1,384 research outputs found

    Meta-Learning for Symbolic Hyperparameter Defaults

    Get PDF
    Hyperparameter optimization in machine learning (ML) deals with the problem of empirically learning an optimal algorithm configuration from data, usually formulated as a black-box optimization problem. In this work, we propose a zero-shot method to meta-learn symbolic default hyperparameter configurations that are expressed in terms of the properties of the dataset. This enables a much faster, but still data-dependent, configuration of the ML algorithm, compared to standard hyperparameter optimization approaches. In the past, symbolic and static default values have usually been obtained as hand-crafted heuristics. We propose an approach of learning such symbolic configurations as formulas of dataset properties from a large set of prior evaluations on multiple datasets by optimizing over a grammar of expressions using an evolutionary algorithm. We evaluate our method on surrogate empirical performance models as well as on real data across 6 ML algorithms on more than 100 datasets and demonstrate that our method indeed finds viable symbolic defaults.Comment: Pieter Gijsbers and Florian Pfisterer contributed equally to the paper. V1: Two page GECCO poster paper accepted at GECCO 2021. V2: The original full length paper (8 pages) with appendi

    Hyperparameter Tuning for Machine and Deep Learning with R

    Get PDF
    This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II). Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike

    In silico assessment of nanoparticle toxicity powered by the Enalos Cloud Platform:Integrating automated machine learning and synthetic data for enhanced nanosafety evaluation

    Get PDF
    The rapid advance of nanotechnology has led to the development and widespread application of nanomaterials, raising concerns regarding their potential adverse effects on human health and the environment. Traditional (experimental) methods for assessing the nanoparticles (NPs) safety are time-consuming, expensive, and resource-intensive, and raise ethical concerns due to their reliance on animals. To address these challenges, we propose an in silico workflow that serves as an alternative or complementary approach to conventional hazard and risk assessment strategies, which incorporates state-of-the-art computational methodologies. In this study we present an automated machine learning (autoML) scheme that employs dose-response toxicity data for silver (Ag), titanium dioxide (TiO2), and copper oxide (CuO) NPs. This model is further enriched with atomistic descriptors to capture the NPs’ underlying structural properties. To overcome the issue of limited data availability, synthetic data generation techniques are used. These techniques help in broadening the dataset, thus improving the representation of different NP classes. A key aspect of this approach is a novel three-step applicability domain method (which includes the development of a local similarity approach) that enhances user confidence in the results by evaluating the prediction's reliability. We anticipate that this approach will significantly expedite the nanosafety assessment process enabling regulation to keep pace with innovation, and will provide valuable insights for the design and development of safe and sustainable NPs. The ML model developed in this study is made available to the scientific community as an easy-to-use web-service through the Enalos Cloud Platform (www.enaloscloud.novamechanics.com/sabydoma/safenanoscope/), facilitating broader access and collaborative advancements in nanosafety.</p

    Hyperparameter Tuning for Machine and Deep Learning with R

    Get PDF
    This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II). Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike

    Gradient boosting in automatic machine learning: feature selection and hyperparameter optimization

    Get PDF
    Das Ziel des automatischen maschinellen Lernens (AutoML) ist es, alle Aspekte der Modellwahl in prädiktiver Modellierung zu automatisieren. Diese Arbeit beschäftigt sich mit Gradienten Boosting im Kontext von AutoML mit einem Fokus auf Gradient Tree Boosting und komponentenweisem Boosting. Beide Techniken haben eine gemeinsame Methodik, aber ihre Zielsetzung ist unterschiedlich. Während Gradient Tree Boosting im maschinellen Lernen als leistungsfähiger Vorhersagealgorithmus weit verbreitet ist, wurde komponentenweises Boosting im Rahmen der Modellierung hochdimensionaler Daten entwickelt. Erweiterungen des komponentenweisen Boostings auf multidimensionale Vorhersagefunktionen werden in dieser Arbeit ebenfalls untersucht. Die Herausforderung der Hyperparameteroptimierung wird mit Fokus auf Bayesianische Optimierung und effiziente Stopping-Strategien diskutiert. Ein groß angelegter Benchmark über Hyperparameter verschiedener Lernalgorithmen, zeigt den kritischen Einfluss von Hyperparameter Konfigurationen auf die Qualität der Modelle. Diese Daten können als Grundlage für neue AutoML- und Meta-Lernansätze verwendet werden. Darüber hinaus werden fortgeschrittene Strategien zur Variablenselektion zusammengefasst und eine neue Methode auf Basis von permutierten Variablen vorgestellt. Schließlich wird ein AutoML-Ansatz vorgeschlagen, der auf den Ergebnissen und Best Practices für die Variablenselektion und Hyperparameteroptimierung basiert. Ziel ist es AutoML zu vereinfachen und zu stabilisieren sowie eine hohe Vorhersagegenauigkeit zu gewährleisten. Dieser Ansatz wird mit AutoML-Methoden, die wesentlich komplexere Suchräume und Ensembling Techniken besitzen, verglichen. Vier Softwarepakete für die statistische Programmiersprache R sind Teil dieser Arbeit, die neu entwickelt oder erweitert wurden: mlrMBO: Ein generisches Paket für die Bayesianische Optimierung; autoxgboost: Ein AutoML System, das sich vollständig auf Gradient Tree Boosting fokusiert; compboost: Ein modulares, in C++ geschriebenes Framework für komponentenweises Boosting; gamboostLSS: Ein Framework für komponentenweises Boosting additiver Modelle für Location, Scale und Shape.The goal of automatic machine learning (AutoML) is to automate all aspects of model selection in (supervised) predictive modeling. This thesis deals with gradient boosting techniques in the context of AutoML with a focus on gradient tree boosting and component-wise gradient boosting. Both techniques have a common methodology, but their goal is quite different. While gradient tree boosting is widely used in machine learning as a powerful prediction algorithm, component-wise gradient boosting strength is in feature selection and modeling of high-dimensional data. Extensions of component-wise gradient boosting to multidimensional prediction functions are considered as well. Focusing on Bayesian optimization and efficient early stopping strategies the challenge of hyperparameter optimization for these algorithms is discussed. Difficulty in the optimization of these algorithms is shown by a large scale random search on hyperparameters for machine learning algorithms, that can build the foundation of new AutoML and metalearning approaches. Furthermore, advanced feature selection strategies are summarized and a new method based on shadow features is introduced. Finally, an AutoML approach based on the results and best practices for feature selection and hyperparameter optimization is proposed, with the goal of simplifying and stabilizing AutoML while maintaining high prediction accuracy. This is compared to AutoML approaches using much more complex search spaces and ensembling techniques. Four software packages for the statistical programming language R have been newly developed or extended as a part of this thesis: mlrMBO: A general framework for Bayesian optimization; autoxgboost: An automatic machine learning framework that heavily utilizes gradient tree boosting; compboost: A modular framework for component-wise boosting written in C++; gamboostLSS: A framework for component-wise boosting for generalized additive models for location scale and shape

    Basic Enhancement Strategies When Using Bayesian Optimization for Hyperparameter Tuning of Deep Neural Networks

    Get PDF
    Compared to the traditional machine learning models, deep neural networks (DNN) are known to be highly sensitive to the choice of hyperparameters. While the required time and effort for manual tuning has been rapidly decreasing for the well developed and commonly used DNN architectures, undoubtedly DNN hyperparameter optimization will continue to be a major burden whenever a new DNN architecture needs to be designed, a new task needs to be solved, a new dataset needs to be addressed, or an existing DNN needs to be improved further. For hyperparameter optimization of general machine learning problems, numerous automated solutions have been developed where some of the most popular solutions are based on Bayesian Optimization (BO). In this work, we analyze four fundamental strategies for enhancing BO when it is used for DNN hyperparameter optimization. Specifically, diversification, early termination, parallelization, and cost function transformation are investigated. Based on the analysis, we provide a simple yet robust algorithm for DNN hyperparameter optimization - DEEP-BO (Diversified, Early-termination-Enabled, and Parallel Bayesian Optimization). When evaluated over six DNN benchmarks, DEEP-BO mostly outperformed well-known solutions including GP-Hedge, BOHB, and the speed-up variants that use Median Stopping Rule or Learning Curve Extrapolation. In fact, DEEP-BO consistently provided the top, or at least close to the top, performance over all the benchmark types that we have tested. This indicates that DEEP-BO is a robust solution compared to the existing solutions. The DEEP-BO code is publicly available at &lt;uri&gt;https://github.com/snu-adsl/DEEP-BO&lt;/uri&gt;
    corecore