159,150 research outputs found

    Design space exploration revisited

    Get PDF

    Human Rockets

    Get PDF
    The objective of this handcrafted design project was to design and construct an accordion book and a cohesive package that could contain the book. The book needed to have a cover, back cover and eight pages with content that incorporated design elements and principles, as well as a historical design influence and typography/hand lettering. Key aspects from the Design Theory and Practice course were revisited, such as research, inspiration, design process, elements and principles, typography, prototyping, and refinement. To build this project, collage techniques learned in the beginning of the semester were used. In-depth research on each of the rockets’ designs was necessary to ensure the pages were designed in the correct context of this timeline and placed in order from oldest to newest. Various materials were used, including paper for the pages, printed images, and lightweight metal for a graphic representation of the James Webb space telescope on the cover. Additionally, 3D printer supplies were gathered and explored to create the hard, plastic packaging for the book. The packaging takes on the form of a rocket fairing that splits into two halves and holds the book in the center, like a payload that is being launched into space. This project provided the opportunity to use the creative process to examine space exploration in a new and original way, while learning application of the elements and principles of design to a creative project

    Revisiting Nuclear Thermal Propulsion for Human Mars Exploration

    Get PDF
    Nuclear Thermal Propulsion (NTP) has long been considered as a viable in-space transportation alternative for delivering crew and cargo to the Martian system. While technology development work in nuclear propulsion has continued over the year, general interest in NTP propulsion applications has historically been tied directly to the ebb and flow of interest in sending humans to explore Mars. As far back as the 1960s, plans for NTP-based human Mars exploration have been proposed and periodically revisited having most recently been considered as part of NASA Design Reference Architecture (DRA) 5.0. NASA has been investigating human Mars exploration strategies tied to its current Journey to Mars for the past few years however, NTP has only recently been added into the set of alternatives under consideration for in-space propulsion under the Mars Study Capability (MSC) team, formerly the Evolvable Mars Campaign (EMC) team. The original charter of the EMC was to find viable human Mars exploration approaches that relied heavily on technology investment work already underway, specifically related to the development of large Solar Electric Propulsion (SEP) systems. The EMC team baselined several departures from traditional Mars exploration ground rules to enable these types of architectures. These ground rule changes included lower energy conjunction class trajectories with corresponding longer flight times, aggregation of mission elements in cis-Lunar space rather than Low Earth Orbit (LEO) and, in some cases, the pre-deployment of Earth return propulsion systems to Mars. As the MSC team continues to refine the in-space transportation trades, an NTP-based architecture that takes advantage of some of these ground rule departures is being introduced

    The Apollo Lunar Orbit Rendezvous Architecture Decision Revisited

    Get PDF
    This conference features the work of authors from: Georgia Tech’s Space Systems Design Lab, Aerospace Systems Design Lab, School of Aerospace Engineering, Georgia Tech Research Institute; NASA’s Jet Propulsion Laboratory, Marshall Space Flight Center, Goddard Space Flight Center, Langley Research Center; and other aerospace industry and academic institutionsThe 1962 Apollo architecture mode decision process was revisited with modern analysis and systems engineer tools to determine driving selection criteria and technology/operational mode design decisions that may be used for NASA’s current Space Exploration program. Results of the study agreed with the Apollo selection of the Lunar Orbit Rendezvous mode based on the technology maturity and politics in 1962. Using today’s greater emphasis on human safety and improvements in technology and design maturity, a slight edge may be given to the direct lunar mode over lunar orbit rendezvous. Also, the NOVA direct mode and Earth orbit rendezvous mode are not competitive based any selection criteria. Finally, reliability and development, operations, and production costs are major drivers in today’s decision process.AIAA Space Systems Technical Committee ; AIAA Space Transportation Systems Technical Committee ; Space Technology Advanced Research Cente

    A GPU-accelerated Branch-and-Bound Algorithm for the Flow-Shop Scheduling Problem

    Get PDF
    Branch-and-Bound (B&B) algorithms are time intensive tree-based exploration methods for solving to optimality combinatorial optimization problems. In this paper, we investigate the use of GPU computing as a major complementary way to speed up those methods. The focus is put on the bounding mechanism of B&B algorithms, which is the most time consuming part of their exploration process. We propose a parallel B&B algorithm based on a GPU-accelerated bounding model. The proposed approach concentrate on optimizing data access management to further improve the performance of the bounding mechanism which uses large and intermediate data sets that do not completely fit in GPU memory. Extensive experiments of the contribution have been carried out on well known FSP benchmarks using an Nvidia Tesla C2050 GPU card. We compared the obtained performances to a single and a multithreaded CPU-based execution. Accelerations up to x100 are achieved for large problem instances

    Mediating between AI and highly specialized users

    Get PDF
    We report part of the design experience gained in X-Media, a system for knowledge management and sharing. Consolidated techniques of interaction design (scenario-based design) had to be revisited to capture the richness and complexity of intelligent interactive systems. We show that the design of intelligent systems requires methodologies (faceted scenarios) that support the investigation of intelligent features and usability factors simultaneously. Interaction designers become mediators between intelligent technology and users, and have to facilitate reciprocal understanding

    Enhancing Creativity in Interaction Design: Alternative Design Brief

    Get PDF
    This paper offers a critique of the design brief as it is currently used in teaching interaction design and proposes an alternative way of developing it. Such a design brief requires the exploration of alternative application domains for an already developed technology. The paper presents a case study where such a novel type of design brief has been offered to the students taking part in a collaborative design project and discusses how it supported divergent thinking and creativity as well as helped enhancing the learning objectives

    Optimization of patch antennas via multithreaded simulated annealing based design exploration

    Get PDF
    In this paper, we present a new software framework for the optimization of the design of microstrip patch antennas. The proposed simulation and optimization framework implements a simulated annealing algorithm to perform design space exploration in order to identify the optimal patch antenna design. During each iteration of the optimization loop, we employ the popular MEEP simulation tool to evaluate explored design solutions. To speed up the design space exploration, the software framework is developed to run multiple MEEP simulations concurrently. This is achieved using multithreading to implement a manager-workers execution strategy. The number of worker threads is the same as the number of cores of the computer that is utilized. Thus, the computational runtime of the proposed software framework enables effective design space exploration. Simulations demonstrate the effectiveness of the proposed software framework

    Implicit Measures of Lostness and Success in Web Navigation

    Get PDF
    In two studies, we investigated the ability of a variety of structural and temporal measures computed from a web navigation path to predict lostness and task success. The user’s task was to find requested target information on specified websites. The web navigation measures were based on counts of visits to web pages and other statistical properties of the web usage graph (such as compactness, stratum, and similarity to the optimal path). Subjective lostness was best predicted by similarity to the optimal path and time on task. The best overall predictor of success on individual tasks was similarity to the optimal path, but other predictors were sometimes superior depending on the particular web navigation task. These measures can be used to diagnose user navigational problems and to help identify problems in website design
    • …
    corecore