2,203 research outputs found

    A Review of Wireless Body Area Networks for Medical Applications

    Full text link
    Recent advances in Micro-Electro-Mechanical Systems (MEMS) technology, integrated circuits, and wireless communication have allowed the realization of Wireless Body Area Networks (WBANs). WBANs promise unobtrusive ambulatory health monitoring for a long period of time and provide real-time updates of the patient's status to the physician. They are widely used for ubiquitous healthcare, entertainment, and military applications. This paper reviews the key aspects of WBANs for numerous applications. We present a WBAN infrastructure that provides solutions to on-demand, emergency, and normal traffic. We further discuss in-body antenna design and low-power MAC protocol for WBAN. In addition, we briefly outline some of the WBAN applications with examples. Our discussion realizes a need for new power-efficient solutions towards in-body and on-body sensor networks.Comment: 7 pages, 7 figures, and 3 tables. In V3, the manuscript is converted to LaTe

    Advanced observation and telemetry heart system utilizing wearable ECG device and a Cloud platform

    Get PDF
    Short lived chest pain episodes of post PCI patients represent the most common clinical scenario treated in the Accidents and Emergency Room. Continuous ECG monitoring could substantially diminish such hospital admissions and related ambulance calls. Delivering community based, easy-To-handle, easy to wear, real time electrocardiography systems is still a quest, despite the existence of electronic electrocardiography systems for several decades. The PATRIOT system serves this challenge via a 12-channel, easy to wear, easy to carry, mobile linked, miniaturized automatic ECG device and a Cloud platform. The system may deliver high quality electrocardiograms of a patient to medical personnel either on the spot or remotely both in a synchronous or asynchronous mode, enhancing autonomy, mobility, quality of life and safety of recently treated coronary artery disease patients

    Wireless Medical Sensor Networks: Design Requirements and Enabling Technologies

    Get PDF
    This article analyzes wireless communication protocols that could be used in healthcare environments (e.g., hospitals and small clinics) to transfer real-time medical information obtained from noninvasive sensors. For this purpose the features of the three currently most widely used protocols—namely, Bluetooth® (IEEE 802.15.1), ZigBee (IEEE 802.15.4), and Wi-Fi (IEEE 802.11)—are evaluated and compared. The important features under consideration include data bandwidth, frequency band, maximum transmission distance, encryption and authentication methods, power consumption, and current applications. In addition, an overview of network requirements with respect to medical sensor features, patient safety and patient data privacy, quality of service, and interoperability between other sensors is briefly presented. Sensor power consumption is also discussed because it is considered one of the main obstacles for wider adoption of wireless networks in medical applications. The outcome of this assessment will be a useful tool in the hands of biomedical engineering researchers. It will provide parameters to select the most effective combination of protocols to implement a specific wireless network of noninvasive medical sensors to monitor patients remotely in the hospital or at home

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    Get PDF
    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation

    Real time telemedical health care systems with wearable sensors

    Get PDF
    The time between detection and response to chronic diseases could go a long way in saving lives. The current trend in health monitoring systems is to move from the hospital centered device to eventually portable personal devices. Hence,Telemedical health care involves the remote delivery of medical care service to either out-of-hospital or admitted patients through wireless network and computer information technology. This paper systematically reviews the most recent works in telemedical health care system to propose a more efficient model. The focus is more on wearable sensors and devices with most attention given to cardiovascular patients in recent times. The huge literature available reflects the size of activity and attention given to telemedicine. The reviewed works are published within the last five years. Furthermore, the proposed systems are compared in terms of their connectivity, targeted application, type of sensor used, etc. Our study reveals Telemedicine to be a profound field with researchers from multidisciplinary sectors. However, there are still many gaps that need to be filled before maturity. Factors such as efficient wireless transmission, cyber data security, sensor design and integration, device miniaturization and intelligent algorithm for multi parameter data fusion require further considerations

    Mobile Health Technologies

    Get PDF
    Mobile Health Technologies, also known as mHealth technologies, have emerged, amongst healthcare providers, as the ultimate Technologies-of-Choice for the 21st century in delivering not only transformative change in healthcare delivery, but also critical health information to different communities of practice in integrated healthcare information systems. mHealth technologies nurture seamless platforms and pragmatic tools for managing pertinent health information across the continuum of different healthcare providers. mHealth technologies commonly utilize mobile medical devices, monitoring and wireless devices, and/or telemedicine in healthcare delivery and health research. Today, mHealth technologies provide opportunities to record and monitor conditions of patients with chronic diseases such as asthma, Chronic Obstructive Pulmonary Diseases (COPD) and diabetes mellitus. The intent of this book is to enlighten readers about the theories and applications of mHealth technologies in the healthcare domain

    Photoplethysmography based remote health monitoring system

    Get PDF
    One of the world's most leading killer diseases is the cardiovascular disease, which accounts for 16.7 million deaths annually. Out of the total population in the world, about 22 million people run the risk of sudden heart failure. However, saving the lives of cardiac patients can be improved by the emergency monitoring so that the initiation of treatment can be taken up within the crucial hour. The acquired signals by pulse oximetry provide significant information about the heart-rate, arterial blood oxygenation, blood pressure and respiratory-rate. Telemedicine provides a great impact in the emergency monitoring of patients located in remote nonclinical environments. A home cardiac telemedicine emergency system based on photoplethysmography has been developed. The acquired signals are processed, transmitted and stored in a local PC. Finally, the data are sent to the remote terminal located at the hospital through internet. The diagnoses are done by specialists from the reading and action can be immediately taken in emergency cases
    corecore