
Stability-Aware Integrated Routing and Scheduling
for Control Applications in Ethernet Networks

Rouhollah Mahfouzi1, Amir Aminifar2, Soheil Samii3, Ahmed Rezine1, Petru Eles1, Zebo Peng1

1Embedded Systems Laboratory, Linköping University, Sweden
2Embedded Systems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

3General Motors R&D, Warren, MI, USA
{rohollah.mahfoozi, ahmed.rezine, petru.eles, zebo.peng}@liu.se, amir.aminifar@epfl.ch, soheil.samii@gm.com

Abstract—Real-time communication over Ethernet is becoming
important in various application areas of cyber-physical systems
such as industrial automation and control, avionics, and auto-
motive networking. Since such applications are typically time
critical, Ethernet technology has been enhanced to support time-
driven communication through the IEEE 802.1 TSN standards.
The performance and stability of control applications is strongly
impacted by the timing of the network communication. Thus, in
order to guarantee stability requirements, when synthesizing the
communication schedule and routing, it is needed to consider the
degree to which control applications can tolerate message delays
and jitters. In this paper we jointly solve the message scheduling
and routing problem for networked cyber-physical systems based
on the time-triggered Ethernet TSN standards. Moreover, we
consider this communication synthesis problem in the context
of control applications and guarantee their worst-case stability,
taking explicitly into consideration the impact of communication
delay and jitter on control quality. Considering the inherent
complexity of the network communication synthesis problem,
we also propose new heuristics to improve synthesis efficiency
without any major loss of quality. Experiments demonstrate the
effectiveness of the proposed solutions.

I. INTRODUCTION

Due to growing bandwidth requirements, real-time commu-
nication over Ethernet is of increasing importance in embed-
ded control and cyber-physical systems. Application domains
include industrial automation and control, avionics, and active
safety and automated driving applications [4], [6]. Several
time-driven approaches like 802.1Qbv [12], developed by the
IEEE 802.1 Time-Sensitive Networking (TSN) task group,
and TTEthernet [20] exist to enhance standard Ethernet with
real-time properties such as time determinism and packet
delivery guarantees. The temporal properties of an Ethernet
network depend significantly on the schedules and routes of
the data flows along switches. Researchers have recently stud-
ied various design-space exploration problems to synthesize
Ethernet schedules and routes in the context of hard deadlines
and worst-case latencies. While this model is applicable to
some real-time applications, it does not take into consideration
temporal properties like average delay and jitter, which are
known to impact control performance and stability in cyber-
physical systems [1], [5], [6], [9], [13], [15], [16].

This research has been partially supported by the Swedish national strategic research
area (project eLLIIT), the Swedish Research Council, the ONR-G Award Grant No.
N62909-17-1-2006, and by the EC H2020 MANGO FETHPC project (Agreement No.
671668).

Related Work. In the context of TTEthernet networks with
multiple hops, Steiner [18] proposed an approach based on
Satisfiability Modulo Theory (SMT) to address the problem of
schedule synthesis. This approach has been adapted in [7] to
support the recent IEEE 802.1Q amendment for scheduled traf-
fic (IEEE 802.1Qbv-2015 [12]). Time-triggered schedule syn-
thesis has recently been extended in various directions, such
as bandwidth optimization for best-effort traffic [21], mixed-
criticality systems [19], resilience to link failures [3], traffic
class assignment [11], and modeling of time-synchronization
precision [22].

Tamas–Selicean et al. [21] considered scheduling, frame
packing, and route selection separately in a Tabu Search
heuristic. The proposed routing moves increase delay and jitter
of time-triggered frames to meet their deadlines with as little
time slack as possible, in order to increase schedulability
and bandwidth, respectively, for rate-constrained and best-
effort communication. The approach is customized to rate-
constrained and best-effort traffic and is neither applicable
nor generalizable to time-triggered Ethernet communication
for hard real-time or control applications. Pop et al. [14]
presented a design optimization framework for Ethernet with
time-triggered (TT) and AVB traffic classes, with routing fixed
and given by the shortest path for each TT data flow, leaving
the entire TT routing optimization problem unsolved. Smirnov
et al. [17] presented a 0–1 ILP formulation for routing and
scheduling, where the network model is limited to bus-based,
half-duplex communication with gateways. Their solution is
limited to synthesis of collision-free schedules without any
deadline constraints, and it merely determines whether or not
pairs of messages share the same link.

Contributions. We address the joint Ethernet schedule–
route synthesis problem for control applications communicat-
ing on a time-triggered Ethernet network. The novelty of our
contribution lies in (1) an SMT formulation for simultaneous
routing and scheduling, (2) consideration of real-time, control,
and worst-case stability requirements, and (3) heuristics to
improve synthesis efficiency based on route subsets and time
slices. We demonstrate the effectiveness and efficiency of our
proposed technique experimentally, in addition to its appli-
cability in a real-life example from the automotive domain.
To our knowledge, this is the first paper to consider control
stability in a design-space exploration problem for Ethernet.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148034694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. An example System

II. SYSTEM MODEL

Our system comprises a network of Ethernet switches that
is used as an infrastructure to connect sensors and controllers
of n control applications.

A. Network and Ethernet Switches

We model the network and its topology as a graph G =
(V ,E) where nodes vi ∈ V are Ethernet switches, sensors, or
controllers and the edges [vi−vj] ∈ E are full-duplex physical
links between these nodes. Figure 1 shows an example of a
network with 14 nodes consisting of 8 Ethernet switches that
connects 3 sensors to 3 controllers.

Ethernet switches in the network implement the IEEE
802.1Qbv-2015 TSN standard [12]. According to this standard,
each egress (output) port in a switch has up to 8 associ-
ated queues with strict-priority arbitration. Figure 2 shows
an overview of an Ethernet TSN switch with 4 ports. In
each output port up to 8 queues are dedicated for time-
triggered, scheduled traffic. The rest of the queues (lower
priority queues) are used for non-scheduled traffic [4]. All the
incoming messages go through a Forwarding Engine, where
the output port is decided based on a look-up table that
captures the routing. In the output port, a dispatcher assigns the
message to a proper queue based on its priority (the priority
code point embedded in an IEEE 802.1Q Ethernet frame).
Finally, for queues with scheduled traffic, the switch opens the
timed-gate at the end of the queue, based on the predefined
schedule, to transfer the message. If the time-gates for multiple
queues are open at the same time, then the message in the
higher priority queue is sent first. The output port and release
time of messages is determined based on the forwarding and
scheduling variables stored in the switch. Therefore, inside a
switch we have two stored variables for each message.

• Output port for message mi,j arriving at switch vk is
denoted by ηijk.

• Release time of message mi,j arriving at switch vk is
denoted by γijk.

These variables are determined at design time using our
routing and scheduling algorithm (Section V).

We highlight that the messages mi,j considered here are
not the only ones traveling over the Ethernet network. Several
other messages of lower criticality level are handled by the
switches corresponding to their traffic classes. The time-
triggered messages, which are the only ones of interest in
this paper, are handled at the highest priority level, and their
communication is not impacted by messages belonging to any
of the other traffic classes.

Fig. 2. Overview of an Ethernet TSN switch, showing the ingress portion of
ports A and B, and the egress portion of ports C and D.

B. Delay, Latency, and Jitter

A message experiences three types of delays in a switch:
• Forwarding delay is the time from receiving a message

in a switch until the message is put in the outgoing
queue1. Forwarding delay for a switch is denoted by sd.

• Scheduling delay is the time between putting a message
in the proper queue of its outgoing port until the switch
decides to start message transmission. This delay depends
on the release time variable of the message on that
specific switch, as determined at schedule synthesis.

• Transmission delay is the amount of time it takes to
transmit the message on a link. The transmission delay
is denoted by ld and depends on the size of the message
and the data-rate of the link1.

The end-to-end delay for a message going from a sensor
to a controller is the sum of forwarding, scheduling, and
transmission delays along all switches in the route.

C. Control Applications

We consider periodic control applications that are sensitive
to jitter and latency. A control application Λi consists of sensor
Si, controller Ci, and plant Pi. The sensor Si and the controller
Ci communicate using a network of Ethernet switches2. The
plant Pi is modeled by a continuous-time system of differential
equation [2],

ẋi = Aixi + Biui, (1)

where xi and ui are the plant state and the control signal,
respectively. The sampling is done periodically and the control
signal is kept constant between two updates. Each sensor Si

periodically samples, and sends a message to controller Ci.
The controller uses this data to compute the control signal
that is immediately applied to the plant by the actuator.

The sampling period of application Λi is denoted by hi. A
series of message instances released in successive periods by
the same sensor is called a flow. Flow fi originates from Si

to controller Ci. The j-th message in this flow is denoted by
mi,j . Since all the control applications are periodic, exactly

1 We consider that this delay is constant for all messages in all links and
switches. Note that this assumption is only for simplifying the discussion
in the rest of the paper and our approach and experimental results consider
different delays depending on switch/message/link.

2We are considering this one-to-one sensor-controller correspondence only
for the discussion in the paper, in order to keep the notation and equations
readable. Our implementation does not impose this restriction.

the same events occur in each hyper-period. Therefore, we
only need to consider the message instances inside one hyper-
period. Consequently, the set M of messages considered for
routing and scheduling in the following sections consists of all
messages mi,j generated by the sensors inside a hyper-period
(the LCM of periods).

III. PROBLEM FORMULATION

Given n control applications and a network of Ethernet
switches as described in Section II. We consider the following
as input to our problem:

• the topology of the network, given by graph G = (V ,E);
• the switch forwarding delay, sd, and link transmission

delay, ld; and
• for each control application Λi:

– controller Ci with period hi, which is also the period
of messages received by Ci from sensor Si.

– model of the plant Pi;
Our goal is to schedule and route all messages in the

network so that the control applications are guaranteed to be
stable. Therefore, the outputs of our routing and scheduling
algorithm are the release time (schedule) and output port
(route) for each message in each Ethernet switch. These are
captured by the values assigned to the following variables:

• output port ηijk; and
• release time γijk,

for each message mi,j ∈ M arriving at switch vk. These
values are produced at design time and stored in switches.

IV. STABILITY ANALYSIS

In the context of networked systems, due to the shared
resources, control applications may experience time-varying
delays which may lead to instability, if not properly considered
during design. The worst-case control performance of a system
can be quantified by an upper bound on the gain from the
uncertainty input (here, time-varying delays) to the plant
output. In order to measure the worst-case control performance
of a system in the presence of time-varying delays, we use the
Jitter Margin toolbox [5]. The Jitter Margin toolbox provides
sufficient conditions for the worst-case stability of a closed-
loop system with a linear continuous-time plant and a linear
discrete-time controller. These conditions are described using
the latency and jitter experienced by the controller.

Considering a control application Λi, the latency Li is
defined as the constant part of the delay experienced by the
controller (in our case this is the total delay of the message
received from the sensor). The worst-case jitter Ji is defined
as the variation in the delay. In the following, we elaborate
the dependency between the stability of a control application
and the latency and jitter experienced by its controller.

The Jitter Margin toolbox provides the stability curve that
determines the maximum tolerable response-time jitter Ji
based on the latency Li. The green curve in Figure 3 is an
example of the stability curves generated by the Jitter Margin
toolbox, where the area below the curve is the stable area.
This solid curve is generated for a DC servo process with

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

10

Nominal delay L

Re
sp

on
se

−ti
me

jitt
er

J

Stability curve
Piecewise linear lower bound

L(1) L(2) L(3)

Fig. 3. The stability curve generated by Jitter Margin (below the curve,
highlighted in green, is the stable area) and the piecewise linear lower bound.

transfer function 1000
s2+s and a discrete-time Linear-Quadratic-

Gaussian (LQG) controller, with a sampling period of 6 ms.
The stability curve can safely be approximated by a piecewise
linear (lower-bound) function of the latency and jitter, see
the red piecewise linear function in Figure 3. The stability
condition, hence, can be formulated as,

stablility =

Li + α
(1)
i · Ji ≤ β

(1)
i if 0 ≤ Li ≤ L(1)

i

Li + α
(2)
i · Ji ≤ β

(2)
i if L(1)

i ≤ Li ≤ L(2)
i

.

Li + α
(m)
i · Ji ≤ β(m)

i if L(m−1)
i ≤ Li ≤ L(m)

i

false: not stable otherwise
(2)

where α(j)
i , β(j)

i , and L(j)
i are non-negative constants for the j-

th linear segment of the piecewise linear lower-bound function,
for control application Λi. Note that L(m)

i is the constant
associated with the last segment of this piecewise linear
function (m = 3 in Figure 3). For each control application
Λi, we define the stability margin δi as follows:

δi =

β
(1)
i − (Li + α

(1)
i · Ji) if 0 ≤ Li ≤ L(1)

i

β
(2)
i − (Li + α

(2)
i · Ji) if L(1)

i ≤ Li ≤ L(2)
i

.

β
(m)
i − (Li + α

(m)
i · Ji) if L(m−1)

i ≤ Li ≤ L(m)
i

−∞ otherwise
(3)

A non-negative δi guarantees the stability of the system.

V. STABILITY-AWARE ROUTING AND SCHEDULING

This section presents our approach for routing and schedul-
ing of control messages with stability constraints. In particular,
we present a stability-aware SMT formulation and efficient
heuristics to find port assignments and release times for all
messages and network switches. In the following, the problem
constraints to be formulated using SMT are described.

A. Constraints with respect to routing and scheduling

• Topology constraint: The selected output node should be
among the nodes that are connected to the current node.

∀i, j|mi,j ∈M,∀k|vk ∈ V :

if ηijk = vl then [vk − vl] ∈ E.
(4)

• Contention-free constraint: If two messages are waiting
in the queues of the same port of a switch, then one

of them should wait until the other one is released into
the link. We consider this waiting time equal to the
transmission delay (ld) of that message.

∀i, j, r, s|mi,j ,mr,s ∈M,∀k|vk ∈ V :

if ηijk = ηrsk and (i 6= r or j 6= s)

then |γijk − γrsk| ≥ ld.
(5)

• Transposition constraint: The release time of a message
should be after release time of the same message from
the predecessor node plus the link transmission delay (ld)
plus the switch forwarding delay (sd).

∀i, j|mi,j ∈M,∀k, l|vk, vl ∈ V :

if ηijk = vl then γijl ≥ γijk + sd+ ld.
(6)

• No-loop constraint: For each message there should not
be any two switches which forward the message to the
same destination.

∀i, j|mi,j ∈M,∀k|vk ∈ V ,∀l|vl ∈ V :

if k 6= l then ηijk 6= ηijl.
(7)

• Route constraint: For each message there should be a
route between the source (sensor) and destination (con-
troller) of the control application that message relates to.
Ri is the set of all possible routes from Si to Ci.

∀i, j|mi,j ∈M,∃{Si, vl1 , vl2 , . . . , vlp , Ci} ∈ Ri :

(ηijSi
= vl1) ∧ (ηijl1 = vl2) ∧ · · · ∧ (ηijlp = Ci).

(8)

B. Stability Constraints

The two parameters impacting stability of control applica-
tions are latency and jitter, as discussed in Section IV. In
order to compute these two parameters, we consider the end-
to-end delay of message mi,j from sensor Si to controller
Ci, denoted by e2eij . This end-to-end delay might vary for
different messages in the flow from Si to Ci because of two
reasons: (1) the route for each individual message might be
different; (2) the scheduling and thus the scheduling delay for
each individual message might be different. The end-to-end
delay e2eij is equal to the release time of that message from
the last switch in the route, plus the ld of the link between this
switch and the controller minus the initial release time from
the sensor. If we consider the best-case delay for the controller
Ci as min

j
{e2eij} and the worst-case delay as max

j
{e2eij},

then the latency Li and jitter Ji for control application Λi in
Equation 3 is computed as follows,

Li = min
j
{e2eij}, Ji = max

j
{e2eij}−min

j
{e2eij}. (9)

Given the model of the plant Pi and controller Ci, we use
the Jitter Margin toolbox to generate the piecewise linear lower
bounds. Then, for each linear piecewise segment, we compute
the α(j)

i and β(j)
i parameters in Equation 3.

• Stability constraint: All control applications should be
stable. Hence, The stability margins defined by Equa-
tion 3 should hold for all control applications.

δi ≥ 0, ∀Λi. (10)

We use Satisfiability Modulo Theory (SMT) to solve the
problem captured by the above constraints. If the conjunction
of these constraints is satisfiable, the solver associates a value
to all ηijk and γijk for each message mi,j at each node vk of
the network.

C. Improving scalability

Routing and static scheduling for time-triggered messages
are known to be NP-complete problems [7], [18], hence the
scalability issue. Considering this inherent complexity of the
network communication synthesis problem, we propose tech-
niques to make a trade-off between the quality of synthesized
solutions and the complexity of the synthesis process. Con-
cretely, we propose two heuristics to address this scalability
issue and to improve synthesis efficiency without major loss
of quality.

1) Route subset: This heuristic is proposed to reduce the
routing complexity. In our basic solution, we consider all
possible routes for each message and calculate the optimal
one. Here, we use the designers’ knowledge of the network
and control applications to reduce the size of the problem
by eliminating the routes unlikely to be used. For example,
the designer might consider only the first K shortest routes
for each control application. In order to apply this approach
to the SMT formulation, we need to only consider the route
subsets provided by the designer when formulating the route
constraint (Equation 8).

2) Incremental Synthesis: For the second method we divide
the hyper-period into several slices. Thus, the algorithm solves
several problems of smaller size in an incremental fashion. In
the first stage, the messages instantiated inside the first time
slice are scheduled/routed solving the SMT formulation for the
decision variables corresponding to this subset of messages. In
the subsequent stages, schedules and routes are synthesized by
running the SMT solver for the decision variables correspond-
ing to the messages instantiated in the corresponding time
slice and considering the decision variables determined in the
previous stages as fixed. The incremental algorithm terminates
after all message instances have been considered. The above
incremental technique reduces the number of messages to be
scheduled in each stage of the algorithm, resulting in reduced
synthesis time.

Note that by applying these heuristics the solver searches
within a subset of all possible solutions and, therefore, in some
cases it might end up without a solution, even if such a solution
exists and could be reached solving the initial, complete SMT
formulation (See experimental results in Section VI.).

VI. EXPERIMENTAL SETUP AND RESULTS

In this section, we evaluate the efficiency of our proposed
stability-aware routing and scheduling technique experimen-
tally. We perform three experiments followed by a real-life
example. Our experiments are carried out using Z3 [8], a
state-of-the-art SMT solver. They were run on a regular
desktop computer with 2.67 GHz Xeon CPU and 6 GB of
RAM. For the three experiments, we randomly choose control
applications from a database with inverted pendulums, ball

 0

 20

 40

 60

 80

 100

10 20 30 40 50 60 70 80 90 100

S
y
n
th

e
si

s
ti

m
e
 (

s)

Number of messages

routes = 4stages=3

stages=4

stages=5

stages=7

stages=9

stages=11

Fig. 4. Scalability of the incremental synthesis heuristic

 0

 5

 10

 15

 20

 25

 30

2 4 6 8 10 12 14

U
n
so

lv
e
d

 (
%

)

Stages

Fig. 5. Percentage of unsatisfied problems with incremental synthesis

and beam processes, DC servos, and harmonic oscillators.
These plants are considered to be representative for realistic
control applications and are extensively used for experimental
evaluation in the literature [2]. The first two experiments
show how our approaches scale in terms of synthesis time. In
both experiments, we run 60 different synthesis problems on a
network of 35 nodes (10 sensors, 10 controllers, and 15 Eth-
ernet switches). For each synthesis problem, these 10 control
applications are chosen randomly, as discussed previously. To
show the impact of our incremental synthesis heuristic we run
these 60 different problems 6 times changing the number of
stages considered in the synthesis process. The result is shown
in Figure 4. In this figure each point represents the synthesis
time of a particular problem. From the graph we can see that
increasing the number of stages dramatically reduces synthesis
time. In our experiments, without the incremental approach
(i.e., stages=1), the solver did not produce any results after a
whole day for the problems with more than 80 messages, while
the same problems are solved in less than a minute when we
increase the number of stages to 5. Note that all problems have
been run considering 4 alternative routes for each message. As
discussed in Section V, with the incremental approach we pay
for the speed-up with only a partial exploration of the solution
space. Figure 5 shows the percentage of cases in which a
solution (all controllers are guaranteed to be stable) has been
found, depending on the number of time slices employed.
Observe that, while execution times are already dramatically
reduced for five stages compared to three (see Figure 4), the
quality of exploration with five or seven stages is still very

 0

 10

 20

 30

 40

 50

10 20 30 40 50 60 70 80 90 100

S
y
n
th

e
si

s
ti

m
e
 (

s)

Number of messages

stages = 5routes=1

routes=3

routes=5

routes=7

routes=20

Fig. 6. Scalability of the route subset heuristic

 0

 5

 10

 15

 20

 25

10 15 20 25 30 35 40 45

S
y
n
th

e
si

s
ti

m
e
 (

s)

Ethernet switches in network

Fig. 7. Scalability of the proposed approach for big networks

good.
In order to show the impact of providing a subset of

alternative routes we run the same 60 problems 5 times
changing the number of alternative routes while keeping the
number of stages to 5. The results of this experiment are shown
in Figure 6. The trend in the graph shows that decreasing the
number of possible routes between sensors and controllers in
the network reduces the synthesis time. On the other hand, our
experiments show that reducing the set of alternative routes per
application to 1 or 2 will result in more than 90% of unsolved
problems, while for 3 and more sets of routes less than 10%
remained unsolved.

The third experiment shows how synthesis time scales with
the number of nodes in the network. In this experiment we
choose 10 control applications that generate 45 messages in
one hyper-period. Then for each experiment we change the
number of Ethernet switches in the underlying network. Given
the number of switches in the network, we generate randomly
the topology based on the Erdős-Rényi graph model [10]
and connect randomly the 10 sensors and 10 controllers to
this topology. Figure 7 shows the synthesis time for different
numbers of switches in the network.

Finally, we have also applied our approach to a real-
life example from General Motors. The example consists of
20 sensors (camera, radar, and lidar) and electronic control
units for surround view perception, object tracking, active
safety functions, and autonomous vehicle control. These 20
control applications are communicating through a network of 8

TABLE I
PARAMETERS OF THE EXAMPLE CONTROL APPLICATIONS AND ROUTING AND SCHEDULING RESULTS

Stability-Aware Deadline
Control App. Period (ms) α β max{e2e} (ms) Latency (ms) Jitter (ms) max{e2e} (ms) Latency (ms) Jitter (ms)

1 20 1.53 27.78 19.99 19.98 0.01 19.91 4.81 15.10
2 40 2.27 15.70 15.68 15.68 0 38.14 16.02 22.12
3 50 1.07 80.71 49.99 49.99 0 47.35 17.22 30.13
4 40 2.27 15.70 15.68 15.68 0 38.53 30.83 7.70
5 50 1.07 80.71 49.99 49.99 0 49.91 13.57 36.34

Ethernet switches, which are connected based on the topology
depicted in Figure 1. The parameters (period, α, and β) for five
of these control applications are shown in Table I. Note that
the stability curve for each control application is estimated by
one line (see Equation 2), hence, one α and β for each control
application.

The maximum packet size for all these control applications
is 1500 bytes and the Ethernet switches and links are assumed
to be 10Mbit/s. Therefore, the transmission delay for each
link and each message is ld = 1.2ms. The forwarding delay
for all switches is considered sd = 5µs.

The synthesis problem for our set of 20 applications com-
prises the scheduling and routing of 106 messages (generated
in the hyper-period of length 200ms). We have applied our
synthesis approach providing 3 alternative routes for each
message and considering 5 stages. The synthesis time was
112 seconds and all 20 applications satisfied the worst-case
stability constraints. We show the resulted maximal end-
to-end delay, latency, and jitter for five out of 20 control
applications in Table I under Stability-Aware column. In order
to highlight the importance of control-aware communication
synthesis with explicitly considering the stability conditions,
we run an additional experiment with the identical setting as
before. However, instead of imposing the stability constraints
(Equation 10 and 3), we imposed a constraint on the worst-
case delay of each message to not exceed its period. This
approach represents the state of the art (i.e., scheduling and
routing with implicit hard deadlines). The results are shown in
Table I under Deadline column. Analyzing the latencies and
jitters, out of the five applications, three (highlighted in the ta-
ble) turn out to be potentially unstable in the worst case. From
the whole set of 20 applications, only 14 satisfied the worst-
case stability conditions, further demonstrating the importance
of our stability-aware routing and scheduling approach.

VII. CONCLUSIONS

In this paper, we have addressed the joint message routing
and scheduling problem for control applications communicat-
ing over time-triggered Ethernet networks. Our goal is to guar-
antee worst-case stability of the networked control applications
considering the impact of communication delay and jitter on
control quality. We have also proposed new techniques to cope
with the inherent complexity of this synthesis problem. Our
extensive experimental evaluation demonstrates the efficiency
and applicability of the proposed technique in solving the
joint routing/scheduling problem in networked cyber-physical
systems to provide stability guarantees.

REFERENCES

[1] A. Aminifar, P. Eles, Z. Peng, and A. Cervin. Control-quality driven
design of cyber-physical systems with robustness guarantees. In DATE,
2013.

[2] K. J. Åström and B. Wittenmark. Computer-Controlled Systems. Prentice
Hall, 3rd edition, 1997.

[3] G. Avni. Synthesizing Time-Triggered Schedules for Switched Networks
with Faulty Links. In EMSOFT, 2016.

[4] L. L. Bello. The case for ethernet in automotive communications. ACM
SIGBED Review, 2011.

[5] A. Cervin. Stability and worst-case performance analysis of sampled-
data control systems with input and output jitter. In Proceedings of the
2012 American Control Conference (ACC), 2012.

[6] S. Chakraborty, M. A. Al Faruque, W. Chang, D. Goswami, M. Wolf,
and Q. Zhu. Automotive cyber-physical systems: A tutorial introduction.
IEEE Design & Test, 2016.

[7] S. S. Craciunas, R. S. Oliver, and W. Steiner. Scheduling Real-Time
Communication in IEEE 802.1Qbv Time Sensitive Networks. In 24th
International Conference on Real-Time Networks and Systems (RTNS),
2016.

[8] L. De Moura and N. Bjørner. Z3: An efficient smt solver. Tools and
Algorithms for the Construction and Analysis of Systems, 2008.

[9] P. Deng, Q. Zhu, A. Davare, A. Mourikis, X. Liu, and M. Di Natale.
An efficient control-driven period optimization algorithm for distributed
real-time systems. IEEE Transactions on Computers, 2016.

[10] P. Erdős and A. Rényi. On random graphs I. Publ. Math. Debrecen,
1959.

[11] V. Gavrilut and P. Pop. Traffic class assignment for mixed-criticality
frames in TTEthernet. ACM SIGBED Review, 2016.

[12] LAN/MAN Standards Committee of the IEEE Computer Society. IEEE
Standard for Local and Metropolitan Area Networks – Bridges and
Bridged Networks Amendment 25 : Enhancements for Scheduled Traffic,
IEEE Std. 802.1Qbv-2015. 2015.

[13] B. Lincoln and A. Cervin. Jitterbug: A tool for analysis of real-time
control performance. In Proceedings of the 41st IEEE Conference on
Decision and Control, 2002.

[14] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner. Design
optimisation of cyber-physical distributed systems using IEEE time-
sensitive networks. IET Cyber-Physical Systems: Theory & Applications,
2016.

[15] D. Quaglia, R. Muradore, R. Bragantini, and P. Fiorini. A Sys-
temC/Matlab co-simulation tool for networked control systems. Sim-
ulation Modelling Practice and Theory, 2012.

[16] S. Samii, A. Cervin, P. Eles, and Z. Peng. Integrated scheduling and
synthesis of control applications on distributed embedded systems. In
DATE, 2009.

[17] F. Smirnov, M. Glaß, F. Reimann, and J. Teich. Optimizing message
routing and scheduling in automotive mixed-criticality time-triggered
networks. In DAC, 2017.

[18] W. Steiner. An evaluation of SMT-based schedule synthesis for time-
triggered multi-hop networks. In Real-Time Systems Symposium, 2010.

[19] W. Steiner. Synthesis of Static Communication Schedules for
TTEthernet-Based Mixed-Criticality Systems. In 14th IEEE Inter-
national Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops (ISORCW), 2011.

[20] W. Steiner, G. Bauer, B. Hall, and M. Paulitsch. Time-Triggered
Ethernet: TTEthernet. Time-Triggered Communication, 2011.

[21] D. Tamas-Selicean, P. Pop, and W. Steiner. Design optimization of
TTEthernet-based distributed real-time systems. Real-Time Systems,
2014.

[22] L. Zhang, D. Goswami, R. Schneider, and S. Chakraborty. Task- and
Network-level Schedule Co-Synthesis of Ethernet-based Time-triggered
Systems. In ASP-DAC, 2014.

