2,681 research outputs found

    Parametric Modeling of Machine Tools

    Get PDF
    The chapter deals with the problems of machine tool computer-aided design (CAD) based on the methods and means of parameterization for the main components of metal-cutting machine and equipment in the CAD “APM WinMachine” environment. The models and algorithms of parametric modeling for the configurations of machine tool milling and multioperational type by the criteria of maximum rigidity and minimum reduced load on the front spindle support are developed. The express procedure for generating the transverse layout of the main drive in the multivariate design mode has been implemented

    Efficient CAD based adjoint optimization of turbomachinery using adaptive shape parameterization

    Get PDF
    The present thesis incorporates the CAD model into an adjoint-based optimization loop and uses it for the shape optimization of a 2D transonic turbine blade mid-section (profile). This is demonstrated by performing a single and multipoint optimization of the LS89 turbine, originally designed at the VKI. Substantial aerodynamic improvements are reported for both design point and off-design conditions.The case is deeply analysed from the flow analysis point of view. The present thesis is a step forward in three main aspects. First, the way the CAD model (for turbomachinery applications) is used within the shape optimization loop.To include the CAD model into the optimization loop, the CAD kernel and the grid generator (multiblock structured) are differentiated using the Algorithmic Differentiation (AD) tool ADOL-C. The advantage of including the CAD model in the design system is that assembly or manufacturing constraints can be imposed on the shape, allowing the optimized model or component to be manufactured. Second, a new definition of the parametric effectiveness indicator is proposed, based on the ability of a set of CAD-based design variables to produce a shape change using the adjoint sensitivities. An interesting thing is that parametric effectiveness considers the design variables can be non-orthogonal to each other and it can be applied to any type of constrained or unconstrained problems. If, in the beginning of the optimization, the parametric effectiveness is high, it is expected to reach a final solution with increased performance. Third, a new adaptive shape parameterization strategy is adopted, which is assisted by the above parametric effectiveness indicator in order to explore the design space more efficiently. The parametric effectiveness, which rates the quality of a CAD based parameterization for optimization, is used in a novel multilevel shape refinement procedure to: (1) introduce the minimum amount of design variables required to modify the shape in the direction the adjoint sensitivities dictate; (2) to create the best parameterization to be used during the optimization. By using the proposed methods and tools, not only the optimal geometry is defined by the CAD, which is the industry adopted standard for the design of components, but also, the designer avoids the use of either too few (slow improvements from cycle to cycle) or too many (increase the computational burden) design variables. The proposed methodology results to be an effective strategy to explore rich design spaces, to improve convergence rate, robustness and final solution of the adjoint-based optimization.Aquesta tesi incorpora el model de CAD en un procés iteratiu d'optimització basat en el mètode adjunt i l'utilitza per a l'optimització de la secció d'una turbina transónica 2D (perfil). Això es demostra realitzant una optimització de punt únic i multipunt de la turbina LS89, originalment dissenyada en el VKI. Es reporten millores aerodinàmiques substancials tant per al punt de disseny com per les condicions fora del disseny. El cas s'analitza en profunditat des del punt de vista aerodinàmic. Aquesta tesi representa un avanç en tres aspectes principals. Primer, la forma en què es fa servir el model CAD (per a aplicacions de turbomàquines) dins el procés d'optimització. Per incloure el model CAD en el bucle d'optimització, s'apliquen tècniques de diferenciació algorítmica (l'eina ADOL-C) al kernel del CAD i el generador de la malla (estructurada i multibloc). L'avantatge d'incloure el model CAD en el sistema de disseny és que es poden imposar restriccions de fabricació a la geometria, i això permet que el disseny ja optimitzat es pugui fabricar. En segon lloc, es proposa una nova definició de l'indicador d'efectivitat paramètrica, basat en la capacitat de produir el canvi en la geometria que dicta el mètode adjunt mitjançant l'ús de les variables de disseny que defineixen el model CAD. Cal destacar que l'efectivitat paramètrica considera que les variables de disseny poden ser no ortogonals entre si i es pot aplicar a qualsevol tipus de problemes restringits o no restringits. Si, al començament de l'optimització, l'efectivitat paramètrica és alta, s'espera que l'optimització arribi a una solució final amb major rendiment. En tercer lloc, s'adopta una nova estratègia de parametrització adaptativa, que és assistida per l'indicador d'efectivitat paramètrica anterior per explorar l'espai de disseny de manera més eficient. L'efectivitat paramètrica, que classifica la qualitat d'una parametrització basada en CAD per a l'optimització, s'utilitza en un nou procediment de refinament multinivell per: (1) introduir la quantitat mínima de variables de disseny requerides per modificar la geometria en la direcció que dicten les sensibilitats del mètode adjunt; (2) per crear la millor parametrització que s'utilitzarà durant l'optimització. En utilitzar els mètodes i eines proposats, no només la geometria òptima està definida en el model CAD, que és l'estàndard adoptat per la indústria per al disseny de components, sinó que també el dissenyador evita l'ús de molt poques (millores lentes de cicle a cicle) o massa variables de disseny (augmenten la càrrega computacional). La metodologia proposada resulta ser una estratègia efectiva per explorar espais de disseny enriquits, millora la taxa de convergència, la solidesa i la solució final de l'optimització basada en el mètode adjunt

    Efficient CAD based adjoint optimization of turbomachinery using adaptive shape parameterization

    Get PDF
    The present thesis incorporates the CAD model into an adjoint-based optimization loop and uses it for the shape optimization of a 2D transonic turbine blade mid-section (profile). This is demonstrated by performing a single and multipoint optimization of the LS89 turbine, originally designed at the VKI. Substantial aerodynamic improvements are reported for both design point and off-design conditions.The case is deeply analysed from the flow analysis point of view. The present thesis is a step forward in three main aspects. First, the way the CAD model (for turbomachinery applications) is used within the shape optimization loop.To include the CAD model into the optimization loop, the CAD kernel and the grid generator (multiblock structured) are differentiated using the Algorithmic Differentiation (AD) tool ADOL-C. The advantage of including the CAD model in the design system is that assembly or manufacturing constraints can be imposed on the shape, allowing the optimized model or component to be manufactured. Second, a new definition of the parametric effectiveness indicator is proposed, based on the ability of a set of CAD-based design variables to produce a shape change using the adjoint sensitivities. An interesting thing is that parametric effectiveness considers the design variables can be non-orthogonal to each other and it can be applied to any type of constrained or unconstrained problems. If, in the beginning of the optimization, the parametric effectiveness is high, it is expected to reach a final solution with increased performance. Third, a new adaptive shape parameterization strategy is adopted, which is assisted by the above parametric effectiveness indicator in order to explore the design space more efficiently. The parametric effectiveness, which rates the quality of a CAD based parameterization for optimization, is used in a novel multilevel shape refinement procedure to: (1) introduce the minimum amount of design variables required to modify the shape in the direction the adjoint sensitivities dictate; (2) to create the best parameterization to be used during the optimization. By using the proposed methods and tools, not only the optimal geometry is defined by the CAD, which is the industry adopted standard for the design of components, but also, the designer avoids the use of either too few (slow improvements from cycle to cycle) or too many (increase the computational burden) design variables. The proposed methodology results to be an effective strategy to explore rich design spaces, to improve convergence rate, robustness and final solution of the adjoint-based optimization.Aquesta tesi incorpora el model de CAD en un procés iteratiu d'optimització basat en el mètode adjunt i l'utilitza per a l'optimització de la secció d'una turbina transónica 2D (perfil). Això es demostra realitzant una optimització de punt únic i multipunt de la turbina LS89, originalment dissenyada en el VKI. Es reporten millores aerodinàmiques substancials tant per al punt de disseny com per les condicions fora del disseny. El cas s'analitza en profunditat des del punt de vista aerodinàmic. Aquesta tesi representa un avanç en tres aspectes principals. Primer, la forma en què es fa servir el model CAD (per a aplicacions de turbomàquines) dins el procés d'optimització. Per incloure el model CAD en el bucle d'optimització, s'apliquen tècniques de diferenciació algorítmica (l'eina ADOL-C) al kernel del CAD i el generador de la malla (estructurada i multibloc). L'avantatge d'incloure el model CAD en el sistema de disseny és que es poden imposar restriccions de fabricació a la geometria, i això permet que el disseny ja optimitzat es pugui fabricar. En segon lloc, es proposa una nova definició de l'indicador d'efectivitat paramètrica, basat en la capacitat de produir el canvi en la geometria que dicta el mètode adjunt mitjançant l'ús de les variables de disseny que defineixen el model CAD. Cal destacar que l'efectivitat paramètrica considera que les variables de disseny poden ser no ortogonals entre si i es pot aplicar a qualsevol tipus de problemes restringits o no restringits. Si, al començament de l'optimització, l'efectivitat paramètrica és alta, s'espera que l'optimització arribi a una solució final amb major rendiment. En tercer lloc, s'adopta una nova estratègia de parametrització adaptativa, que és assistida per l'indicador d'efectivitat paramètrica anterior per explorar l'espai de disseny de manera més eficient. L'efectivitat paramètrica, que classifica la qualitat d'una parametrització basada en CAD per a l'optimització, s'utilitza en un nou procediment de refinament multinivell per: (1) introduir la quantitat mínima de variables de disseny requerides per modificar la geometria en la direcció que dicten les sensibilitats del mètode adjunt; (2) per crear la millor parametrització que s'utilitzarà durant l'optimització. En utilitzar els mètodes i eines proposats, no només la geometria òptima està definida en el model CAD, que és l'estàndard adoptat per la indústria per al disseny de components, sinó que també el dissenyador evita l'ús de molt poques (millores lentes de cicle a cicle) o massa variables de disseny (augmenten la càrrega computacional). La metodologia proposada resulta ser una estratègia efectiva per explorar espais de disseny enriquits, millora la taxa de convergència, la solidesa i la solució final de l'optimització basada en el mètode adjunt.Postprint (published version

    Grid-enabled Workflows for Industrial Product Design

    No full text
    This paper presents a generic approach for developing and using Grid-based workflow technology for enabling cross-organizational engineering applications. Using industrial product design examples from the automotive and aerospace industries we highlight the main requirements and challenges addressed by our approach and describe how it can be used for enabling interoperability between heterogeneous workflow engines

    Development of Integrated Intelligent Cad System for Design of Shafts

    Get PDF
    Integrated intelligent CAD systems (IICAD) can be developed for different purposes. The objective of this article is to emphasize the advantages of the use of IICAD systems in comparison with the classic systems. The article shows a structure of one such developed system, namely the IICADv system. This system is used for automatization of activities undertaken during the realization of certain phases of the process of designing of shafts, especially the synthesis phase. The development of a module for computation of the shaft and integration of the entire system was performed in the C# programming language, while shaping of the shaft was performed in the CATIA system. The interlinking was performed thanks to previously modelled basic 3D models. In such way, utilizing the advanced IICADv system, the computation and shaping of the shaft is done almost instantly. The results of the use of the IICADv systems are generated final 3D models of the shaft, ready for use by numerous other applications

    Parametric design velocity computation for CAD-based design optimization using adjoint methods

    Get PDF
    This paper presents an efficient optimization process, where the parameters defining the features in a feature-based CAD model are used as design variables. The process exploits adjoint methods for the computation of gradients, and as such the computational cost is essentially independent of the number of design variables, making it ideal for optimization in large design spaces. The novelty of this paper lies in linking the adjoint surface sensitivity information with geometric sensitivity values, referred to as design velocities, computed for CAD models created in commercial CAD systems (e.g. CATIA V5 or Siemens NX)

    Preliminary Design of Blade and Disc Fixing for Aerospace Application using Multi-Disciplinary Approach

    Get PDF
    The preliminary design phase of a turbine rotor has an important impact on the architecture of a new engine definition, as it sets the technical envelope of the product to be designed. Additionally, preliminary design cycle times are increasingly critical in capturing business opportunities in an ever competitive environment. Improving the accuracy of the preliminary design (pre-detailed design) is also necessary as not only does it significantly reduce the overall development of an engine, but also because any mistakes made at this stage can be extremely hard to rectify. Previously, typical pre-detail fixing design cycle time was greater due to the lack of communication between specialist owned and built software and non-optimized data management. This paper presents a way to change that by detailing a single platform Design and Analysis tool for the fixing as part of a larger pre-detailed design tool. The fixing tool created allows the user, through a single graphical user interface, to design and analyze a fixing using tools for each discipline through the integration of C.A.D. & F.E.A running in batch mode. Apart from significantly reducing design cycle time, the fixing tool is also seeking to improve the quality of the fixings and is extremely user friendly as it provides the design engineer all the information he would need for the pre-detailed design of a fixing at his finger tips

    Parameterization of a Next Generation In-Vivo Forward Solution Physiological Model of the Human Lower Limb to Simulate and Predict Demographic and Pathology Specific Knee Mechanics

    Get PDF
    The human knee from a mechanical perspective is arguably one of the more complex of the joints of the human body and for this very reason there are a number of pathological factors that can adversely affect knee function, leading to pain, stiffness and an overall reduced quality of life. To rectify these disease conditions, a variety of intervention techniques exist, all of which are predicated on a thorough understanding of the forces and motions that occur at the knee.Various techniques have been developed to further the understanding of how the knee functions; however, many of these strategies involve time and cost consuming processes in order to assess functionality of the knee. Mathematical modeling is a methodology that uses mathematical equations of motion to solve for forces, or in the case of forward modeling, motions given a known set of forces. Such a model is capable of replicating the functionality of the knee in vivo.One application of such a model is in the context of total knee arthroplasty design. Intended for the restoration of functionality after late stage osteoarthritis, total knee arthroplasty devices are highly dependent on their associated design features and the use of a theoretical model affords the opportunity to test the performance of a device without ever needing to manufacture or implant it.In addition, there are also surgical applications where a mathematical model can test joints that otherwise cannot be evaluated under conventional means. This includes modeling of the healthy knee, as well as various functionality-limiting pathological conditions. Perhaps more importantly is the ability to evaluate different intervention techniques to determine the effectiveness in doing so identify which technique most effectively resolves the pathological issues.Advances to the model have focused on parameterization while contributing to a validated normal knee model, an enhancement on the efficiency of the muscles that drive flexion, facilitated methods to evaluate articular geometries and enhancements providing more realistic physiological motions. The model has also been enhanced to account for demographics, as well as abnormal pathology with additional parameters added to better understand gait mechanics at the knee
    corecore