specific needs. Overall, this thesis provides a solid foundation for the policy enforcement and access control mechanisms in the Cloud-based systems and motivates further work within this field. Cloud Computing is an emerging technology, providing attractive way of hosting and delivering services over the Internet. Many organizations and individuals are utilizing Cloud services to share information and collaborate with partners. However, Cloud provides abstraction over the underlying physical infrastructure to the customers, that raises information security concerns, while storing data in a virtualized environment without having physical access to it. Additionally, certain standards have been issued to provide interoperability between users and various distributed systems(including Cloud infrastructures), in a standardized way. However, implementation and interoperability issues still exist and introduce new challenges. This thesis explores the feasibility of securing data in a cloud context, using existing standards and specifications, while retaining the benefits of the Cloud. The thesis provides a view on increasing security concerns of moving to the cloud and sharing data over it. First, we define security and privacy requirements for the data stored in the Cloud. Based on these requirements, we propose the requirements for an access control system in the Cloud. Furthermore, we evaluate the existing work in the area of currently available access control systems and mechanisms for secure data sharing over the Cloud, mostly focusing on policy enforcement and access control characteristics. Moreover, we determine existing mechanisms and standards to implement secure data sharing and collaborative systems over the Cloud. We propose an architecture supporting secure data sharing over the untrusted Cloud environment, based on our findings. The architecture ensures policy based access control inside and outside Cloud, while allowing the benefits of Cloud Computing to be utilized. We discuss the components involved in the architecture and their design considerations. To validate the proposed architecture, we construct the proof of concept prototype. We present a novel approach for implementing policy based access control, by achieving interoperability between existing standards and addressing certain issues, while constructing the system prototype. Furthermore, we deploy our solution in the Cloud and perform the performance tests to evaluate the performance of the system. Finally, we perform a case study by utilizing our system in a real-life scenario. To do this we slightly tailor our solution to meet specific needs. Overall, this thesis provides a solid foundation for the policy enforcement and access control mechanisms in the Cloud-based systems and motivates further work within this field

    A Middleware for the Internet of Things

    Full text link
    The Internet of Things (IoT) connects everyday objects including a vast array of sensors, actuators, and smart devices, referred to as things to the Internet, in an intelligent and pervasive fashion. This connectivity gives rise to the possibility of using the tracking capabilities of things to impinge on the location privacy of users. Most of the existing management and location privacy protection solutions do not consider the low-cost and low-power requirements of things, or, they do not account for the heterogeneity, scalability, or autonomy of communications supported in the IoT. Moreover, these traditional solutions do not consider the case where a user wishes to control the granularity of the disclosed information based on the context of their use (e.g. based on the time or the current location of the user). To fill this gap, a middleware, referred to as the Internet of Things Management Platform (IoT-MP) is proposed in this paper.Comment: 20 pages, International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 201
    • …
    corecore