113,800 research outputs found

    Accelerating Coverage Closure For Hardware Verification Using Machine Learning

    Get PDF
    Functional verification is used to confirm that the logic of a design meets its specification. The most commonly used method for verifying complex designs is simulation-based verification. The quality of simulation-based verification is based on the quality and diversity of the tests that are simulated. However, it is time consuming and compute intensive on account of the fact that a large volume of tests must be simulated to exhaustively exercise the design functionality in order to find and fix logic bugs. A common measure of success of this exercise is in the form of a metric known as functional coverage. Coverage is typically indicated as a percentage of functionality covered by the test suite. This thesis proposes a novel methodology to construct a model using SVM, Gradient Boosting Classifier and Neural Networks aimed at replacing random test generation for speeding up coverage collection

    Essays on Agricultural Marketing and Climate Risk

    Get PDF
    Functional verification is used to confirm that the logic of a design meets its specification. The most commonly used method for verifying complex designs is simulation-based verification. The quality of simulation-based verification is based on the quality and diversity of the tests that are simulated. However, it is time consuming and compute intensive on account of the fact that a large volume of tests must be simulated to exhaustively exercise the design functionality in order to find and fix logic bugs. A common measure of success of this exercise is in the form of a metric known as functional coverage. Coverage is typically indicated as a percentage of functionality covered by the test suite. This thesis proposes a novel methodology to construct a model using SVM, Gradient Boosting Classifier and Neural Networks aimed at replacing random test generation for speeding up coverage collection

    Symbolic QED Pre-silicon Verification for Automotive Microcontroller Cores: Industrial Case Study

    Full text link
    We present an industrial case study that demonstrates the practicality and effectiveness of Symbolic Quick Error Detection (Symbolic QED) in detecting logic design flaws (logic bugs) during pre-silicon verification. Our study focuses on several microcontroller core designs (~1,800 flip-flops, ~70,000 logic gates) that have been extensively verified using an industrial verification flow and used for various commercial automotive products. The results of our study are as follows: 1. Symbolic QED detected all logic bugs in the designs that were detected by the industrial verification flow (which includes various flavors of simulation-based verification and formal verification). 2. Symbolic QED detected additional logic bugs that were not recorded as detected by the industrial verification flow. (These additional bugs were also perhaps detected by the industrial verification flow.) 3. Symbolic QED enables significant design productivity improvements: (a) 8X improved (i.e., reduced) verification effort for a new design (8 person-weeks for Symbolic QED vs. 17 person-months using the industrial verification flow). (b) 60X improved verification effort for subsequent designs (2 person-days for Symbolic QED vs. 4-7 person-months using the industrial verification flow). (c) Quick bug detection (runtime of 20 seconds or less), together with short counterexamples (10 or fewer instructions) for quick debug, using Symbolic QED

    Automatic instantiation of abstract tests on specific configurations for large critical control systems

    Full text link
    Computer-based control systems have grown in size, complexity, distribution and criticality. In this paper a methodology is presented to perform an abstract testing of such large control systems in an efficient way: an abstract test is specified directly from system functional requirements and has to be instantiated in more test runs to cover a specific configuration, comprising any number of control entities (sensors, actuators and logic processes). Such a process is usually performed by hand for each installation of the control system, requiring a considerable time effort and being an error prone verification activity. To automate a safe passage from abstract tests, related to the so called generic software application, to any specific installation, an algorithm is provided, starting from a reference architecture and a state-based behavioural model of the control software. The presented approach has been applied to a railway interlocking system, demonstrating its feasibility and effectiveness in several years of testing experience

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    A Strategy Language for Testing Register Transfer Level Logic

    Get PDF
    The development of modern ICs requires a huge investment in RTL verification. This is a reflection of brisk release schedules and the complexity of contemporary chip designs. A major bottleneck to reaching verification closure in such designs is the disproportionate effort expended in crafting directed tests; which is necessary to reach those behaviors that other, more automated testing methods fail to cover. This paper defines a novel language that can be used to generate targeted stimuli for RTL logic and which mitigates the complexities of writing directed tests. The main idea is to treat directed testing as a meta-reasoning problem about simulation. Our language is both formalized and prototyped as a proof-search strategy language in rewriting logic. We illustrate its novel features and practical use with several examples.published or submitted for publicatio

    Hardware in the Loop Simulation and Control Design for Autonomous Free Running Ship Models

    Get PDF
    This paper presents an hardware-in-the-loop (HIL) simulation system tool to test and validate an autonomous free running model system for ship hydrodynamic studies with a view to verification of the code, the control logic and system peripherals. The computer simulation of the plant model in real-time computer does not require the actual physical system and reduces the development cost and time for control design and testing purposes. The HIL system includes: the actual programmable embedded controller along with peripherals and a plant model virtually simulated in a real-time computer. With regard to ship controller design for ship model testing, this study describes a plant model for surge and a Nomoto first order steering dynamics, both implemented using Simulink software suit. The surge model captures a quasi-steady state relationship between surge speed and the propeller rpms, obtained from simple forward speed towing tank tests or derived analytically. The Nomoto first order steering dynamics is obtained by performing the standard turning circle test at model scale. The control logic obtained is embedded in a NI-cRIO based controller. The surge and steering dynamics models are used to design a proportional-derivative controller and an LQR controller. The controller runs a Linux based real-time operating system programmed using LabVIEW software. The HIL simulation tool allows for the emulation of standard ship hydrodynamic tests consisting of straight line, turning circle and zigzag to validate the combined system performance, prior to actual for use in the autonomous free-running tests
    • …
    corecore