94 research outputs found

    A Time-Triggered Constraint-Based Calculus for Avionic Systems

    Full text link
    The Integrated Modular Avionics (IMA) architec- ture and the Time-Triggered Ethernet (TTEthernet) network have emerged as the key components of a typical architecture model for recent civil aircrafts. We propose a real-time constraint-based calculus targeted at the analysis of such concepts of avionic embedded systems. We show our framework at work on the modelisation of both the (IMA) architecture and the TTEthernet network, illustrating their behavior by the well-known Flight Management System (FMS)

    Design Optimization of Cyber-Physical Distributed Systems using IEEE Time-sensitive Networks (TSN)

    Get PDF
    In this paper we are interested in safety-critical real-time applications implemented on distributed architectures supporting the Time-SensitiveNetworking (TSN) standard. The ongoing standardization of TSN is an IEEE effort to bring deterministic real-time capabilities into the IEEE 802.1 Ethernet standard supporting safety-critical systems and guaranteed Quality-of-Service. TSN will support Time-Triggered (TT) communication based on schedule tables, Audio-Video-Bridging (AVB) flows with bounded end-to-end latency as well as Best-Effort messages. We first present a survey of research related to the optimization of distributed cyber-physical systems using real-time Ethernet for communication. Then, we formulate two novel optimization problems related to the scheduling and routing of TT and AVB traffic in TSN. Thus, we consider that we know the topology of the network as well as the set of TT and AVB flows. We are interested to determine the routing of both TT and AVB flows as well as the scheduling of the TT flows such that all frames are schedulable and the AVB worst-case end-to-end delay is minimized. We have proposed an Integer Linear Programming (ILP) formulation for the scheduling problem and a Greedy Randomized Adaptive Search Procedure (GRASP)-based heuristic for the routing problem. The proposed approaches have been evaluated using several test cases

    Design of Mixed-Criticality Applications on Distributed Real-Time Systems

    Get PDF

    Traffic class assignment for mixed-criticality frames in TTEthernet

    Get PDF
    In this paper we are interested in mixed-criticality applications, which have functions with different timing requirements, i.e., hard real-time (HRT), soft real-time (SRT) and functions that are not time-critical (NC). The applications are implemented on distributed architectures that use the TTEthernet protocol for communication. TTEthernet supports three traffic classes: Time-Triggered (TT), where frames are transmitted based on static schedule tables; Rate Constrained (RC), for dynamic frames with a guaranteed bandwidth and bounded delays; and Best Effort (BE), for which no timing guarantees are provided. HRT messages have deadlines, whereas for SRT messages we capture the quality-of-service using "utility functions". Given the network topology, the set of application messages and their routing, we are interested to determine the traffic class of each message, such that all HRT messages are schedulable and the total utility for SRT messages is maximized. For the TT frames we decide their schedule tables, and for the RC frames we decide their bandwidth allocation. We propose aTabu Search-based metaheuristic to solve this optimization problem. The proposed approach has been evaluated using several benchmarks, including two realistic test cases.</jats:p

    A Modeling and Verification Approach to the Design of Distributed IMA Architectures Using TTEthernet

    Get PDF
    AbstractIntegrated Modular Avionics (IMA) architectures complemented with Time-Triggered Ethernet (TTEthernet) provides a strong platform to support the design and deployment of distributed avionic software systems. The complexity of the design and continuous integration of such systems can be managed using a model-based methodology. In this paper, we build on top of our extension of the AADL modeling language to model TTEthernet-based distributed systems and leverage model transformations to enable undertaking the verification of the system models produced with this methodology. In particular, we propose to transform the system models to a model suitable for a simulation with DEVS. We illustrate the proposed approach using an example of a navigation and guidance system and we use this example to show the verification of the contention-freedom property of TTEthernet schedule

    Simulation of Mixed Critical In-vehicular Networks

    Full text link
    Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with ECU in cars will be built on Ethernet technologies. However, signalling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the TSN Ethernet extensions. These QoS constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car
    • …
    corecore