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ABSTRACT
Time-Sensitive Networking (TSN) is a set of IEEE standards that
extend Ethernet for safety-critical and real-time applications. TSN
is envisioned to be widely used in several applications areas, from
industrial automation to in-vehicle networking. A TSN network
is composed of end systems interconnected by physical links and
bridges (switches). The data in TSN is exchanged via streams. We
address safety-critical real-time systems, and we consider that the
streams use the Urgency-Based Scheduler (UBS) traffic-type, suit-
able for hard real-time traffic. We are interested in determining
a fault-tolerant network topology, consisting of redundant phys-
ical links and bridges, the routing of each stream in the applica-
tions, such that the architecture cost is minimized, the applications
are fault-tolerant (i.e., the critical streams have redundant disjoint
routes), and the timing constraints of the applications are satisfied.
We propose three approaches to solve this optimization problem: (1)
a heuristic solution, (2) a Greedy Randomized Adaptive Search Pro-
cedure (GRASP) metaheuristic, and (3) a Constraint Programming-
based model. The approaches are evaluated on several test cases,
including a test case from General Motors Company.

CCS CONCEPTS
•Computer systems organization→ Fault-tolerant network
topologies;

KEYWORDS
Safety-Critical Systems, TSN, Fault-Tolerant Architectures

1 INTRODUCTION
Many safety-critical real-time applications, following physical, mod-
ularity or safety constraints, are implemented using distributed ar-
chitectures, composed of heterogeneous processing elements (PEs)
embedded in “smart” devices which are interconnected in a network.
A large number of communication protocols have been proposed
for embedded systems. However, only a few protocols are suitable
for safety-critical real-time applications [22]. In this paper, we are
interested in the protocol colloquially known as Time-Sensitive Net-
working (TSN) [33]. TSN is used in several application areas, from
industrial automation to automotive architectures. For example, in
the automotive area, fault-tolerant TSN networks are envisioned
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in future autonomous driving architectures, since they have the
bandwidth requirements to integrate traffic from multiple sensors
and the dependability required for autonomous driving.

Ethernet [14], although it has low cost and high speed, is known
to be unsuitable for real-time and safety-critical applications [6].
For example, in half-duplex implementations, frame collision is
unavoidable, leading to unbounded transmission times. [6] presents
the requirements for a real-time network and how Ethernet can
be improved to comply with these requirements. Several real-time
communication solutions based on Ethernet have been proposed.
[23] and [5] describe and compare several of the proposed Ethernet-
based real-time communication protocols.

TSN [33] is a set of sub-standards which extend the IEEE 802.1
standards (for switched Ethernet networks) for safety-critical and
real-time applications. First, IEEE 802.1Q-20051 introduced sup-
port for prioritizing the Best-Effort (BE) traffic in order to improve
Quality of Services (QoSs). Following this, the IEEE Audio-Video-
Bridging (AVB) Task Group was formed to develop another set of
enhancements, namely IEEE 802.1BA known as AVB. This stan-
dard introduces two new shaped AVB traffic-types, with bounded
Worst-Case end-to-end Delays (WCDs). In 2012, the AVB Task Group
was renamed to IEEE 802.1 Time-Sensitive Networking Task Group
to reflect the shifted focus onto further extending the protocol
towards safety-critical and time-sensitive transmissions, and has
introduced new traffic types such as Time-Triggered (TT) [29] and
Urgency-Based Scheduler (UBS) [26].

In this paper, we are interested in safety-critical real-time appli-
cations. We consider that the application messages use the Urgency-
Based Scheduler (UBS) traffic-type IEEE 802.1Qcr [32]. UBS is an
asynchronous traffic scheduling algorithm, which gives low delay
guarantees while maintaining a low implementation complexity. It
also provides a temporally-composable timing analysis, see Sect. 4
and [26] for more details. Compared to the TT traffic type, UBS
does not require schedule tables, which can be difficult to create,
and compared to AVB, UBS guarantees lower latencies and has a
simpler and faster timing analysis. However, although we consider
UBS in this paper, our approach can handle any combination of
traffic types, as long as a timing analysis is available. The choice of
traffic type depends on the characteristics of the applications, and
the problem of determining the appropriate traffic types has been
addressed in [8] for mixed-criticality traffic in TTEthernet.

TSN is highly suitable for applications of different safety critical-
ity levels, as it offers spatial separation for mixed-criticality traffic
through the concept of Virtual Local Area Network (VLAN), as well
as temporal separation through the various traffic type mechanisms.
A TSN network is composed of End Systems (ESes) interconnected
by physical links and Network Switches, also known in TSN as

1We will not provide references for all standards, but these can be easily found based
on their names.
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Bridges (Bs). The links are full duplex, and the network can be
multi-hop, see Sect. 2 for the architecture model. The data in TSN
is exchanged via streams, see Sect. 3 for the application model. Be-
cause we target safety-critical applications, we consider that the
routing of streams is determined statically at design time. How-
ever, non-critical streams can use dynamic route and bandwidth
reservation mechanisms provided by TSN, see [13] and [30].

We are targeting safety-related systems, which have to be devel-
oped according to certification standards; for example, IEC 61508
is used in industrial applications, ISO 26262 is for the automotive
area, whereas DO 178C refers to software for airborne systems.
Considering the current certification practice, we assume that the
engineer will specify for each application, depending on its critical-
ity, the required Redundancy Level (RL). At the level of the network
topology, this translates into requirements for redundant disjoint
routes between the ESes involved in the communication. Thus, if a
physical link or a bridge will fail, the other routes can still deliver
the information by the deadlines. The current approach in such a
situation is to use hardware redundancy at the network level and
replicate the complete network, as discussed by [2] for an avionics
network. Such a solution may not be scalable in terms of weight,
space, and resource efficiency for application areas where functions
have varying redundancy requirements.

In this paper, our focus is on determining a low-cost fault-tolerant
network architecture, which can guarantee the safety and real-time
requirements of the applications. We assume that the applications
and ESes are given and that the designer has established the redun-
dancy levels, depending on the criticality of the applications. We are
interested in determining a fault-tolerant network topology, con-
sisting of redundant physical links and bridges, the routing of each
stream in the applications, such that the architecture cost is mini-
mized, the applications are fault-tolerant (i.e., the critical streams
have RL redundant disjoint routes), and the timing constraints of
the applications are satisfied.

Contributions: This is the first time, to our knowledge, that the
problems of (i) topology synthesis and (ii) routing of time-sensitive
traffic have been addressed for TSN. We propose three strategies
to solve these problems: (1) a fast heuristic solution, (2) a Greedy
Randomized Adaptive Search Procedure (GRASP) metaheuristic
that finds good quality solutions in a reasonable time, and (3) a
Constraint Programming-based model that searches for the optimal
solution.

The paper is organized as follows. The next section presents the
related work. Sect. 2 and Sect. 3 present the topology architecture
and traffic models used in the paper. The concepts related to TSN
relevant for our paper are presented in Sect. 4. The problem for-
mulation is presented in Sect. 5 and illustrated with a motivational
example in Sect. 5.1. The proposed optimization strategies are pre-
sented in Sect. 6, and Sect. 7 presents our experimental evaluation.

1.1 Related Work
Researchers have started to address the analysis and optimization
of “Deterministic Ethernet” (DE) protocols, such as TTEthernet,
Industrial Ethernet and TSN. The problem of determining the net-
work topology, i.e., the number of bridges and their interconnection
via physical links and to the end systems, is called network planning
and design. This problem has been addressed for DE in the context
of Industrial Ethernet [16] and TTEthernet in aerospace [27].

In the telecommunications area, there is a lot of work on network
reliability and redundancy optimization. An annotated overview
of system reliability optimization, which covers also network reli-
ability is presented in [17]. In [15], the authors present the latest
research results in network reliability optimization. Several net-
work reliability measures have been proposed in the literature, such
as connectivity, resilience and performability. Researchers have pro-
posed several approaches to the optimization problem, including
heuristics, metaheuristics and exact solutions based, for example,
on mathematical programming [15].

However, these results cannot be applied directly to DE. One
of the basic assumptions of earlier works on network reliability
optimization is that once a fault is detected, the network will recon-
figure itself to avoid the fault. That is, new routes will be found for
messages. In the case of DE the routes for safety-critical applica-
tions are typically static: they are loaded into the end systems and
network switches at design time, and it is not possible to change
the routing dynamically, at runtime. In this context, researchers
have prosed a fault-tolerant topology selection for TTEthernet [9].
However, for non-critical applications, runtime reconfiguration,
including routing, is a relevant problem.

Routing optimization is a well-studied subject where Wang et
al. [35] and Grammatikakis et al. [11] provide excellent overviews
of the different centralized and distributed routing algorithms. Re-
searchers have also addressed routing in safety-critical systems [12],
[20]. For ARINC 664p7, Al Sheikh et al. [1] proposed an approach
to find the optimal routes in ARINC 664p7 networks using Mixed
Integer Linear Programming. Tămaş-Selicean et al. [28] have used
a Tabu Search-based metaheuristic to, among other things, opti-
mize the routing of the RC traffic type to minimize the WCDs in
TTEthernet systems.

Regarding routing in TSN, AVB flows are typically established
at runtime using the Stream Reservation Protocol (SRP) [30] where
either the Rapid Spanning Tree Protocol (RSTP) or Shortest Path
Bridging (SPB) are used to determine the routing. The future en-
hancements around TSN will support more sophisticated runtime
routing algorithms, and the possibility to also determine the routes
offline. Researchers have proposed an offline routing optimization
approach for AVB in [18]. However, routing for time-sensitive traf-
fic types such as TT and UBS has not been addressed previously.

2 ARCHITECTURE MODEL
Wemodel the architecture, which is a TSN network as an undirected
graph G (V, E), where the vertices (or nodes)V = ES ∪B denote
the set of all End Systems (ESes) and network switches, usually
denoted in TSN as Bridges (Bs), respectively. The edges E are the
full-duplex physical links interconnecting the ESes and Bs. An ES
can be of several types. For example, in automotive architecture,
an ES is typically an Electronic Control Unit (ECU) composed of a
CPU, memory, and I/Os. However, an ES could also be an intelligent
sensor such as video camera, radar, or LiDAR. All ESes regardless
of their type have a Media-Independent Interface (MII) connector
which is a full-duplex digital interface to connect the ES to the
network. Fig. 1 shows an example network with 4 ESes and 4 Bs.

In this paper, for the given set of ESes, we determine the set of
bridges, B to be used and the physical interconnections. We assume
that the system engineer provides a network component library L
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including a set of bridge types BT and a set of physical link types
LT . Such a library will be defined based on the TSN bridges and
physical links available on the market and suitable for the applica-
tion area considered. For example, TTTech Computertechnik AG
and Infineon Technologies AG provide TSN bridges, for the automo-
tive area, with different number of ports and different physical layer
technologies, such as the IEEE 802.3 standards for automotive 100
Mbit/s and 1 Gbit/s Ethernet. Our approach is general and can be
applied in several areas from automotive to industrial automation.

The library is defined as L = (BT ,LT ,BC), where BT is a set
of bridge types, and LT is the set of physical link types. In general,
an ES can be connected to any bridges. However, in practice, there
can be constraints that limit the type of bridges and physical links
that can be used by an ES. For example, a video camera could impose
a limit on the fit of the bridge (due to the fact that the ES and bridge
are packaged into the same electrical component), such that it fits
together with the camera in the desired location in the vehicle.
Therefore, there are packaging constraints for some ESes that limit
the network topology synthesis. We capture the bridge constraints
with the function BC, which is a mapping from an End System ESi
to the limited set of the bridge and physical link types that can be
used by ESi . In Fig. 1 all bridges have assigned the bridge type bt2,
which has 1 internal and 3 external ports.

Id Cost
No.int.
ports

No.ext.
ports

bt1 2 1 2
bt2 8 1 3
bt3 10 2 2

Id Cost Speed
Mbit/s

Int./Ext.

lt1 7 100 Ext.
lt2 1 1000 Int.

Table 1: Example library L

We use two functions to specify the type of the bridges and the
physical links used within the architecture network. The first func-
tion BT : B 9 BT , specifies the type of a bridge, e.g., BT (B1) = bt2
in Fig. 2. The other function LT : E 9 LT , specifies the type for
each link in the network topology, e.g., LT (l1) = lt1. We represent
the monetary cost of a bridge, ES, and physical link as cost, e.g.,
B1.cost = 8. We denote the transmission rate of a physical link as
speed, e.g., l1.speed = 100 Mbit/s, the connectivity type of a physi-
cal link as lct, e.g., l1.lct = Ext, and the number of int. and ext. ports
of a bridge as noIntPorts and noExtPorts, e.g., B1.noIntPorts = 1.

Similar to the network engineering practice, we will allow the
“chaining” of several bridges to construct a new type of bridge, that
has more ports, hence supporting more connections. Fig. 2 shows an
automotive ECU with a microcontroller ES1 connected to a bridge
that is built from chaining two bridges B1 and B2 of types bt3 and
bt1, respectively.

We distinguish between two types of connections: internal links,
which are between the MIIs of ESes and bridges, and external links,

ES1

ES4

B1bt2

B4bt2

B2bt2

B3bt2

ES2

ES3

s1 s2

s3

Figure 1: Architecture model example

ES1 B1bt3 B2bt1

MII MII

MIIMII

l1l t2

Figure 2: Chaining bridges

which connects two bridges using a physical connector, colloquially
known as PHY. A PHY consists of a physical digital to analog
converter, as well as filters to support the bit rate with the required
signal qualities within the operating environment, and a connector
to the wiring, for example. Both internal and external links are
physical links denoted as li , li ∈ E, which are bidirectional. We call
a link connectivity ESes to bridges an internal link because there are
application areas, e.g., automotive, where the bridge is integrated
with the ES on the same board, so the internal link is a connection
on the PCB between the pins of the microcontroller/sensor and
the pins of the TSN bridge. Such an internal link is more reliable
compared to an external link, which is susceptible to PHY connector
failures, see Sect. 3.1 for the fault model.

A dataflow link (DL) dlj represents a directed connection on a
physical link li , (ES1 −B1) from Fig. 1 for example. A dataflow path
(DP) dpk is a sequence of interconnected DLs. Such a path in Fig. 1
is [(ES1 − B1), (B1 − B4), (B4 − ES4)]. The set of all DLs is denoted
with DL and the set of all DPs is DP.

3 APPLICATION MODEL
The safety-critical real-time applications are modeled as periodic
tasks distributed on the ESes. Our application model captures the
communication among tasks via streams. A stream is denoted as si
and the set of all streams is denoted S. Streams may be multicast,
so each stream si has a source si .src, which is an ES, and has one
or multiple destinations ESes si .dests. The messages transmitted
in a stream may be split into several packets, and each packet
is wrapped in an Ethernet frame. The messages of a stream may
have to be fragmented into several packets, if their length is larger
than the Ethernet Maximum Transmission Unit (MTU) of 1,500
bytes. The problem of message fragmenting and frame packing is
orthogonal to our problem, and has been addressed in the context
of Deterministic Ethernet [28].

We use the leaky bucket traffic model in this paper, see [26]
for more details, which means that each stream si is characterized
by a burstiness si .B, which represents the maximum amount of
data that can be transmitted at once, and a leak rate si .R. Our
application model can accept any type of streams which satisfy
the leaky bucket constraint, i.e., for a stream si the total amount
of data wi accumulated on a duration d is bounded by wi (d ) ≤
si .B + d · si .R. Each frame of a stream si ∈ S has a deadline si .D
by which the frame has to arrive at its destinations, relative to the
releasing of each frame. The advantage of such a traffic model is
its versatility: it can model strictly periodic streams with fixed size
frames, sporadic streams, as well as variable sized frames useful for
multimedia data and large data payloads that need to be transmitted
in back-to-back frames, see [26] for more details. For example, a
strictly periodic stream si , with a packet size si .size a period si .T
and an absolute deadline si .deadline by which the message need
to be delivered, can be modeled with the leaky bucket model as:

3
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Id Src. Dests. B
in B

R
in ms

D
in ms

rl

s1 ES1 ES3,ES4 150 15 7 1
s2 ES2 ES3,ES4 100 10 4.5 1
s3 ES4 ES1,ES2 100 10 4 2

Table 2: Application model example

si .R = si .size/si .T and si .B = si .size and si .D = si .deadline. An
aperiodic stream with a maximum allowed amount of data si .size
exceedingMTU and aminimum inter-arrival time, which is denoted
si .T , can be similarly modeled with all frames on which the streams
is fragmented inheriting the stream’s relative deadline si .D.

We model the routing of a stream as a Multicast Tree mts (si ), a
direct structure with the source as root and destinations as leaves.
MT s is the set of all multicast trees. Fig. 1 shows 4 trees. For
example, mts (s1) for the stream s1 from ES1 to ES3 and ES4, has
the route ES1 − B1 − [[B3 − ES3], [B4 − ES4]] depicted with a thick
green dashed arrow. For each original stream si ∈ S we denote with
s
j
i , 1 ≤ j ≤ si .rl its jth redundant copy, s1i being si itself, and si .rl
is the stream’s redundancy level, see Sect. 3.1. The set S⋆ denotes
the set of all streams and their redundant copies. Table 2 shows an
example application model, with s3 having a redundancy level of 2
and the other two streams not being fault-tolerant. The routes for
the streams listed in Table 2 are depicted in Fig. 1.

Due to the delays implied by path recovery in case of a physical
fault, in this paper we proposed a network configuration where
the routes are static: they are determined and loaded into the end
systems and bridges at design time. For the non-critical streams
the routes can be determined also dynamically, e.g., using the TSN
sub-standards as 802.1Qat or 802.1Qcc.

As discussed in the introduction, we assume that each stream
uses the UBS traffic-type. UBS allows the definition of a non-unique
stream priority si .priority, which can change at each hop. The as-
signment of priority is an interesting optimization problem. How-
ever, in this paper we assume that the priorities are given as input
by the system engineer, and without loss of generality we assume
that the priority is fixed for a stream. For example, the priority for
a stream si ∈ S could be defined by the ratio si .B/si .R/si .deadline,
thus the stream with higher burstiness, lower leak rate and lower
deadline has a higher priority. In our example from Table 2 we
consider that all streams have the same priority.

3.1 Fault Model
Critical streams have to deliver their data even in the case of perma-
nent failures. As mentioned, we assume that the system engineer
provides for each stream si the required redundancy level (RL) si .rl,
which means that the stream si has to be routed on si .rl disjoint
routes, such that the failure of any RL − 1 routes does not result in
communication failure of the stream.

Our model is complementary to common probabilistic models
of diagnostic and reliability requirements, such as MTTF targets
established for various safety integrity levels in the automotive
functional safety standard ISO 26262. New application areas, such
as fail-operational autonomous driving systems [19], have func-
tional safety requirements that are not currently addressed by ISO
26262. For example, some systems may require that there is no sin-
gle point failure; absence of dual point failures are also seen in some
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Figure 3: (a) Structure of a TSN-aware bridge and (b) UBS
shaping for (a)

highly critical applications. This is evident in the failure models
considered in recent work in industry standardization (redundant
communication paths in Ethernet [31]) and research work on de-
pendable real-time Ethernet [4] to synthesize robust time-triggered
schedules for a given number of maximum link failures. Similar
requirements can be seen in some avionics and industrial control
applications.

The most common types of permanent hardware failures is the
physical connector (PHY) failures [10, 25], i.e., the cable terminals
are corroded due to vibration and thermal fluctuations. End Systems
(microcontrollers, smart sensors) and Bridges (network switches)
are less likely to fail [25]. The internal links (MII) are on the PCB
(microcontroller and switch are all on the same board), hence an
internal link failure would result in an ES failure, from a system
perspective.

4 TSN PROTOCOL AND UBS
In this paper, we consider that the streams are scheduled using
the UBS traffic type. UBS has been proposed in [26] and, due to
its advantages, it is currently being standardized by the TSN Task
Group as IEEE P802.1Qcr [32]. UBS is a Rate-Constrained (RC)
class, which means it does not rely on the availability of network
clock synchronization (required for the TT traffic-type) or on offline
synthesis and coordination of schedule tables. Moreover, due to
the leaky bucket traffic model used in UBS (see Sect. 3), it does not
impose any constraints on the burstiness or leak rate of streams.

The TSN sub-standards are amendments to IEEE 802.1Q, which
is the standard for Bridged Virtual Local Area Networks using full-
duplex IEEE 802.3 Ethernet. 802.1Q introduced additional content
in the Ethernet frame header, including a 3-bit Priority Code Point
(PCP) identifying up to 8 priority levels.

In Fig. 3a, we show the general structure of a 4-port TSN-aware
bridgewith the followingmain functionality: traffic policing, switch-
ing, traffic shaping and transmission selection. For presentation
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purposes, without loss of generality, we show only the ingress por-
tion for the left 3 ports and only the egress portion of the right hand
port. On ingress, frames go through a policing engine, which can
be used to limit the allowed traffic and its bandwidth (TSN standard
P802.1Qci). The switching is aware of each stream’s route and for-
wards incoming frames to one (unicast) or more (multicast) egress
ports based on the Address Resolution Logic (ARL) table, which
is one of the decision variables of our routing synthesis problem.
Each egress port contains a number of queues, each of which is
configured to support a traffic type—for example, TT, Credit-Based
Shaping (CBS) as in AVB, UBS, or FIFO-like for best-effort traffic.
Each queue is configured at a fixed priority (with 8 priority levels
available). The transmission selection algorithm selects frames for
transmission based on the priority levels and based on whether
or not a queue has a frame available for transmission. The traffic
shaping, queuing, and transmission selection mechanisms are also
implemented by each TSN-aware end system.

Incoming streams to the bridges shown in Fig. 3a and Fig. 3b
are forwarded to the appropriate egress queue based on the stream
identifier (typically the destination MAC address and optionally
also VLAN identifier) and the frame priority value (i.e., the PCP). For
UBS, each queue is shaped to satisfy the cumulative leaky bucket
constraint of the streams mapped to that queue. The transmission
selection algorithm then prioritizes the traffic based on queue pri-
orities (discussed in Sect. 3 and in detail in [26]).

Fig. 3b shows a detailed view of UBS shaping at the egress port,
for the same bridge shown in Fig. 3a. Incoming UBS streams are
statically mapped to the UBS queues qH1 , qH2 , qH3 , qL1 , q

L
2 , and q

L
3 ,

which could be the first six queues in Fig. 3a (the last two could, for
example, be dedicated to noncritical, best-effort traffic), with the
rule that frames on different ingress ports are mapped to different
queues (for fault isolation purposes). Frames in each UBS queue are
shaped to satisfy the leaky-bucket constraint; the shaper is shown
with a dashed circle. The purpose of the shaper is to establish
whether or not the frame at the head of the queue is eligible for
transmission, based on leaky-bucket constraints. Each queue has a
fixed priority and it is possible that two or more queues have the
same priority, for flow aggregation purposes. We assume that the
order of priority levels is preserved through each hop along the
route; see Sect. 3 for a more detailed explanation and [26] for the
structure of a general purpose bridge. In our example, the bridge is
aware of two priority levels, high (H) and low (L). Queues qH1 , qH2 ,
and qH3 have the same priority (H) and are, after shaping, therefore
merged into the logical FIFO queueQH (called pseudo queue in [26]).
Similarly, queues qL1 , q

L
2 , and q

L
3 have priority L and are merged into

the logical FIFO queueQL . Note thatQH ,QL , and the strict priority
scheduler in Fig. 3b correspond to the Transmission Selection block
of Fig. 3a. In case the queue priorities are unique, there is nomerging
into logical queues after traffic shaping.

In the worst-case, in the scheduler of the sending node, a frame
of stream si is delayed by all streams of higher priorities H , all
streams of the same priority C (i ) and by the frame of maximum
size of a lower priority stream sizeL . On the receiver side, the frame
is delayed, in the worst-case, by the slowest stream (i.e., the stream
with highest burstiness). We use the analysis method from [26] to
check the schedulability of each frame of a stream si ∈ S

⋆.

5 PROBLEM FORMULATION
The problem we are addressing in this paper can be formulated
as follows. As an input we have (1) the set of end systems ES, (2)
the library of components L, (3) the set of streams S for which we
know the source, destination(s), and timing properties as well as the
desired redundancy level si .rl. We are interested in determining an
optimized solution Sol = (G, SR), where G is the network architec-
ture and SR : S⋆ 7−→ MT s is a function that specifies the routing
expressed as multicast trees for all the streams and their redundant
copies, such that the architecture cost is minimized, the applications
are fault-tolerant, considering the specified redundancy levels, and
the timing constraints of all streams are satisfied.

5.1 Motivational Example
Let us consider the example from Fig. 4 where we have 4 ESs , ES1
to ES4 and the applications from Table 2. As library components
we have 3 bridge types, bt1 to bt3, with types properties presented
in Table 1 and where all ESes can be directly connected to all types
of bridges. For these examples the physical links have a speed of
100 KBps and a cost of one monetary unit. In Fig. 4 the gray lines
represent the internal links, the thicker black lines the external
ones and the colored directed arrows are used for showing the
stream routes. We present for each stream its WCD calculated by
the analysis in Sect. 4. The streams in this example are schedulable
if the WCDs are smaller or equal to the relative deadline D from
Table 2.

The topology that maximizes redundancy without concern for
cost is shown in Fig. 4a. To obtain this topology, we have connected
each ES to its own bridge, and we have introduced full connectivity
among the bridges: each bridge is connected to all other bridges.
The bridge type is selected from the library such that it accommo-
dates the required ports. The cost of such topology in Fig. 4a is 42
monetary units. As expected, we can find disjoint redundant routes
for s3, which is fault-tolerant, and all streams are schedulable.

We can reduce the cost to 29 monetary units if we use the topol-
ogy from Fig. 4b, which uses 3 bridges (although their individual
cost is higher) and fewer physical links. We are able to find disjoint
redundant routes for s3. To determine the routes, in Fig. 4b we use
the shortest path approach. However with this routing, s2 is not
schedulable. Because we are routing both s1 and s2 through link
(B1 − B2), in the worst case s2 is delayed by frames of s1 such that
the s2.D is not satisfied.

Our approach optimizes both the physical topology and the
routing of streams. Fig. 4c shows the same topology from Fig. 4b,
but where the routes are optimized; counterintuitively, they may
now take longer route compared to Fig. 4b. Here we can see that
by routing s2 through a longer route, namely ES2 − B1 − B3 − B2 −
[ES3,ES4] the routes for redundant copies are fully disjoint and all
streams are now schedulable.

As we can see from this example, by only optimizing the topology
and routing we are able to minimize the cost and guarantee the
fault-tolerance and timing constraints of streams.

6 SYNTHESIS STRATEGIES
The optimization problem described in the previous section is NP-
hard. According to [35], any routing problem subject to at least two
additive or multiplicative tree constraints is an NP-hard problem.
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ES1

ES4

B1bt2

B4bt2

B2bt2

B3bt2

ES2

ES3

WCD(s3) = 4
WCD(s1) = 5.5
WCD(s2) = 4.5

s1 s2

s3

(a) costA = 42, δt = −1.5

ES1

ES2

B1bt3 B2bt3

B3bt1

ES3

ES4

WCD(s3) = 4

WCD(s1) = 6.5
WCD(s2) = 6

s1

s2

s3

(b) costA = 29, δt = 1.5, s2 unschedulable

ES1

ES2

B1bt3 B2bt3

B3bt1

ES3

ES4

WCD(s3) = 4

WCD(s1) = 6
WCD(s2) = 3

s1

s2

s3

(c) costA = 29, δt = −2.5, all schedulable

Figure 4: Motivational example

Following the classification from [35], our problem can be expressed
as a graph optimization problem subject to: (1) link constraint: the
capacity of the links should not be exceeded, (2) the number of
links adjacent to a vertex should not exceed the node number of
ports, (3) the routes of redundant streams are link-disjoint2 inter-
related tree constraint and (4) all streams should be schedulable.
Consequently, based on constraints (3) and (4), our optimization
problem is NP-hard. To solve this problem, we propose three strate-
gies, (1) a heuristic-based approach, further called Topology and
Routing Heuristic (TRH), see Sect. 6.2, (2) a Greedy Randomized
Adaptive Search Procedure (GRASP) metaheuristic, see Sect. 6.3,
and (3) a Constraint Programming-based strategy, further referred
as Topology and Routing Optimization (TRO), see Sect. 6.4. In order
to evaluate the visited solutions, all strategies use the cost function
defined in Sect. 6.1.

6.1 Cost Function
A solution is evaluated using the following cost function:

costT (Sol (G, SR)) = ℘sched ∗ δt (SR) + ℘topo ∗ costA (G) (1)

Where the first term is used to check if the solution is schedulable,
the second term captures the architecture cost, and ℘sched and ℘topo
are constant weights. In order to be able to aggregate the two terms,
2The number of commonly used links should be 0. For example, if R1 = G (V1, E1 )
and R2 = G (V2, E2 ) represent the multicast trees of two redundant copies of the same
stream, then E1 ∩ E2 = ∅

we normalize the two values. For both, δt and costA, the minimum
and maximum values are computed and the actual values scaled in
the range (0, 1]. To increase the probability of finding a solution we
relaxed the schedulability constraint adding it as a soft constraint,
i.e., as a highly penalized part of the cost function. In order to
distinguish among the topologies of similar costs we are going for
those solutions which: (a) are schedulable and (b) once they are
schedulable, they should reduce the WCDs, see Fig. 4c. Therefore,
the weighted penalty for the first term ℘sched is significantly higher
than the architecture penalty ℘topo .

The monetary cost of the network architecture is the sum over
the cost of all bridges and all physical links in the topology G:

costA (G (V, E)) =
∑
v ∈V

v .cost +
∑
e ∈E

e .cost (2)

The degree of schedulability δt represents the amount of tardi-
ness with which all streams are arriving after their relative deadline,
having a negative tardiness for a schedulable stream. We define
δt (SR) as follows:

δt (SR) =




if at least one stream is not schedulable∑
si ∈S⋆,WCD(si )>si .D

WCD(si ) − si .D∑
si ∈S⋆

WCD(si ) − si .D otherwise
(3)

Where WCD(si ) is the WCD of a frame transmitted by a stream
si having the UBS traffic class. We can then check if the frame is
received by the deadline si .D. Such an analysis has been proposed
in [26].

6.2 Heuristic Strategy

Algorithm 1: TRH
Input: End systems ES, components library L and streams S
Output: The TSN network G (V, E) and the routes SR

1 Ginit ← CreateInitialTopology
2 Eused ← ∅ ;MT s ← ∅

3 for si : S do
4 Gft ← ConvertGraph(Ginit )
5 for j ← 1 to si .rl do
6 SR(s ji ) ← SearchRoute(Gft, Eused, s

j
i , si .rl − j )

7 Gft ← RemoveEdges(Gft, Edges(SR(s
j
i )))

8 Eused ← Eused ∪ Edges(SR(s ji ))
9 Ginit ← AssignBridgeTypes(Ginit, SR(s

j
i ))

10 end
11 end
12 G ← RemoveUnusedEdgesAndVertices(Ginit, Eused )
13 CheckSchedulability (S,MT s )

14 return (G, costA (G),MT s )

The Topology and Routing Heuristic (TRH) is a strategy which
takes as input the set of end systems ES, the components library
L = (BT ,LT ,BC) and the set of streams S, and returns the
network topology G and the routing SR, see Alg. 1.

TRH starts from a fully connected initial solution Ginit , line 1 in
Alg. 1 (similar to the solution discussed in Fig. 4a) onto which each
stream in S⋆ is routed, fulfilling the fault-tolerance requirements
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Id Cost No. int. ports No. ext. ports
bt1 8 2 3
bt2 10 1 4
bt3 16 2 5

Table 3: Library for the TRH example

(the for loop in lines 3 to 11). Then, we remove from Ginit the phys-
ical links and the bridges which are not used by the routing (line
12). TRH is a heuristic that does not guarantee finding the optimal
solution, and it may terminate without finding a solution, even if
one exists. The function SearchRoute returns a route formts (si ) for
a stream si . The idea of our heuristic is to keep track of the physi-
cal links used by the routes in Eused , found for the already visited
streams in Alg. 1. Eused encourage subsequent calls to SearchRoute
to reuse already used physical links as long as the fault-tolerance
constraints are satisfied. TRH does not directly attempt to reduce
the architecture cost costA during this process, and it does not check
the schedulability. Schedulability is checked in line 13 and costA is
reported for the constructed solution at the end.
Ginit is obtained as explained in Sect. 5.1 for Fig. 4a. Note that

when assuming the bridge type for each bridge such that it accom-
modates the required ports, we also use bridge chaining if necessary,
assigning the lowest-cost chain we can construct (see Sect. 3 and
Fig. 2). Let us consider an example input with 6 ESes and the library
L from Table 3, with the same link types presented in Table 1. Let
us assume that the ESes ES1 and ES4 can be connected only to
bridges of types bt1 and bt3, for ES2, ES3 and ES6 are available bt2
and bt3 and ES5 can be connected to bridge of type ES1. Then, the
Ginit for this step is presented in Fig. 5a.

TRH iterates through si ∈ S and determines the routes, lines 3-
11 in Alg. 1. We sort the streams inS based on the timing properties
and RL (the aim is to route the most critical streams first). Moreover,
when searching for a route for a redundant copy of a stream s

j
i we

want to make sure that this route is disjoint to all the redundant
routes established for si . Hence, we use the Gft graph to keep track
of already used links, removing from Gft the edges involved in
each mts (si ) determined so far (line 7). Thus, these edges will not
be used in subsequent redundant routes for si . The route for si is
searched on Gft , which for each original route si ∈ S considered is
initialized to Ginit , where each undirected physical link is converted
to two directed data flow links.

The routes are found using the SearchRoute function, which is an
adapted Breadth-First Search (BFS) algorithm, presented in Alg. 2.
The SearchRoute function attempts to reuse as much as possible the
edges used by previously determined routes, hence we keep track of
the edges used so far in Eused . After we determine a route, we update
the bridge type for bridges in Ginit by selecting from the library
the bridge type of minimum cost which has the required number
of ports. Fig. 5a shows a partial solution where we iterated over
streams s1 and s2 and than determined the links and the stream’s
routes. The final step of TRH is to remove from Ginit the edges
not used for routes and to remove any vertices that became thus
isolated in the topology (unused bridges), line 12 in Alg. 1.

We modified BFS in SearchRoute function such that we visit a
dataflow link during search only if IsVisitable returns true. IsVisitable
returns true, if at least one of the following conditions holds: (1)
the link was already used for the already determined routes or (2)
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B13

B11
 B1 

BT1 BT3 

B12

B10
 S22

ES2

ES3
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S11, S22

S12, S21

 S23

 S23

 S23
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S12, S22

S12, S21

 S23
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B14
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(a) Partial solution of TRH (Ginit depicted with gray)
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S3
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S1

S3

(b) Final solution of TRH

Figure 5: TRH example

the source and target bridges have enough free ports to support
the addition of this link and of the next possible redundant copies.
IsVisitable will return false if the dataflow link will exceed its ca-
pacity by routing s

j
i . In Alg. 2 the function Target applied on a

dataflow link gives the vertex on which the link enters and the ele-
ments of queue q are dataflow paths, therefore we used the function
LastVertex to retrieve end of a dataflow path. The number of ports
for a bridge is determined by summing up the number of physical
links incident to that bridge that were used for already determined
routings (stored in Eused ) and that are used for the current routing.
If the stream for which we are searching the route is not the last
one from the set of its redundant copies to the number determined
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Algorithm 2: SearchRoute

Input: Gft , the set of Eused , the stream s ji , the remaining redundancy rl′

Output: The route mts
1 q ← {s ji .src }
2 dests ← s ji .dests
3 visited ← ∅ ; Gcurrent ← ∅ ; paths ← ∅
4 while q , ∅ AND dests , ∅ do
5 choose first element of q as current

successors ← Successors(Gft, LastVertex (current))
6 for succ : successors do
7 if Target (succ) < visited AND

IsVisitable(succ, Eused, Gcurrent, rl′, Gft ) then
8 newPath← current + succ
9 if Target (succ) < ES then

10 q ← q ∪ {newPath}
11 else if Target (succ) ∈ dests then
12 dests ← dests\{Target (succ) }
13 paths ← paths ∪ {newPath}
14 Gcurrent ← Gcurrent ∪ Edges(newPath)
15 end
16 end
17 end
18 visited ← visited ∪ {Target (succ)
19 end
20 return ConvertToTree(paths)

before is added the number of remaining redundant copies, rl′ in
Alg. 2.

Let us consider that for the TRH example considered earlier we
have three streams, s1 to s3. Furthermore, let us assume that s1 is
sent from ES4 to ES2 and ES3, s2 from ES1 to ES3, ES4 and ES5 and s3
is sent from ES5 to ES2, ES4 and ES6. For this example we consider
that only first two streams are fault-tolerant, with a redundancy
level of 2 and 3 for s1 and s2, respectively. Fig. 5b shows the final
solution of TRH for our example, i.e., the routes and the network
from which the unused physical links and bridges are removed. The
physical links are depicted with solid black lines (the internal links
use thicker lines) and the routes are depicted with colored thin
arrows. We used blue arrows for routes of s1, red for s2 and green
for the route of s3. The networks in Fig. 5 have been generated by
our tool, and redundant streams s ji are labeled as Sij.

6.3 GRASP
GRASP [7] is a meta-heuristic optimization, which searches for
that solution which minimizes the costT function. GRASP is an
iterative algorithm, where each iteration consists of two phases:
Phase (i) constructs an initial solution (a topology and a route for
each stream si ∈ S

⋆) based on a randomized greedy algorithm
and Phase (ii) performs a local search on the constructed solution
to reach the local minimum. At the end of each iteration, if the
cost of the local minimum found is less than the cost of the best
solution, found so far, the solution is stored as the “best-so-far”.
The termination condition for the strategy is based on a given time
limit. We implemented GRASP with Google OR-Tools.

To construct the solutions in Phase (i), we have adapted our TRH
strategy as follows. First, we create initial solutions by creating
a random ordering of streams at the start of Alg. 1 (with TRH,
the streams are ordered based on their “criticality” of timing and

RL). We use the same SearchRoute function (Alg. 2). Then, we also
create initial solutions which do not use the routes returned by
SearchRoute, but instead use random routes, in the hope of provid-
ing a better coverage of the search space.

In Phase (ii), starting from each such initial solution, we search
for a local minimum using the Large Neighborhood Search (LNS)
algorithm [24], which improves the initial solutions by iteratively
“destroying” and “repairing” the solution.

For the destroy part we use 6 operators which remove links from
the topology (removing all routes routed over that links) or remove
routes. The operators are as follows: (1) remove a link, (2) remove
two routes, (3) remove a route with the containing links and routes
routed over these links, (4) select one stream si ∈ S

⋆ and remove
the routes for its original stream and redundant copies, (5) select
two streams si , sj ∈ S⋆ and remove the routes for their original
streams and redundant copies and (6) select two original streams
si , sj ∈ S and for each stream remove the route for a randomly
chosen redundant copy. The degree of destruction is such that we
are able to explore the neighborhood in a reasonable time, but we
do not degrade into a full optimization.

Several options are possible for the “repair”. We have decided
to use an “optimal repair”, i.e., the best possible full solution is
constructed from the partial solution. To find the solution for the
repair we have used the CP-Strategy presented in the next section.

6.4 Constraint Programming-Based Strategy
The Topology and Routing Optimization (TRO) strategy is a Con-
straint Programming (CP) [3] model. TRO takes as input the set ES,
the components library L and the set S, and attempts to determine
the optimal network architecture G and the routing SR according
to the cost function introduced in Sect. 6.1. Moreover, it can take G
as an additional input and attempts to only determine the optimal
routing SR for the given architecture. In the following, we present
a CP model for the problem described in Sect. 5.

6.4.1 CP Model. We use two parameters: (1) n = |ES| the
number of End Systems. (2) nmax = the maximum number of
bridges, which can be given or computed as explained in Sect. 6.2
for Fig. 5a. Based on these parameters we define the following sets:
• K End Systems index set, K = {1, ..,n}
• J bridges index set, J = {n + 1,n + 2, ..,nmax }

• I End Systems and bridges index set, I = K ∪ J

To model the topology of the network let Ai1,i2 denote the
adjacency matrix of the Gmax (Vmax, Emax) which has n + nmax
vertices. Each element of this matrix is an integer variable that rep-
resents the type of the link between nodes of this graph, ∀ i1, i2 ∈
I , ai1,i2 ∈ {0, .., |LT |}, ltai1,i2 ∈ LT (0 = no link). Since the topol-
ogy graph is undirected, we only initialize new variables for the
right-upper half of the matrix elements. The elements on the other
half of the matrix point to their symmetric elements, therefore
∀ i1, i2 ∈ I , ai1,i2 = ai2,i1. Since the graph should not contain
self-loop links, we set the elements on the main diagonal of the
matrix to 0, ∀ i ∈ I , ai,i = 0. We also define BA j which is an
integer vector to specify the type of the bridges in the network.
For each bridge j ∈ J , variable baj specifies the type of the bridge
(baj ∈ {1, .., |BT |} ∪ {nil},btbaj ∈ BT ). If this value is nil for a
bridge j , it means that the bridge is not active and it is not included
in the network topology.
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In order to model the stream’s routes, we define two integer
matricesMT s

s⋆,i andMT
w
s⋆,i . Both matrices have the same size

and dimensions. The size of the first dimension is the size of all
the streams including their redundant copies (|S⋆ |), and the size
of the second dimension is the size of all the vertices including End
Systems and bridges (|I |). For each stream (including the redundant
copies s ∈ S⋆),MT s

s is an integer vector that specifies a multicast
tree for the stream. Each element of this vector (∀ i ∈ I ,MT s

s,i ∈

I ∪ {nil}), holds the successor vertex on the path from that vertex (i)
to the source of the stream (s). In the same manner, each element
ofMT w

s,i holds the weight of the path from that vertex (i) to the
source of the stream (s), ∀ i ∈ I ,MT w

s,i ∈ R. The value ofMT
s
s

for the source of the stream is set to the index of the source End
System,MT s

s,s .src = s .src andMT w
s,s .src = 0 . If a bridge is not

part of the multicast tree then MT s
s,i = nil and MT w

s,i = −1.
Our mathematical model and constraints for multicast tree are an
extension of the models presented in [21].

According to these variables, we define the following constraints.

6.4.2 Topology Constraints.

(1) Any End System, ES ∈ ES, must be connected with one
bridge: ∀ k ∈ K ,

∑
j ∈J (ak, j , 0) = 1

(2) The specified bridge constraint BC should be satisfied: ∀ k ∈
K , j ∈ J , ak, j , 0⇒ btbaj , lak, j ∈ BC (ESk )

(3) The number of internal links connected to a bridge should
not exceed the number of internal ports supported by the
bridge: ∀j ∈ J

∑
i ∈I,ai, j,0 (lai, j .lct = Int ) ≤ btbaj .noIntPorts

(4) The number of external links connected to a bridge should
not exceed the number of external ports supported by the
bridge:∀j ∈ J

∑
i ∈I,ai, j,0 (lai, j .lct = Ext ) ≤ btbaj .noExtPorts

(5) If a bridge is inactive, it cannot be connected to other bridges
or end systems: ∀j ∈ J ,

∑
i ∈I ai, j = 0⇔ baj = nil

(6) All the active bridges should be connected at least via two
links (no bridge is an end point): ∀j ∈ J

∑
i ∈I,i,j (0 < ai, j ) ≥

2 × (baj , nil)

6.4.3 Routing Constraints.

(1) The successors of destinations of a stream cannot be nil:
∀s ∈ S,∀d ∈ s .destsMT s

s,d , nil
(2) The successors of nodes which are not the source should not

point to themselves: ∀i ∈I ,∀s ∈S⋆,i,s .srcMT
s
s,i , i

(3) The successors of End Systems which are neither source
nor destinations of a stream must be nil: ∀ s ∈ S,∀ k ∈
K\{s .src}\s .destsMT s

s,k = nil
(4) Inactive bridges cannot be used within a multicast tree: ∀j ∈

J
∑
s ∈S⋆

(
MT s

s, j , nil
)
, 0⇔ baj , nil

(5) The multicast trees must not contain cycles: ∀s ∈S,i ∈I \{s .src }
MT s

s,i , nil ⇒MT w
s,i =MT

w
s,MT s

s,i
) + 1

(6) All the bridges should be transient, which means that if a
stream enters to a bridge through a link it should exit from
another link connected to the bridge: ∀ s ∈ S, i ∈ I ,∃j ∈
J , i , j s.t.MT s

s,i , nil ⇔MT s
s, j = i

(7) Any vertex and its successor should be connected: ∀ s ∈
S,∀i, j ∈ I MT s

s,i = j ⇒ ai, j , 0
(8) All the multicast trees for the redundant copies of each

stream should not have common links: ∀ s ∈ S,∀v ∈

I\{s .srcs }\s .dests, ∀i, j = 1, . . . , s .rl i , j ∧ i , nil ∧ j ,
nil ⇒MT s

s i ,v ,MT
s
s j ,v

(9) For all physical links, the capacity of the links should not be
exceeded: ∀i, j ∈I

∑
s ∈S⋆

(
(MT s

s, j = i ) × s .R
)
≤ lai, j .speed

6.4.4 Search Strategy. We defineMT s
s⋆,i andBA j as the main

decision variables. Consequently, the assignments of Ai,i and
MT w

s⋆,i will be determined by propagating the constraints (8)
and (6). In the case that the architecture is given as input, we initial-
ize the values ofAi,i and BA j according to the given architecture.
Thus, the solver will do the exhaustive search only forMT s

s⋆,i .
Two strategies should be specified for the CP solver to perform

the search. The first is the order of selecting the variables for assign-
ment. The other strategy is the order of selecting the values from
the variable’s domain for assignment. Based on the results obtained
for small case studies, we decide to use First-Unbound-Variable and
Assign-Min-Value strategies for the decision variables.

To validate the schedulability constraint and guide the solver
to find the optimal solution, we implemented a Search-Monitor
(the term used in OR-Tools) that will be triggered whenever the
CP solver finds a solution (which satisfies all the constraints). The
search-monitor computes the degree of schedulability δt and the
architecture cost costA of the obtained solution. If the degree of
schedulability is less or equal to zero, it will consider the solution as
a feasible solution, and if the total cost costT of the solution is less
than the cost of the earlier solutions, it will consider the solution as
the best solution obtained so far. At the end of the search process, we
will return the best solution found by converting the assignments
of Ai1,i2 and BA j into the network architecture G, andMT s

s⋆,i
into the routing SR obtained for the given set of streams.

7 EXPERIMENTAL RESULTS
For the evaluation of our strategies, namely the Topology and
Routing Heuristic (TRH), which is a heuristic approach, GRASP (a
metaheuristic strategy), and the Topology and Routing Optimiza-
tion (TRO), which is a CP-based strategy, we used five synthetic
test-cases, motiv, tc1 to tc4 and GM, which is a real-life case study
from General Motors. For all experiments, as the components li-
brary for the link types we used those presented in Table 1, but for
bridges, we have extended the library to contain 6 bridge types. For
these experiments we considered that all streams have the same
priority. In Table 4 the first 3 columns describe the test-case, i.e.,
name, number of end systems, and the number of streams and
their redundant copies. The strategies, TRH, GRASP and TRO were
implemented in Java and all experiments were run on Intel Core
i7-2600 machines at 3.4 GHz. For TRO and GRASP we have used
OR-Tools [34], which is a CP library introduced by Google.

The results of our experiments are shown in Table 4. Column 4
shows the cost of the fully connected topology Ginit (see Sect. 6.2),
which is an upper bound on the architecture cost. For all strategies,
we present the architecture cost and the execution time. These
strategies were able to find schedulable solutions, for all test-cases.

As it can be observed in Table 4, our strategies are able to signif-
icantly reduce the architecture cost costA. Compared to Ginit TRH
is able to decrease the architecture cost, in average with 37%, with
a maximum decrease in cost for GM, where the cost is reduced by
80%. Although TRH is able to decrease architecture cost compared
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Name |ES| |S|, |S⋆ | Ginit TRH GRASP TRO
costA costA Exec.

time (s)
costA Exec.

time (s)
costA Exec.

time (s)
motiv 4 3, 4 78 63 0.15 *43 0.67 *43 1.32
tc1 4 4, 6 78 78 0.09 50 0.40 *41 11.84
tc2 4 8, 11 78 71 0.08 52 0.60 *41 32.6
tc3 6 6, 8 176 106 0.1 76 0.95 73 48 h
tc4 15 30, 34 1893 392 8.05 336 3.35 min 357 48 h
GM 20 27, 38 2230 432 130 402 9.3 min 410 48 h

Table 4: Experimental results

to Ginit and scales well with the problem size, it obtains solutions
with a higher cost compared to GRASP and TRO. For example, TRO
improves on average by 27% on the TRH architecture cost, and
GRASP improves on average by 23% compared to TRH.

TRO is able to find the optimum solution, marked by * in the table.
However, TRO finds the optimum solution only for the smaller test-
cases motiv, tc1 and tc2, and it does not scale well with the problem
size. For the other test-cases, TRO did not find the optimum solution
and we list in the table the architecture cost found after a time limit
(execution time) of 48 hours that we impose on the search.

Finally, our proposed GRASP strategy is able to obtain good
quality results in a reasonable time. As we can see, GRASP obtains
optimum solution for motiv test-case, and for the other test-cases,
it obtains results comparatively close to the TRO with the relative
gap of 5% on average. The main advantage of GRASP is that it can
explore the design space much faster. For example, for the realistic
test case GM, GRASP has obtained an architecture cost of 402 in 9.3
minutes, compared to TRO, which has actually obtained a larger
cost of 410 in the 48 hours we let it run.

8 CONCLUSIONS
In this paper, we have considered safety-critical real-time applica-
tions implemented using TSN-based distributed architectures. Our
focus was on the synthesis of the network topology and streams
routing such that the real-time and redundancy requirements of
the applications are satisfied, and the cost of the architecture is
minimized. We have proposed three strategies, a heuristic approach,
called Topology and Routing Heuristic, a GRASP metaheuristic and
an approach based on CP, namely Topology and Routing Optimiza-
tion. The experimental results show that by using our strategies we
are able to significantly reduce the cost of architecture, obtaining
architectures which are at the same time fault-tolerant and meet
the timing requirements of the streams. In particular, the proposed
GRASP metaheuristic is able to obtain good quality results in a
reasonable time, and scales well with the problem size.
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