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Foreword

Hyperparameter tuning? Is this relevant in practice? Is it not rather an academic
gimmick? That the latter is not the case has been known for many years. On the other
hand, it is mostly unclear what exactly this looks like in practice. Which procedures
depend on which hyperparameters? How sensitive are the procedures to different
settings of their hyperparameters? And does that in turn depend on which data
constellations are available? How can users develop a good feeling for being on
the right track when tuning? Answers to these questions are not only expected when
it comes to optimally performing tuning per se, but also when it comes to making
the tuning process transparent, i.e., answering the question why, after all, this and
not that hyperparameter constellation was chosen.

This book delivers answers to the above questions, some of which were compiled
as part of a study funded by the Federal Statistical Office of Germany. The
contributed case studies and associated scripts also enable practitioners to repro-
duce the described tuning procedures and apply them themselves. The presented
insights, cross-references, experiences, and recommendations will contribute to a
better understanding of hyperparameter tuning in machine learning and to gain
transparency.

Wiesbaden, Germany
March 2022

Florian Dumpert
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Chapter 1
Introduction

Eva Bartz

It’s about resources, time,money, and effort. It’s about how science serves our society.
Ever wondered how ice cream manufacturers picked the favorite flavor of the

year? Might there be a “fruit conspiracy” (Sect. 5.2)?
The COVID-19 pandemic showed the importance of forecasts concerning health-

care workers, protective equipment, vaccines, and so forth. How do we model the
data we have to generate sound results and robust conclusions?

How many places for childcare will we need in the future? How many teachers?
Local politicians will need numbers to prepare good politics caring for our future,
raising our children with the hope for a good education.

The needs and the possibilities for good forecasts and predictions are numerous
in our society. Coming from the business end of things I was deeply impressed, how
scientific research in general and hyperparameter tuning in particular changes and
contributes to our society again and again.

Bartz&Bartz GmbH initiated themethods described in this book to achieve better
results in hyperparameter tuning faster, with less effort and costs. Because, let’s face
it, computational time entails a number of costs. First and foremost it entails the time
of the researcher, furthermore a lot of energy. All this equals money. So if wemanage
to achieve better results in hyperparameter tuning in less time, everybody profits. On
a larger scale the methods described may contribute a small part to address some of
the challenges we face as a society.

Having initiated the methods in an expertise funded by the Federal Statistical
Office of Germany (destatis), we realized that a number of people and businesses
might benefit from our knowledge. To be able to enlarge our entrepreneurial effort
into a book, scientists from the Institute for Data Science, Engineering, andAnalytics

E. Bartz (B)
Bartz & Bartz GmbH, Gummersbach, Germany
e-mail: eva.bartz@bartzundbartz.de
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of the Technische Hochschule Köln (THK) took over. We added the academic point
of view to the business consulting, Bartz & Bartz GmbH provided.

Our clients from destatis contributed Chap. 7, discussing the “Hyperparameter
Tuning in German Official Statistics”.

We link academic and entrepreneurial requirements, hoping to create a very broad
theoretical overview with high practical value for our readers. Thus this book can be
used as a handbook aswell as a text book. It provides hands-on examples that illustrate
how hyperparameter tuning can be applied in practice and gives deep insights into the
working mechanisms of Machine Learning (ML) and Deep Learning (DL) methods.
Programming code is provided so that users can reproduce the results.

ML andDLmethods are becomingmore andmore important and are used inmany
industrial production processes, e.g., Cyber-physical Production Systems (CPPS).
Several hyperparameters of the methods used have to be set appropriately. Previous
projects carried out produced inconsistent results in this regard. For example, with
Support Vector Machines (SVMs) it could be observed that the tuning of the hyper-
parameters is critical to success with the same data material, with random forests
the results do not differ too much from one another despite different selected hyper-
parameter values. While some methods have only one or a few hyperparameters,
others provide a large number. In the latter case, optimization using a (more or less)
fine grid (grid search) quickly becomes very time-consuming and can therefore no
longer be implemented. In addition, the question of how the optimality of a selection
can be measured in a statistically valid way (test problem: training/validation/test
data and resampling methods) arises for both many and a few hyperparameters. In
real-world projects, DL experts have gained profound knowledge over time as to
what reasonable hyperparameters are, i.e., Hyper Parameter Tuning (HPT) skills are
developed. These skills are based on human expert and domain knowledge and not
on valid formal rules.

Figure 1.1 illustrates how data scientists select models, specify metrics, pre-
process data, etc. Kedziora et al. (2020) present a similar description. Chollet and
Allaire (2018) describe the situation as follows:

If you want to get to the very limit of what can be achieved on a given task, you can’t
be content with arbitrary [hyperparameter] choices made by a fallible human. Your initial
decisions are almost always suboptimal, even if you have good intuition. You can refine
your choices by tweaking them by hand and retraining the model repeatedly—that’s what
machine-learning engineers and researchers spend most of their time doing.

But it shouldn’t be your job as a human to fiddle with hyperparameters all day—that is better
left to a machine.

Please compare this to Fig. 2.2, which shows how the automated tuning process
works. But is it reasonable to transfer the power or decision-making entirely to a
machine? I don’t think so and you probably don’t either. But how do we accomplish
that?

This book deals with the hyperparameter tuning of ML and DL algorithms and
keeps the human in the loop. In particular, it provides

• a survey of important model parameters;



1 Introduction 3

EvaluationModel

Data

Select Hyperparameters

Select Model

Select Data Set

Select Loss Function

Build Model

Prepare 
Data Set

Fig. 1.1 Elements of the HPT process. For a given ML or DL model and its hyperparameters, the
data scientist selects a data set and prepares the corresponding data. The model is built and a loss
function is computed to evaluate the results

• three parameter tuning studies;
• one extensive global parameter tuning study;
• statistical analysis of the performances of the ML and DL methods based on
severity; and

• a new way, based on consensus ranking, to analyze results from multiple algo-
rithms.

More than 30 hyperparameters from six relevant ML methods and DL methods
are analyzed. We extend the well-established SPOT framework that improves the
optimization of ML methods and DL while increasing the transparency and keeping
the human in the loop. The case studies presented in this book can be run on a
regular desktop or notebook computer. No high-performance computing facilities
are required. Interactive tools for visualization with the popular R package ploty
are provided. We hope that you achieve better results with significantly less time,
costs, effort, and resources using the methods described in this book. We wish you
a successful implementation.

This book is structured as follows: Chap. 2 introduces the methodology. Chapter 3
presents models (algorithms or methods) and hyperparameters. HPT methods are
introduced in Chap. 4. Chapter 5 discusses result aggregation and severity. Chapter 6
describes the relevance of HPT in industry. Chapter 7 presents HPT in official statis-
tics. Four case studies are presented next. These HPT studies are using the Census-
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Income (KDD) Data Set (CID), which will be described in Sect. 8.2.1. The first case
study, which describes HPT for random forests, is presented in Chap. 8. This case
study might serve as a starting point for the interested reader. The second case study
analyzes Extreme Gradient Boosting (XGBoost) and is presented in Chap. 9. The
third case study analyzes hyperparameter tuning for DL in Chap. 10. To expand on
the example in Chap. 10, which considered tuning a Deep Neural Network (DNN),
Chap. 11 also deals with neural networks, but focuses on a different type of learning
task: Reinforcement Learning (RL). A global study, which analyzes tunability, is
presented in Chap. 12.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
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Chapter 2
Tuning: Methodology

Thomas Bartz-Beielstein, Martin Zaefferer, and Olaf Mersmann

Abstract This chapter lays the groundwork and presents an introduction to the pro-
cess of tuningMachineLearning (ML) andDeepLearning (DL) hyperparameters and
the respective methodology used in this book. The key elements such as the hyper-
parameter tuning process and measures of tunability and performance are defined.
Practical considerations are presented and all the ingredients needed for successful
hyperparameter tuning are explained. A special focus lies on how to prepare the data.
This might be the most thorough overview presented yet.

2.1 Introduction to Hyperparameter Tuning

This book deals with the tuning of the hyperparameters of methods from the fieldML
and DL, focusing on supervised learning (both regression and classification). In the
following, the scope of this work is explained, including terminology of important
terms (Tables 2.1 and 2.2).

The data points x come from an input data spaceX (x ∈ X) and can have different
scale levels (nominal: no order; ordinal: order, no distance; cardinal: order, distances).
Nominal and ordinal data are mostly discrete, and cardinal data are continuous.
Usually, the data points are k-dimensional vectors. The vector elements are also
called features or independent variables. The number of data points in a data set is
n.
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Table 2.1 Symbols used in this book

Symbol Name and description

A Algorithm, model, methods (see Definition 2.20)

Aλ(t) Model with hyperparameter configuration λ at time step t

Aλ(∗) Model with best hyperparameter configuration λ

c Number of classes/categories

c1−α Threshold value or the cut-off point (used in hypothesis testing)

d(·) Test statistic

d j Difference between the j-th samples

E()̇ Expectation

Errtest Test error, generalization error

f Function that describes relationship between input and output

f (train)
acc Training accuracy

f (test)
acc Test accuracy

f (val)
acc Validation accuracy

H0 Null hypothesis

H1 Alternative hypothesis

I Indicator function

k (Problem) dimension

k(x, x ′) Kernel function

L Loss function

n Sample size or number of observations

ninit Initial design size

N Total number of samples

NFeats Number of features

N Natural numbers

O Optimizer

p Norm, e.g., used in Eq. (2.1) or number of model coefficients

p(A) Performance of algorithm A
PH (x) Probability of x under the hypothesis H

R Set of real numbers

Sd Sample standard deviation of differences

Snr Severity (non-rejection)

Sr Severity (rejection)

S Surrogate (model)

Ti i-th tree

|T | Number of splits for a tree

T Tuner

u1−α Upper 1 − α quantile of the normal distribution

X Input data space or complete data set

(continued)
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Table 2.1 (continued)

Symbol Name and description

((X,Y)CID The full Census Income Data (CID) data set (n = 299 285
observations)

(X, Y )(test) Test data set

(X, Y )(train) Training data set

(X, Y )(train ∪ val) Training and validation data set

(X, Y )(valtrain) Validation set, subset of (X, Y )(train), internally used by the
model A in the inner optimization loop

(X, Y )(val) Validation data set

t Iteration counter. I.g., the t-th SPOT surrogate will be denoted
as S(t)

T Transpose of a matrix or vector

x Data point, feature, predictor, covariates, explanatory variable

x Observed difference

x∗ New/unknown data point

X Data, usually partitioned into training, validation, and test data

y Actually observed value, outcome, response variable, label

y(∗)
val Best function value on the validation data (X, Y )(val)

y(OCBA*)
val Best function value on the validation data (X, Y )(val), evaluated

with OCBA

ŷi Predicted value for the i-th observed value yi
y∗ Output value for a new/unknown data point

ȳ Mean difference between two observations, usually for paired
samples

Y Output data space (dependent variables)

In addition, we consider output data (dependent variables) y ∈ Y. These can also
have different scale levels (nominal, ordinal, cardinal). Output data are usually scalar.
Variable identifiers like x and y represent scalar or vector quantities, the meaning
can be deduced from the context. In many practical applications, e.g., in the case
studies in this book, a subset, (X,Y ), of the full data set (X,Y) is used.

Definition 2.1 (Supervised learning) Supervised learning is a branch of ML where
models are trained on labeled data sets to make predictions.

For each observation, both the input xi ∈ X and the outcome yi ∈ Y (i =
1, 2, . . . , n) is known during training. A supervised learning algorithm A learns
the relationship between the inputs and output. That is, given a training data set
(xi , yi ), i = 1, . . . , n, it returns a model f : X �→ Y with which we can predict the
expected value of y∗ given x∗:

ŷ∗ = f (x∗)
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Table 2.2 Greek Symbols used in this book
Symbol Name Comment,

Example

α Significance level (in hypothesis
testing)

Probability of
a type I error,
given that the
null
hypothesis is
true

β Regression coefficient; the probability of a type II error, given that the alternative hypothesis is true

� Relevant difference

μ Mean of a random variable

λ Hyperparameter configuration Also: nugget
in Kriging

λi i-th hyperparameter configuration Used in
SMBO

λ0 Default hyperparameter
configuration

Used in
SMBO

λ� Best hyperparameter
configuration

Best
configuration
in theory

λ̂ Best hyperparameter
configuration obtained by
evaluating a finite set of samples

Best
configuration
“in practice”

� Hyperparameter space

π Problem instance

	 Cumulative distribution function of the standard normal distribution


 Hyperparameter response space

ψi Hyperparameter response surface function evaluated for the i-th hyperparameter configuration λi

ψ(test) Hyperparameter response surface
function (on test data)

As defined in
Eq. (2.11)

ψ(train) Hyperparameter response surface function (on train data)

ψ(val) Hyperparameter response surface
function (on validation data)

As defined in
Eq. (2.9)

σ2 Variance

τ Possible values (in hypothesis testing)

θ Set of parameters Also: Kriging
hyperparame-
ters

Definition 2.2 (Regression) If a supervised learning problem has an infinite number
of labels or outcomes, i.e.,Y ⊆ R, then it is called a regression problem and the task
of finding a model that captures the relationship between the input space and output
space is called regression.

Definition 2.3 (Classification) If a supervised learning problem has a finite number
of labels or outcomes, i.e.,Y = a1, a2, . . . , ac with c ∈ N, it is called a classification
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problem and the task of finding a model that captures the relationship between the
input space and output space is called classification.

Example: Regression and Classification

A typical question in regression is “how does relative humidity depend on tempera-
ture?”, whereas a typical question in classification is “how does the default on a loan
(yes, no) depend on the income of the borrower?”

We study ML and DL algorithms, also referred to as models or methods.

•> Note

The terms “algorithm”, “model”, and “method” will be used interchangeably in this
book. Their specific meanings can be derived from the context.

The learning algorithm itself has parameters called hyperparameters. Hyperparam-
eters are distinct from model parameters.

Definition 2.4 (Hyperparameter)Hyperparameters are settings or configurations of
themethods (models), which are freely selectablewithin a certain range and influence
model performance (quality). One specific set of hyperparameters is denoted as λ,
where � is the hyperparameter space.

Definition 2.5 (Model parameters) Model parameters are chosen during the learn-
ing process by the model itself.

Example: Hyperparameters and Model Parameters

The weights of the connections in an Neural Network (NN) are an example of model
parameters, whereas the number of units or layers of a NN is a hyperparameter.

2.2 Performance Measures for Hyperparameter Tuning

2.2.1 Metrics

Metrics are used tomeasure the distance between points and then define the similarity
between them.
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Definition 2.6 (Metric) Let X denote a set. A metric is a function

d : X × X → R
+
0

that returns the distance between any two values from the set X . Metrics are sym-
metric, positive definite, and fulfill the triangle equality.

The Minkowski distance, which will be used in this book, is defined as follows.

Definition 2.7 (Minkowski Distance)

dp(x, x
′) = ∥

∥x − x ′∥∥
p

= p

√
√
√
√

n
∑

i=1

∣
∣xi − x ′

i

∣
∣
p
. (2.1)

Some well-known metrics are special cases of the Minkowski distance:

• for p = 1 we get the Manhattan distance,
• for p = 2 we get the Euclidean distance,
• and for p = ∞ we get the Chebyshev distance.

2.2.2 Performance Measures

Several measures are used to evaluate the performance of ML and DL methods,
because performance can be expressed in many different ways, e.g., as a measure
of the fit of the model to the observed data values. The performance measure is
evaluated after a single ML or DL training step and returns a value to assess the
quality of the model or the prediction.

Tips: Measures in R

Basicmetrics are implemented in the package SPOTMisc. Themlr tutorial “Imple-
mented Performance Measures”1 presents a comprehensible overview. The R pack-
age Metrics is also a valuable tool.

Before we can define performance measures for classification or regression prob-
lems, we need some tools from which we will build these up.

Definition 2.8 (Loss function) A function

L : Y × Y → R
+
0

1 Available on https://mlr.mlr-org.com/articles/tutorial/measures.html.

https://mlr.mlr-org.com/articles/tutorial/measures.html
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is called a loss function or short a loss. L(y, ŷ) is a measure of how “bad” it is to
predict ŷ given that the true label is y.

Concrete examples of loss functions are

Definition 2.9 (Quadratic loss) The loss function

L2(y, ŷ) = (y − ŷ)2

is called the quadratic loss.

Definition 2.10 (Absolute value or L1 loss function) The L1 or absolute value loss
is defined as

L1(y, ŷ) = ∣
∣y − ŷ

∣
∣ .

Definition 2.11 (0-1 loss) The loss function

L01(y, ŷ) = I(y 
= ŷ) =
{

0 when y = ŷ

1 else

is called the 0-1 loss.

Definition 2.12 (Cross-entropy loss) The cross-entropy loss function is defined as

LCE (y, ŷ) = y log(ŷ) + (1 − y) log(1 − ŷ) =
{

log(ŷ) when y = 1

log(1 − ŷ) when y = 0
.

Note that it is only defined for binary outcomes y, while the predicted label ŷ can be
any value and is usually assumed to be a class probability.

With these loss functions, we can define performance measures. A performance
measure evaluates the loss on a data set and returns an aggregate loss. Depending
on the ML task, e.g., classification or regression, different categories of measures
are useful. In the following, ŷi = f (xi ) is the predicted value of the corresponding
learning model A for the i-th observation, xi is the i-th data point, and yi is the
actually observed value.

2.2.3 Measures for Classification

Definition 2.13 (Mean Mis-Classification Error) Mean Mis-Classification Error
(MMCE) is defined as

MMCE = 1

n

n
∑

i=1

L01(yi , ŷi ) = 1

n

n
∑

i=1

I(yi 
= ŷi ). (2.2)
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MMCE is used to evaluate the performance of the ML methods in the case studies
(Chaps. 8–10) and in the global study (Chap. 12).

Definition 2.14 (Binary cross-entropy loss) Binary Cross Entropy (BCE) loss or
log-loss is defined as

BCE = −1

n

n
∑

i=1

LCE (yi , ŷi ) (2.3)

The DL methods in Chap. 10 are tuned based on the ψ(val) (validationLoss),
which computes the BCE loss.

Definition 2.15 (Accuracy) The accuracy is defined as

ACC = 1

n

n
∑

i=1

1 − L01(yi , ŷi ) = 1

n

n
∑

i=1

I(yi = ŷi ).

Note that, in contrast to the previous measures, higher accuracies are better than
lower ones.

2.2.4 Measures for Regression

Typical regression measures are as follows.

Definition 2.16 (Mean Squared Error) The Mean Squared Error (MSE) is defined
as

MSE = 1

n

n
∑

i=1

L2(yi , ŷi ).

When used for classification, the MSE is sometimes called the Brier score.

Definition 2.17 (RootMean Squared Error) The RootMean Squared Error (RMSE)
is defined as the square root of the MSE:

RMSE = √
MSE =

√
√
√
√

1

n

n
∑

i=1

L2(yi , ŷi ). (2.4)

RMSE is used to evaluate the performance of the ML methods in the global study
(Chap. 12).

Definition 2.18 (Mean Absolute Error) TheMean Absolute Error (MAE) is defined
as

MAE = 1

n

n
∑

i=1

L1(yi , ŷi ).
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2.3 Hyperparameter Tuning

After specifying the data,methods for supervised learningwith their hyperparameters
and performance measures, the hyperparameter tuning problem can be defined.

Definition 2.19 (Hyperparameter tuning) The determination of the best possible
hyperparameters is called tuning (Hyperparameter Tuning (HPT)). HPT develops
tools to explore the space of possible hyperparameter configurations systematically,
in a structured way, i.e., HPT is an optimization problem.

The terms HPT and Hyperparameter Optimization (HPO) are often used syn-
onymously. In the context of the analyses presented in this book, these terms have
different meanings:

HPO develops and applies methods to determine the best hyperparameters in an
effective and efficient manner.

HPT develops and applies methods that try to analyze the effects and interactions
of hyperparameters to enable learning and understanding.

HPT can be seen as an extension of HPO, because it provides additional tools and
keeps experimenters and applicants in the loop. The relationship between HPT and
HPO can be formulated as follows:

HPO ⊂ HPT.

It simplifies the notation in the book: whenever HPT is mentioned, HPO is covered
as well.

In a data-rich situation, the best HPT approach is to randomly partition the data
set (X,Y ) into three parts as illustrated in Fig. 2.1.

The following definitions are based on Hastie (2009) and Bergstra and Bengio
(2012). The objective of a learning algorithmA is to find a function f that minimizes
some expected loss L(y, f (x)) over samples (x, y) ∈ (X,Y ).

Definition 2.20 (Learning algorithm) A learning algorithm A is a functional that
maps a data set (X,Y )(train) (a finite set of samples) to a function f : X → Y, i.e.,
A((X,Y )(train)) �→ f .

Train Validation Test

Fig. 2.1 Dataset split into three parts: (i) a training set (X, Y )(train) used to fit the models, (ii)
a validation set (X, Y )(val) to estimate prediction error for model selection, and (iii) a test set
(X, Y )(test) used for assessment of the generalization error
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A learning algorithmA can estimate f through the optimization of a training criterion
with respect to a set of parameters,λ ∈ �. Because the true relationship f is unknown
in real-world settings,A will return an estimation of f , which will be denoted as f̂ .

The learning algorithm itself often has hyperparameters λ ∈ �, and the actual
learning algorithm is the one obtained after choosing λ, which can be denoted Aλ.

The computation performed by A itself often involves an “inner optimization”
problem, e.g., optimizing the weights of a NN. The hyperparameter optimization
can be considered as an “outer-loop” optimization problem. It can be formulated as
follows:

λ(∗) = argmin
λ∈�

E(x,y)∈(X,Y)

[

L
(

y,Aλ((X,Y )(train))
)]

. (2.5)

In practice, the underlying space (X,Y) is too large or the true relation between
X and Y is unknown. Therefore, the validation set is used and Eq. (2.5) is replaced
by

λ(∗) ≈ argmin
λ∈�

1
∣
∣(X,Y )(val)

∣
∣

∑

x∈(X,Y )(val)

L
(

y,Aλ((X,Y )(train))(x)
)

(2.6)

Practitioners are interested in a way to choose λ so as to minimize generalization
or test error, which is based on unknown data to avoid overfitting. The generalization
error can be defined as follows.

Definition 2.21 (Generalization error (Test error)) Generalization error, also
referred to as test error, is the estimated loss over an independent (test) sample
(x, y) ∈ (X,Y )(test):

Errtest = E(x,y)∈(X,Y )(test)
[

L(y,Aλ((X,Y )(train)))
]

.

Definition 2.22 (Hyperparameter optimization problem) The hyperparameter opti-
mization problem can be stated in terms of a hyperparameter response function,
ψ ∈ 
, as follows:

λ(∗) ≈ argmin
λ∈�

ψ(λ) ≈ argmin
{λ(i)}i=1,2,...,n

ψ(λ) = λ̂, (2.7)

where

ψ(λ)(test) = 1

|(X,Y )(test)|
∑

x∈(X,Y )(test)

L
(

y,Aλ((X,Y )(train))
)

. (2.8)

•! Attention: Validation and Test Data

The validation set (X,Y )(val) is used during optimization to estimate the prediction
error for model selection,
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ψ(λ)(val) = 1

|(X,Y )(val)|
∑

x∈(X,Y )(val)

L
(

y,Aλ((X,Y )(train))
)

, (2.9)

whereas the test set in Eq. (2.8) is used for the assessment of the generalization error
of the selected model.

Summarizing, we can define HPO in ML and DL as a minimization problem

Definition 2.23 (Hyperparameter optimization)Hyperparameter optimization is the
minimization of

ψ(λ) over λ ∈ �.

Definition 2.24 (Hyperparameter surface) Similar to the definition in Design of
Experiments (DOE), the function ψ ∈ 
 is referred to as the hyperparameter
response surface.

Different data sets, tasks (classification or regression), and methods define different
sets � and functions 
.

A natural strategy for finding an adequate λ is described in Eq. (2.7): a set of
candidate solutions, {λ(i)}i=1,2,...,n , is chosen. Then ψ(λ) is computed for each one,
and the best hyperparameter configuration is returned as λ̃.

Whereas λ denotes an arbitrarily chosen hyperparameter configuration, important
hyperparameter configurations will be labeled as follows: λi is the i-th hyperparam-
eter configuration, λ0 is the initial hyperparameter configuration, λ(∗)(t) is the best
hyperparameter configuration at iteration t , and λ(∗) is the final best hyperparameter
configuration.

Definition 2.25 (Low effective dimension) If a function f of two variables could be
approximated by another function of one variable ( f (x1, x2) ≈ g(x1)), we could say
that f has a low effective dimension.

Several approaches exist for the tuning procedure. A model-based search is pre-
sented in this book. The corresponding model is called a surrogate model, or surro-
gate, S, for short.

In Sect. 5.8, different experimental designs for benchmarking optimization meth-
ods are discussed: the most simple design evaluates one single algorithm on one
problem, whereas the most complex design is used for comparing multiple algo-
rithms on multiple problems. HPT can be seen as a variant of the simple design,
because the experimenter is interested in the improved performance of one method
on one problem. To obtain this goal, the best hyperparameter configuration is deter-
mined. However, this simple setting can be extended, because the performance of
the tuned method can be compared to the performance of some default method or to
a competitive state-of-the art method. In the latter case, the hyperparameters of the
state-of-the-art method should also be tuned to enable a fair comparison. Although
HPT is not a benchmarking method on its own, it can be seen as a prerequisite for
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a fair and sound benchmark study. Note that the complex design requires adequate
statistical methods for the comparison. An approach based on consensus ranking is
presented in Chap. 12.

Tips: How to Select a Performance Measure

Kedziora et al. (2020) state that in classification “unsurprisingly”, accuracy2 is con-
sidered the most important performance measure. Accuracy might be an adequate
performance measure for classification of balanced data. For unbalanced data, other
measures are better. In general, there are many other ways to measure model qual-
ity, e.g., metrics based on time complexity and robustness or the model complexity
(interpretability, see also Definition 2.27) Bartz-Beielstein et al. (2020a).

In contrast to classical optimization, where the same optimization function can
be used for tuning and final evaluation, training of MLs and DL methods faces a
different situation: Training and validation are usually based on the loss function
whereas the final evaluation is based on a different measure, e.g., accuracy.

It is important to distinguish between estimates of performance (minimization of
the generalization error) based on validation and test sets. The loss function, which
has desirablemathematical properties, e.g., differentiability, acts as a surrogate for the
performance measure the user is finally interested in. Several performance measures
are used at different stages of the HPT procedures:

1. training loss, i.e., ψ(train),
2. training accuracy, i.e., f (train)

acc ,
3. validation loss, i.e., ψ(val),
4. validation accuracy, i.e., f (val)

acc ,
5. test loss, i.e., ψ(test), and
6. test accuracy, i.e., f (test)

acc .

This complexity gives reason for the following question:

Question: Which performance measure should be used during the HPT (HPO)
procedure?

Most authors recommend using test accuracy or test loss as the measure for hyper-
parameter tuning Schneider et al. (2019). In order to understand the correct usage
of these performance measures, it is important to look at the goals, i.e., selection or
assessment, of a tuning study.

To keep the discussion focus, accuracy was used in the previous considerations.
Instead of accuracy, other measures, e.g., MMCE, can be considered.

2 Accuracy in binary classification is the proportion of correct predictions among the total number
of observations Metz (1978).
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2.4 Model Selection and Assessment

Hastie et al. (2017) state that selection and assessment are two separate goals:

Selection: Estimating the performance of differentmodels in order to choose the
best one. Model selection is important during the tuning procedure.

Assessment: Model assessment is used for the final report (evaluation of the
results). Having chosen a final hyperparameter configuration, λ(∗),
the assessment estimates the model’s prediction error (generalization
error) on new data based on Eq. (2.8). This determines whether pre-
dictedvalues from themodel are likely to accurately predict responses
on future observations or samples from the hold-out set (X,Y )(test).
This process may help to prevent problems such as overfitting.

In principle, there are two ways of model assessment and selection Hastie et al.
(2017):

1. External assessment/selection uses different sets of data. The first p data samples
are for model training and n − p for validation. An explicit hold-out data set is
used. Problem: holding back data from model fitting results in lower precision
and power.

2. Internal assessment/selection uses data splitting and resampling methods. The
true error might be underestimated, because the same data samples that were
used for fitting the model are used for prediction. The so-called in-sample (also
apparent, or resubstitution) error is smaller than the true error.

The test set (X,Y )(test) should be used only at the end of the HPT procedure. It
should not be used during the training and validation phase, because if the test set
is used repeatedly, e.g., for choosing the model with smallest test-set error, “the test
set error of the final chosen model will underestimate the true test error, sometimes
substantially.” Hastie et al. (2017).

The following example shows that there is no general agreement on how to use
training, validation, and test sets as well as the associated performance measures.

Example: Basic Comparisons in Manual Search

Wilson et al. (2017) describe a manual search. They allocated a pre-specified budget
on the number of epochs used for training each model.

• When a test set was available, it was used to chose the settings that achieved the
best peak performance on the test set by the end of the fixed epoch budget.

• If no explicit test set was available, e.g., for Canadian Institute for Advanced
Research, 10 classes (CIFAR-10), they chose the settings that achieved the lowest
training loss at the end of the fixed epoch budget.
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Theoretically, the results from the internal assessment are not of interest because
new data values are not likely to coincide with their training set values. Bergstra
and Bengio (2012) stated that “because of finite data sets, test error is not monotone
in validation error, and depending on the set of particular hyperparameter values λ

evaluated, the test error of the best-validation error configuration may vary”, i.e.,

ψ
(val)
i < ψ

(val)
j 
=⇒ ψ

(test)
i < ψ

(test)
j ,

where ψ
(·)
i denotes the value of the hyperparameter response surface for the i-th

hyperparameter configuration λi .
Furthermore, the estimator, e.g., for loss, obtained by using a single hold-out

test set usually has high variance. Therefore, Cross Validation (CV) methods were
proposed. Hastie et al. (2017) concluded

that estimation of test error for a particular training set is not easy in general, given just the
data from that same training set. Instead, cross-validation and related methods may provide
reasonable estimates of the expected error.

The standard practice for evaluating a model found by CV is to report the hyperpa-
rameter configuration that minimizes the loss on the validation data, i.e., λ̂ as defined
in Eq. (2.7). Repeated CV, i.e., k-fold CV, reduces the variance of the estimator and
results in a more accurate estimate. There is, as always, a trade-off: the more CV
folds, the better the estimate, but more computational time is needed.

Example: Reporting the model assessment (final evaluation)

It can be useful to take the uncertainty due to the choice of hyperparameters values
into account, when one reports the performance of learning algorithms. Bergstra and
Bengio (2012) present a procedure for estimating test set accuracy, which takes into
account any uncertainty in the choice of which trial is actually the best-performing
one. To explain this procedure, they distinguish between estimates of performance
ψ(val) and ψ(test) based on the validation and test sets, respectively.

To resolve the difficulty of choosing the best configuration, Bergstra and Bengio
(2012) reported a weighted average of all the test set scores, in which each one is
weighted by the probability that its particular λs is in fact the best. In this view, the
uncertainty arising from X (val) being a finite sample makes the test-set score of the
best model among {λi }i=1,2,...,n a random variable.

2.5 Tunability and Complexity

The term tunability is used according to the definition presented in Probst et al.
(2019a).
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Definition 2.26 (Tunability) Tunability describes a measure for modeling algo-
rithms as well as for individual hyperparameters. It is the difference between the
model quality for default values (or reference values) and the model quality for
optimized values (after tuning is completed).

Or in the words of Probst et al. (2019a): “measures for quantifying the tunability of
the whole algorithm and specific hyperparameters based on the differences between
the performance of default hyperparameters and the performance of the hyperparam-
eters when this hyperparameter is set to an optimal value”. Tunability of individual
hyperparameters can also be used as a measure of their relevance, importance, or
sensitivity. Accordingly, parameters with high tunability are of greater importance
for the model. The model reacts strongly to (i.e., is sensitive to) changes in these
hyperparameters.

Definition 2.27 (Complexity) The term complexity or model complexity generally
describes, how many functions of different difficulty can be represented by a model.

Example: Complexity

For linearmodels, complexity can be influenced by the number ofmodel coefficients.
For Support Vector Machines (SVMs), it can be influenced by the parameter cost.

2.6 The Basic HPT Process

Now all ingredients are available for defining the basic HPT process.

Definition 2.28 (The basic HPT process) For a given space of hyperparameters
�, a ML or DL model A with hyperparameters λ, training, validation, and testing
data (X,Y )(train), (X,Y )(val), and (X,Y )(test), respectively, a loss function L, and a
hyperparameter response surface function ψ , e.g., mean loss, the basic HPT process
looks like this

(HPT-1) Set t = 1. Hyperparameter selection (at iteration t). Choose a set of hyper-
parameters from the space of hyperparameters, λ(t) ∈ �.

(HPT-2) ML or DL model building. Build the corresponding ML or DL model
Aλ(t). Note: The model building step is listed separately, because this
corresponds with the steps of the keras procedure: first the DL model is
specified and compiled (via compile), then it is trained (e.g., via fit).

(HPT-3) ML or DL model training and evaluation (e.g., via keras fit). Fit the
modelAλ(t) to the training data (X,Y )(train) (see Fig. 2.1) and measure the
final performance, e.g., expected loss, on the validation data (X,Y )(val),
see Eq. (2.9). Under k-fold CV, the performance measure from Eq. (2.9)
can be written as
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ψ
(val)
CV = 1

k

k
∑

i=1

1

|(X,Y )(val)|
∑

x∈(X,Y )
(val)
i

L
(

y,Aλ(t) ((X,Y )
(train)
i )

)

, (2.10)

if the training and validation set partitions are generated k times.
(HPT-4) Hyperparameter update. The next set of hyperparameters to try, λ(t + 1),

is chosen accordingly to minimize the performance, e.g., ψ(val). An infill
criterion (acquisition function) is used.

(HPT-5) Looping. Repeat until budget is exhausted.
(HPT-6) Final evaluation of the best hyperparameter set λ�on test (or hold out) data

(X,Y )(test), i.e., measuring performance on the test data

Fig. 2.2 Elements of the HPT process. A dark gray background color shows the “outer” optimiza-
tion loop, whereas a light gray background is used for the “inner” optimization loop. T denotes
the tuner, which selects hyperparameters λ ∈ � to optimize the loss L. The loss is the output from
the inner optimization loop, where an algorithm Aλ (also referred to as the model or the method)
optimizes the function f̂ , that builds a relation between input data X ∈ X and output data Y ∈ Y.
Note, depending on the three different tasks, i.e., model training, validation (selection), or test
(assessment), the loss function L, computes tree different losses: ψ(train), ψ(val), and ψ(test)
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ψ(test) = 1

|(X,Y )(test)|
∑

x∈(X,Y )(test)

L
(

y,Aλ(∗) ((X,Y )(train ∪ val))
)

. (2.11)

The HPT process is illustrated in Fig. 2.2.
Essential for this process is the infill criterion (acquisition function) in (HPT-4).

It uses the validation performance to determine the next set of hyperparameters to
evaluate. and requires building and training a new model. Often, the hyperparameter
space� is not differentiable or even continuous. Gradient methods are not applicable
in �. Pattern search, Evolution Strategys (ESs), or other gradient-free methods are
used instead.

2.7 Practical Considerations

Unfortunately, training, validation, and test data are used inconsistently in HPO
studies: for example, Wilson et al. (2017) selected training loss, ψ(train), (and not
validation loss) during optimization and reported results on the test set ψ(test).

Choi et al. (2019) considered this combination as a “somewhat non-standard
choice” and performed tuning (optimization) on the validation set, i.e., they used
ψ(val) for tuning, and reported results ψ(test) on the test set. Their study allows some
valuable insight into the relationship of validation and test error:

For a relative comparison between models during the tuning procedure, in-sample error is
convenient and often leads to effective model selection. The reason is that the relative (rather
than absolute performance) error is required for the comparisons. Choi et al. (2019)

Choi et al. (2019) compared the final predictive performance of NN optimizers
after tuning the hyperparameters to minimize validation error. They concluded that
their “final results hold regardless of whether they compare final validation error,
i.e., ψ(val), or test error, i.e., ψ(test)”. Figure 1 in Choi et al. (2019) illustrates that
the relative performance of optimizers stays the same, regardless of whether the
validation or the test error is used. Choi et al. (2019) considered two statistics: (i)
the quality of the best solution and (ii) the speed of training, i.e., the number of steps
required to reach a fixed validation target.

2.7.1 Some Thoughts on Cross Validation

There are some drawbacks of k-fold CV: at first, the choice of the number of obser-
vations to be held out from each fit is unclear: if n denotes the size of the training data
set, with k = n, which is referred to as Leave One Out Cross Validation (LOOCV),
the CV estimator is approximately unbiased for the expected prediction error. But
this estimator has high variance, because LOOCVdoes not mix the observations very
much. The estimates from each fold are highly correlated and hence their average can
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have high variance. Furthermore, computational costs are relatively high, because n
evaluations of the model are necessary.

Furthermore, CV does not fully represent variability of variable selection, because
p elements are removed each time from set of n. Kohavi (1995) reviewed accuracy
estimation methods and compared CV and bootstrap Efron and Tibshirani (1993).
Note that Picard andCook (1984) proposedMonteCarlo (MC)CVas an improvement
over standard CV.

2.7.2 Replicability and Stochasticity

Results from DL and ML tuning runs are noisy, e.g., caused by random sampling
of batches and initial parameters. Repeats to estimate means and variances that are
required for a sound statistical analysis are costly.

However, even if seeds are provided, full reproducibility cannot be guaranteed.
Gramacy (2020) mentioned two important issues:

• First, Random Number Generator (RNG) sequences can vary across software
versions.

• Second, conditional expressions involving floating point calculations can change
across hardware architectures and lead to different results in stochastic experimen-
tation even with identical pseudorandom numbers.

As a consequence, it is impossible to fully remove randomness from the experiments.
López-Ibáñez et al. (2021b) provide guidelines and suggest tools that may help to
overcome some of these reproducibility issues.

2.7.3 Implementation in R

Background: Data Types in R

Our implementation is done in the R programming language, where data and func-
tions are represented as objects. Each object has a data type. The basic (or atomic)
data types are shown in Table 2.3.

In addition to these data types, R uses an internal storage mode which can be
queried using typeof(). Thus, there are two storage modes for the numeric data
type:

• integer for integers and
• double for real values.

The corresponding variables are referred to as numeric.
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Table 2.3 Atomic data types of the programming language R

Data type Description Examples

NULL Empty set NULL

logical Boolean values TRUE, FALSE

numeric Integer and real values 1, 0.5

complex Complex values 1+1i

character Characters and strings of
characters

“123”, “test”

Factors are used in R to represent nominal (qualitative) features. Ordinal features
can also be represented by factors in R (see argument ordered of the function
factor()). However, this case is not considered here. Factors are generated with
the generating function factor(). Factors are not atomic data types. Internally in
R, factors are stored by numbers (integers), externally the name of the factor is used.
We call the corresponding variables categorical.

Data types of the hyperparameters that are analyzed in this book can be obtained
with the function getModelConf. The function spot can handle the data types
numeric, integer, and factor.

Example: Hyperparameters and Their Types

The following code shows how to get the hyperparameter names and their corre-
sponding types of the k-Nearest-Neighbor (KNN) method.

library("SPOTMisc")
cfg <- getModelConf(list(model = "kknn"))
cfg$tunepars

## [1] "k" "distance"

cfg$type

## [1] "integer" "numeric"

The method KNN will be described in detail in Sect. 3.2.
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Chapter 3
Models

Thomas Bartz-Beielstein and Martin Zaefferer

Abstract This chapter presents a unique overview and a comprehensive explana-
tion of Machine Learning (ML) and Deep Learning (DL) methods. Frequently used
ML and DL methods; their hyperparameter configurations; and their features such
as types, their sensitivity, and robustness, as well as heuristics for their determina-
tion, constraints, and possible interactions are presented. In particular, we cover the
following methods: k-Nearest Neighbor (KNN), Elastic Net (EN), Decision Tree
(DT), Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector
Machine (SVM), and DL. This chapter in itself might serve as a stand-alone hand-
book already. It contains years of experience in transferring theoretical knowledge
into a practical guide.

3.1 Methods and Hyperparameters

In the following, we provide a survey and description of hyperparameters of ML and
DL methods. We emphasize that this is not a complete list of their parameters, but
covers parameters that are set quite frequently according to the literature.

Since the specific names and meaning of hyperparameters may depend on the
actual implementation used, we have chosen a reference implementation for each
model. The implementations chosen are all packages from the statistical program-
ming language R. Thus, we provide a description that is consistent with what users
experience, so that they can identify the relevant parameters when tuning ML and
DL methods in practice. In particular, we cover the methods shown in Table3.1.
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Table 3.1 Overview: Methods and hyperparameters analyzed in this book
Model, R Package Hyperparameter Comment

KNN, kknn k Number of neighbors

p p norm

EN, glmnet alpha Weight term of the loss function

lambda Trade-off between model quality and complexity

thresh Threshold for model convergence, i.e., convergence of the
internal coordinate descent

DT, rpart minsplit Minimum number of observations required for a split

minbucket Minimum number of observations in an end node (leaf)

cp Complexity parameter

maxdepth Maximum depth of a leaf in the decision tree

RF, ranger num.trees Number of trees that are combined in the overall ensemble
model

mtry Number of randomly chosen features are considered for
each split

sample.fraction Number of observations that are randomly drawn for
training a specific tree

replace Replacement of randomly drawn samples

respect.-

unordered.factors Handling of splits of categorical variables

XGBoost, xgboost eta Learning rate, also called “shrinkage” parameter

nrounds Number of boosting steps

lambda Regularization of the model

alpha Parameter for the L1 regularization of the weights

subsample Portion of the observations that is randomly selected in each
iteration

colsample_bytree Number of features that is chosen for the splits of a tree

gamma Number of splits of a tree by assuming a minimal
improvement for each split

maxdepth x Maximum depth of a leaf in the decision trees

min_child_weight Restriction of the number of splits of each tree

SVM, e1071 degree Degree of the polynomial (parameter of the polynomial
kernel function)

gamma Parameter of the polynomial, radial basis, and sigmoid
kernel functions

coef0 Parameter of the polynomial and sigmoid kernel functions

cost Regularization parameter weighs constraint violations of
the model

epsilon Regularization parameter defines ribbon around predictions

DL,
keras/tensorflow

See Chaps. 8, 9, 10, and 11
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This table presents an overview of thesemethods, their R packages, and associated
hyperparameters. After a short, general description of the specific hyperparameter,
the following features will be described for every hyperparameter:

Type: Describes the type (e.g., integer) and complexity (e.g., scalar).
These data types are described in Sect. 2.7.3. The variable type of
the implementation in the R package SPOTMisc, which is used
for the experiments in this book, is also listed.

Default: Default value as specified in getModelConf from the R pack-
age SPOTMisc.

Sensitivity: Describes how much the model is affected by changes of the
parameter. There is a close relationship between sensitivity and
tunability as defined by Probst et al. (2019a), because tunability
is the potential for improvement of the parameter in the vicinity
of a reference value.

Heuristics: Describes ways to find good hyperparameter settings.
Range: Describes feasible values, i.e., lower and upper bounds, con-

straints, etc.
Transformation: Transformation as specified in getModelConf.
Bounds: Lower and upper bounds as specified in getModelConf.
Constraints: Additional constraints, specific for certain settings or algorithms.
Interactions: Describes interactions between the parameters.

Each description concludes with a brief survey of examples from the literature that
gives hints how the method was tuned.

•! Attention: Default Hyperparameters

The default values in this chapter refer to the untransformed values, i.e., the trans-
formations that are also listed in the descriptions were not applied.

3.2 k-Nearest Neighbor

3.2.1 Description

In the field of statistical discrimination KNN classification is an established and
successful method. Hechenbichler and Schliep (2004) developed an extended KNN
version, where the distances of the nearest neighbors can be taken into account. The
KNN model determines for each x the k neighbors with the least distance to x , e.g.,
based on the Minkowski distance (Eq. (2.1)). For regression, the mean of the neigh-
bors is used (James et al. 2017). For classification, the prediction of the model is
the most frequent class observed in the neighborhood. Two relevant hyperparame-
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ters (k, p) result from this. Additionally, one categorical hyperparameter could be
considered: the choice of evaluation algorithm (e.g., choosing between brute force
or KD-Tree) (Friedman et al. 1977). However, this mainly influences computational
efficiency, rather than actual performance.

We consider the implementation from the R package kknn1 (Schliep et al. 2016).

3.2.2 Hyperparameters of k-Nearest Neighbor

KNN Hyperparameter k

The parameter k determines the number of neighbors that are considered by the
model. In case of regression, it affects how smooth the predicted function of the
model is. Similarly, it influences the smoothness of the decision boundary in case of
classification.

Small values of k lead to fairly nonlinear predictors (or decision boundaries),
while larger values tend toward more linear shapes (James et al. 2017). The error of
the model at any training data sample is zero if k = 1 but this does not allow any
conclusions about the generalization error (James et al. 2017). Larger values of k
may help to deal with rather noisy data. Moreover, larger values of k increase the
runtime of the model.

Type: integer, scalar.
Default: 7
Sensitivity: Determining the size of the neighborhoodviak is a fairly sensitive

decision. James et al. (2017) describe this as a drastic effect.
However, this is only true as long as the individual classes are hard
to separate (in case of classification). If there is a large margin
between classes, the shape of the decision boundary becomes less
relevant (see Domingos 2012, Fig. 3). Thus, the sensitivity of the
hyperparameter depends on the considered problem and data.
Probst et al. (2019a) also identify k as a sensitive (or tunable)
hyperparameter.

Heuristics: As mentioned above, the choice of k may depend on properties
of the data. Hence, no general rule can be provided. In individual
cases, determining the distance between and within classes may
help to find an approximate value: k = 1 is better than k > 1, if
the distance within classes is larger than the distance between
classes (Cover and Hart 1967). Another empirical suggestion
from the literature is k = √

n, where n is the number of data
samples (Lall and Sharma 1996; Probst et al. 2019a).

Range: k ≥ 1, k � n. Only integer values are valid.

1 https://cran.r-project.org/package=kknn.

https://cran.r-project.org/package=kknn
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Transformation: trans_id
Bounds: lower = 1; upper = 30
Constraints: none.
Interactions: We are not aware of any interactions between the hyperparame-

ters. However, both k and p change the perceived neighborhood
of samples and thus the shape of the decision boundaries. Hence,
an interaction between these hyperparameters is likely.

KNN Hyperparameter p

The hyperparameter p affects the distance measure that is used to determine the
nearest neighbors in KNN. Frequently, this is the Minkowski distance, see Eq. (2.1).
Moreover, it has to be considered that other distances could be chosen for non-
numerical features of the data set (i.e., Hamming distance for categorical features).
The implementation used in the R package kknn transforms categorical variables
into numerical variables via dummy-coding, then using the Minkowski distance on
the resulting data. Similar to k, p changes the observed neighborhood. While p does
not change the number of neighbors, it still affects the choice of neighbors.

Type: double, scalar.
Default: log10(2)
Sensitivity: It has to be expected that the model is less sensitive to changes in

p than to changes in k, since fairly extreme changes are required
to change the neighborhood set of a specific data sample. This
explains why many publications do not consider p during tuning,
see Table3.2. However, the detailed investigation of Alfeilat et al.
(2019) showed that changes of the distance measure can have a
significant effect on themodel accuracy.Alfeilat et al. (2019) only
tested special cases of the Minkowski distance (Eq. (2.1)): Man-
hattan distance (p = 1), Euclidean distance (p = 2) and Cheby-
shev distance (p = ∞). They give no indication whether other
values may be of interest as well.

Heuristics: The choice of distance measure (and hence p) depends on the
data, a general recommendation or rule-of-thumb is hard to
derive (Alfeilat et al. 2019).

Range: Often, the interval 1 ≤ p ≤ 2 is considered. The lower boundary
is p > 0. Note: The Minkowski distance is not a metric if p <

1 (Alfeilat et al. 2019). Theoretically, a value ofp = ∞ is possible
(resulting into Chebyshev distance), but this is not possible in the
kknn implementation.

Transformation: trans_10pow
Bounds: lower = -1; upper = 2
Constraints: none.
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Table 3.2 Survey of examples from the literature, for tuning of KNN

Hyperparameter Lower bound Upper bound Result Notes

(Schratz et al. 2019), weighted KNN variant, spacial data, 1 data set

k 10 400 NA

p 1 100 NA Integer

(Khan et al. 2020), detection of bugs, 5 data sets

k 1 17 NA

p 0,5 5 NA

(Osman et al. 2017), detection of bugs, 5 data sets

k 1 5 2 or 5 *

(Probst et al. 2019a), various applications, 38 data sets

k 1 30 2 to 30 *

(Doan et al. 2020), impact damage on reinforced concrete, 1 data set

k 7 51 9

p 1 11 3
∗Denotes results that depend on data set (multiple data sets)

Interactions: We are not aware of any known interactions between hyperpa-
rameters. However, both k and p change what is perceived as the
neighborhood of samples, and hence the shape of decision bound-
aries. An interaction between those hyperparameters is likely.

Table3.2 provides a brief survey of examples from the literature, where KNNwas
tuned.

3.3 Regularized Regression (Elastic Net)

3.3.1 Description

EN is a regularized regression method (Zou and Hastie 2005). Regularized regres-
sion can be employed to fit regression models with a reduced number of model
coefficients. Special cases of EN are Lasso and Ridge regression.

Regularization is useful for large k, i.e., when data sets are high dimensional
(especially but not exclusively if k > n), or when variables in the data sets are heavily
correlated with each other (Zou and Hastie 2005). Less complex models (i.e., with
fewer coefficients, see also Definition2.27) help to reduce overfitting. Overfitting
means that the model is extremely well adapted to the training data, but generalizes
poorly as a result, i.e., predicts poorly for unseen data. The resulting models are also
easier to understand for humans, due to their reduced complexity.
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During training, non-regularized regression reduces the model error (e.g., via the
least squares method), but not the model complexity. EN also considers a penalty
term, which grows with the number of coefficients included in the model (i.e., the
number of non-zero coefficients).

As a reference implementation, we use the R package glmnet2 (Friedman et al.
2020; Simon et al. 2011).

3.3.2 Hyperparameters of Elastic Net

EN Hyperparameter alpha

The parameter alpha (α) weighs the two elements of the penalty term of the loss
function in the EN model (Friedman et al. 2010):

min
β0,β

1

2n

n∑

i=1

(yi − β0 − xTi β)2 + λP(α, β). (3.1)

The penalty term P(α, β) is (Friedman et al. 2010)

(1 − α)
1

2
||β||22 + α||β||1, (3.2)

with the vector of p model coefficients β ∈ R
p and the intercept coefficient β0 ∈ R.

The value alpha = 0 corresponds to the special case of Ridge regression, alpha
= 1 corresponds to Lasso regression (Friedman et al. 2010).

The parameter alpha allows to find a compromise or trade-off between Lasso
and Ridge regression. This can be advantageous, since both variants have differ-
ent consequences. Ridge regression affects that coefficients of strongly correlated
variables match to each other (extreme case: identical variables receive identical
coefficients) (Friedman et al. 2010). In contrast, Lasso regression tends to lead to a
single coefficient in such a case (the other coefficients being zero) (Friedman et al.
2010).

Type: double, scalar.
Default: 1
Sensitivity: Empirical results from Friedman et al. (2010) show that the EN

model can be rather sensitive to changes in alpha.
Heuristics: We are not aware of any heuristics to set this parameter. As

described by Friedman et al. (2010), alpha can be set to a value
of close to 1, if a model with few coefficients without risk of
degeneration is desired.

2 https://cran.r-project.org/package=glmnet.

https://cran.r-project.org/package=glmnet
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Range: alpha ∈ [0, 1].
Transformation: trans_id
Bounds: lower = 0; upper = 1
Constraints: none.
Interactions: lambda interacts with alpha, see Sect. 3.3.2.

EN Hyperparameter lambda

The hyperparameter lambda influences the impact of the penalty term P(α, β) in
Eq. (3.1). Very large lambda values lead to many model coefficients (β) being set to
zero. Correspondingly, only fewmodel coefficients become zero if lambda is small
(close to zero). Thus, lambda is often treated differently than other hyperparame-
ters: in many cases, several values of lambda are of interest, rather than a single
value (Simon et al. 2011). There is no singular, optimal solution for lambda, as it
controls the trade-off between model quality and complexity (number of coefficients
that are not zero). Hence, a whole set of lambda values will often be suggested to
users, who then choose a resulting model that provides a specific trade-off to their
liking.

Type: double, scalar.
Default: not implemented, because parameter is not tuned.
Sensitivity: EN is necessarily sensitive to lambda, since extreme values lead

to completely different models, i.e., all coefficients are zero or
none are zero. This is also shown in Fig. 1 by Friedman et al.
(2010).

Heuristics: Often, lambda gets determined by a type of grid search, where
a sequence of decreasing lambda is tested (Friedman et al.
2010; Simon et al. 2011). The sequence starts with a sufficiently
large value of lambda, such that β = 0. The sequence ends,
if the resulting model starts to approximate the unregularized
model (Simon et al. 2011).

Range: lambda ∈ (0,∞) (Note: lambda = 0 is possible, but leads to
a simple unregularized model). Using a logarithmic scale seems
reasonable, as used in the study by Probst et al. (2019a), to cover
a broad spectrum of very small and very large values.

Transformation: not implemented, because parameter is not tuned.
Bounds: not implemented, because parameter is not tuned.
Constraints: none.
Interactions: lambda interacts with alpha. Both are central for determining

the coefficients β (see also Friedman et al. 2010, Fig. 1).
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Table 3.3 Survey of examples from the literature, for tuning of EN

Hyperparameter Lower bound Upper bound Result Notes

(Probst et al. 2019a), various applications, 38 data sets

alpha 0 1 0,003 to 0,981 *

lambda 2−10 210 0,001 to 0,223 *

(Wong et al. 2019), medical data, 1 data set

alpha 1 1 1 Not tuned, constant

lambda ** ** 0.001
∗Results depend on data set (multiple data sets)
∗∗The integrated, automatic tuning procedure from glmnet was used

EN Hyperparameter thresh

The parameter thresh is a threshold for model convergence (i.e., convergence
of the internal coordinate descent). Model training ends, when the change after an
update of the coefficients drops below this value (Friedman et al. 2020). Unlike
parameters like lambda, thresh is not a regularization parameter, hence there is
a clear connection between thresh and the number of model coefficients.

As a stopping criterion, thresh influences the duration of model training (larger
values of thresh result into faster training), and the quality of the model (larger
values of thresh may decrease quality).

Type: double, scalar.
Default: -7
Sensitivity: As long as thresh is in a reasonable range of values, the model

will not be sensitive to changes. Extremely large values can lead
to fairly poor models, extremely small values may result into
significantly larger training times.

Heuristics: none are known.
Range: thresh≈ 0, thresh> 0. It seems reasonable to set thresh

on a log-scale with fairly coarse granularity, since thresh
has a low sensitivity for the most part. Example: thresh =
10−20, 10−18, . . . , 10−4.

Transformation: trans_10pow
Bounds: lower = -8; upper = -1
Interactions: none are known.

In conclusion, Table3.3 provides a brief survey of examples from the literature,
where EN was tuned.
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3.4 Decision Trees

3.4.1 Description

Decision and regression trees are models that divide the data space into individual
segments with successive decisions (called splits).

Basically, the procedure of a decision tree is as follows: Starting from a root node
(which contains all observations) a first split is carried out. Each split affects a variable
(or a feature). This variable is compared with a threshold value. All observations that
are less than the threshold are assigned to a new node. All other observations are
assigned to another new node. This procedure is then repeated for each node until
a termination criterion is reached or until there is only one observation in each end
node. End nodes are also called leaves (following the tree analogy).

A detailed description of tree-based models is given by James et al. (2014). An
overview of decision tree implementations and algorithms is given by Zharmagam-
betov et al. (2019). Gomes Mantovani et al. (2018) describe the tuning of hyperpa-
rameters of several implementations. As a reference implementation, we refer to the
R package rpart (Therneau and Atkinson 2019; Therneau et al. 2019).

3.4.2 Hyperparameters of Decision Trees

DT Hyperparameter minsplit

If there are fewer than minsplit observations in a node of the tree, no further split
is carried out at this node. Thus,minsplit limits the complexity (number of nodes)
of the tree. With large minsplit values, fewer splits are made. A suitable choice
of minsplit can thus avoid overfitting. In addition, the parameter influences the
duration of the training of a decision tree (Hastie et al. 2017).

Type: integer, scalar.
Default: 20
Sensitivity: Trees can react very sensitively to parameters that influence their

complexity. Together with minbucket, cp, and maxdepth,
minsplit is oneof themost important hyperparameters (Gomes
Mantovani et al. 2018).

Heuristics: minsplit is set to three times minbucket in certain imple-
mentations, if this parameter is available (Therneau and Atkinson
2019).

Range: minsplit ∈ [1, n], where minsplit � n is recommended,
since otherwise trees with extremely few nodes will arise. Only
integer values are valid.
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Transformation: trans_id
Bounds: lower = 1; upper = 300
Constraints: minsplit > minbucket. This is a soft constraint, i.e., valid

models are created even if violated, but minsplit would no
longer have any effect.

Interactions: The parameters minsplit, minbucket, cp, and maxdepth
all influence the complexity of the tree. Interactions between these
parameters are therefore likely. In addition, minsplit has no
effect for certain values of minbucket (see Constraints). Simi-
lar relationships (depending on the data) are also conceivable for
the other parameter combinations.

DT Hyperparameter minbucket

minbucket specifies the minimum number of data points in an end node (leaf) of
the tree. The meaning in practice is similar to that of minsplit. With larger values,
minbucket also increasingly limits the number of splits and thus the complexity of
the tree. Additional information: minbucket is set relative to minsplit, i.e., we
are using numerical values for minbucket that represent percentages relative to
minsplit. If minbucket = 1.0, then minbucket = minsplit. minsplit
should be greater than or equal minbucket.

Type: integer, scalar.
Default: 1/3
Sensitivity: see minsplit.
Heuristics: minbucket is set to a third of the values of minsplit

in the reference implementations, if this parameter is avail-
able Therneau et al. (2019).

Range: minbucket ∈ [1, n], where minbucket � n is recomm-
ended, as otherwise trees with extremely few nodes will arise.
Only integer values are valid.

Transformation: trans_id
Bounds: lower = 0.1; upper = 0.5
Constraints: minsplit > minbucket (this is a soft constraint, i.e., valid

models are created even if violated, but minsplit would no
longer have any effect).

Interactions: see minsplit. Due to the similarity of minsplit and
minbucket, it can make sense to only tune one of the two
parameters.
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DT Hyperparameter cp

The threshold complexity cp controls the complexity of the model in that split
decisions are linked to a minimal improvement. This means that if a split does not
improve the tree-based model by at least the factor cp, this split will not be carried
out. With larger values, cp increasingly limits the number of splits and thus the
complexity of the tree.

Therneau and Atkinson (2019) describe the cp parameter as follows:

The complexity parametercp is, likeminsplit, an advisory parameter, but is considerably
more useful. It is specified according to the formula

Rcp(T ) ≡ R(T ) + cp× |T | × R(T1), (3.3)

where T1 is the tree with no splits, |T | is the number of splits for a tree, and R is the risk.
This scaled version is much more user-friendly than the original CART formula since it is
unit less. A value of cp = 1 will always result in a tree with no splits. For regression models,
the scaled cp has a very direct interpretation: if any split does not increase the overall R2

of the model by at least cp (where R2 is the usual linear models definition) then that split is
decreed to be, a priori, not worth pursuing. The program does not split said branch any further
and saves considerable computational effort. The default value of 0.01 has been reasonably
successful at “pre-pruning” trees so that the cross-validation step only needs to remove one
or two layers, but it sometimes over prunes, particularly for large data sets.

Type: double, scalar.
Default: -2
Sensitivity: see minsplit.
Heuristics: none known.
Range: paramcp ∈ [0, 1[.
Transformation: trans_10pow
Bounds: lower = -10; upper = 0
Constraints: none.
Interactions: see minsplit. Since cp expresses a relative factor for the

improvement of the model, an interaction with the corresponding
quality measure is also possible (split parameter).

DT Hyperparameter maxdepth

The parameter maxdepth limits the maximum depth of a leaf in the decision tree.
The depth of a leaf is the number of nodes that lie on the path between the root and
the leaf. The root node itself is not counted (Therneau and Atkinson 2019).

The meaning in practice is similar to that of minsplit. Both minsplit and
maxdepth can be used to limit the complexity of the tree. However, smaller values
of maxdepth lead to a lower complexity of the tree. With minsplit it is the other
way round (larger values lead to less complexity).
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Table 3.4 DT: survey of examples from the literature. Tree-based tuning example configurations

Hyperparameter Lower bound Upper bound Result

(Probst et al. 2019a), various applications, 38 data sets

minsplit 1 60 6.7 to 49.15 *

maxdepth 1 30 9 to 28 *

cp 0 1 0 to 0.528 *

minbucket 1 60 1 to 44.1 *

(Wong et al. 2019), medical data, 1 data set

cp 10−6 10−1 10−2

(Khan et al. 2020), software bug detection, 5 data sets

minbucket 1 50 NA

(Gomes Mantovani et al. 2018), various data sets, 94 data sets

minsplit 1 50

minbucket 1 50

cp 0.0001 0.1

maxdepth 1 50

This study, see Chap.8, Census-Income (KDD) Data Set (CID)

minsplit 1 300 16 (not relevant)

minbucket 0.1 0.5 0.17 (not relevant)

cp 10−10 1 10−3 (most relevant
hyperparameter)

maxdepth 1 30 >10
∗Denotes that results depend on data sets

Type: integer, scalar.
Default: 30
Sensitivity: see minsplit.
Heuristics: none known.
Range: maxdepth ∈ [0, n]. Only integer values are valid.
Transformation: trans_id.
Bounds: lower = 1; upper = 30.
Constraints: none.
Interactions: see minsplit.

Table3.4 shows examples from the literature.
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3.5 Random Forest

3.5.1 Description

The model quality of decision trees can often be improved with ensemble methods.
Here, many individual models (i.e., many individual trees) are merged into one
overall model (the ensemble). Popular examples are RF and XGBoost methods. This
section discusses RF methods, XGBoost methods will be discussed in Sect. 3.6. The
RF method creates many decision trees at the same time, and their prediction is then
usually made using the mean (in case of regression) or by majority vote (in case of
classification).

The variant of RF described byBreiman (2001) uses two important steps to reduce
generalization error: first, when creating individual trees, only a random subset of
the features is considered for each split. Second, each tree is given a randomly drawn
subset of the observations to train. Typically, the approach of bootstrap aggregating
or bagging (James et al. 2017) is used. A comprehensive discussion of random forest
models is provided by Louppe (2015), who also presents a detailed discussion of
hyperparameters. Theoretical results on hyperparameters of RF models are summa-
rized by Scornet (2017). Often, tuning of RF also takes into account parameters for
the decision trees themselves as described in Sect. 3.4. Our reference implementation
studied in this report is from the R package ranger3 (Wright 2020; Wright and
Ziegler 2017).

3.5.2 Hyperparameters of Random Forests

RF Hyperparameter num.trees

num.trees determines the number of trees that are combined in the overall ensem-
ble model. In practice, this influences the quality of the method (more trees improve
the quality) and the runtime of the model (more trees lead to longer runtimes for
training and prediction).

Type: integer, scalar.
Default: log(500,2).
Sensitivity: According to Breiman (2001), the generalization error of the

model converges with increasing number of trees toward a lower
bound. This means that the model will become less sensitive to
changes of num.treeswith increasing values of num.trees.
This is also shown in the benchmarks of Louppe (2015). Only
with relatively small values (num.trees < 50) the model is

3 https://cran.r-project.org/package=ranger.

https://cran.r-project.org/package=ranger
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rather sensitive to changes in that parameter. The empirical
results of Probst et al. (2019a) also show that the tunability of
num.trees is estimated to be rather low.

Heuristics: There are theoretical results about the convergence of the model
in relation to num.trees (Breiman 2001; Scornet 2017). This
however does not result in a clear heuristic approach to set-
ting this parameter. One common recommendation is to choose
num.trees sufficiently high (Probst et al. 2019c) (since more
trees are usually better), while making sure that the runtime of
the model does not become too large.

Range: num.trees ∈ [1,∞). Several hundred or thousands of trees
are commonly used, see also Table3.5.

Transformation: trans_2pow_round.
Bounds: lower = 0; upper = 11.
Constraints: none.
Interactions: none are known.

RF Hyperparameter mtry

The hyperparameter mtry determines howmany randomly chosen features are con-
sidered for each split. Thus, it controls an important aspect, the randomization of
individual trees. Values of mtry � n imply that differences between trees will be
larger (more randomness). This increases the potential error of individual trees, but
the overall ensemble benefits (Breiman 2001; Louppe 2015). As a useful side effect
mtry� n may also reduce the runtime considerably (Louppe 2015). Nevertheless,
findings about this parameter largely depend on heuristics and empirical results.
According to Scornet (2017), no theoretical results about the randomization of split
features are available.

Type: integer, scalar.
Default: floor(sqrt(nFeatures)).
Sensitivity: According to Breiman (2001), RF is relatively insensitive to

changes of mtry: “But the procedure is not overly sensitive to
the value of F. The average absolute difference between the error
rate using F=1 and the higher value of F is less than 1.” (Breiman
2001) (here: F corresponds to mtry).
This seems to be at odds with the benchmarks by Louppe (2015),
which determine that mtry may indeed have a considerable
impact, especially for low values of mtry. The investigation of
tunability by Probst et al. (2019a) also identifies mtry as an
important (i.e., tunable) parameter. This is not necessarily a con-
tradiction to Breiman’s observation, since Probst et al. (2019a)
determine RF as the least tunable model in their experimental



42 T. Bartz-Beielstein and M. Zaefferer

investigation. Sowhilemtrymight have some impact (compared
to other parameters), it may be less sensitive when compared in
relation to hyperparameters of other models.

Heuristics: Breiman (2001) propose the following heuristic:

mtry = floor(log2(n) + 1).

Should categorical features be present, Breiman suggests dou-
bling or tripling that value. No theoretical motivation is given.
Another frequent suggestion is mtry = √

n (or mtry = floor
(
√
n)). While these are used in various implementations of RF,

there is no clear theoretical motivation given. For n < 20 both
heuristics provide very similar values.
Some implementations distinguish between classification (mtry
= √

n) and regression (mtry = n/3). Empirical results with
these heuristics are described by Probst et al. (2019c).

Range: mtry ∈ [1, n].
Transformation: trans_id.
Bounds: lower = 1; upper = nFeatures.
Constraints: none.
Interactions: none are known.

RF Hyperparameter sample.fraction

The parameter sample.fraction determines how many observations are ran-
domly drawn to train one specific tree.

Probst et al. (2019c)write thatsample.fraction has a similar effect asmtry.
Thatmeans, it influences theproperties of the trees:With smallsample.fraction
(corresponding to small mtry) individual trees are weaker (in terms of predictive
quality), yet the diversity of trees is increased. This improves the ensemble model
quality. Smaller values of sample.fraction reduce the runtime (Probst et al.
2019c) (if all other parameters are equal).

Type: double, scalar.
Default: 1.
Sensitivity: sample.fraction can have a relevant impact onmodel qual-

ity. Scornet reports: “However, according to empirical results,
there is no justification for default values in random forests for
sub-sampling or tree depth, since optimizing either leads to better
performance.”

Heuristics: none known.
Range: sample.fraction ∈ (0, 1].
Transformation: trans_id.
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Bounds: lower = 0.1; upper = 1.
Constraints: none.
Interactions: Potentially, sample.fraction interacts with parameters that

influence training individual trees DT (e.g., maxdepth,
minsplit, cp). Scornet: “According to the theoretical anal-
ysis of median forests, we know that there is no need to optimize
both the subsample size and the tree depth: optimizing only
one of these two parameters leads to the same performance as
optimizing both of them” (Scornet 2017). However, this theoret-
ical observation is only valid for the respective median trees and
not necessarily for the classical RF model we consider.

RF Hyperparameter replace

The parameter replace specifies, whether randomly drawn samples are replaced,
i.e., whether individual samples can be drawn multiple times for training of a tree
(replace = TRUE) or not (replace = FALSE). If replace = TRUE, the prob-
ability that two trees receive the same data sample is reduced. This may further
decorrelate trees and improve quality.

Type: logical, scalar.
Default: 2 (TRUE).
Sensitivity: The sensitivity of replace is often rather small. Yet, the sur-

vey of Probst et al. (2019c) notes a potentially detrimental bias
for replace = TRUE, if categorical variables with a variable
number of levels are present.

Heuristics: Due to the aforementionedbias, the choice could bemadedepend-
ingon thevarianceof the cardinality in thedata features.However,
a quantifiable recommendation is not available.

Range: replace ∈ {TRUE,FALSE}.
Transformation: trans_id.
Bounds: lower = 1 (FALSE); upper = 2 (TRUE).
Constraints: none.
Interactions: One obvious interaction occurswithsample.fraction. Both

parameters control the random choice of training data for each
tree. The setting (replace = TRUE ∧ sample.fraction
= 1) as well as the setting (replace = FALSE ∧ sample.
fraction < 1) implies that individual trees will not see the
whole data set.
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RF Hyperparameter respect.unordered.factors

This parameter decides how splits of categorical variables are handled. There are
basically three options: ignore, order, or partition, which will briefly be
explained in the following. A detailed discussion is given by Wright and König
(2019). A standard that is also used byBreiman (2001) isrespect.unordered.
factors = partition. In that case, all potential splits of a nominal, categor-
ical variable are considered. This leads to a good model, but the large number of
considered splits can lead to an unfavorable runtime.

A naive alternative is respect.unordered.factors = ignore. Here, the
categorical nature of a variable will be ignored. Instead, it is assumed that the variable
is ordinal, and splits are chosen just aswith numerical variables. This reduces runtime
but can decrease model quality.

A better choice should be respect.unordered.factors = order. Here,
each categorical variable first is sorted, depending on the frequency of each level in
the first of two classes (in case of classification) or depending on the average depen-
dent variable value (regression). After this sorting, the variable is considered to be
numerical. This allows for a runtime similar to that with respect.unordered.
factors = ignore but with potentially better model quality. This may not be
feasible for classification with more than two classes, due to lack of a clear sorting
criterion (Wright and König 2019; Wright 2020).

In specific cases,respect.unordered.factors=ignoremayworkwell
in practice. This could be the case, when the variable is actually nominal (unknown
to the analyst).

Type: character, scalar.
Default: 1 (ignore).
Sensitivity: unknown.
Heuristics: none.
Range: respect.unordered.factors ∈ {ignore, order,

partition}. The parameter respect.unordered.
factors can also be understood as a binary value. Then TRUE
corresponds to order and FALSE to ignore (Wright 2020).

Transformation: trans_id.
Bounds: lower = 1 (ignore); upper = 2 (order).
Constraints: none.
Interactions: none are known.

In conclusion, Table3.5 provides a brief survey of examples from the literature,
where RF was tuned.
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Table 3.5 RF: survey of examples from the literature for tuning of random forest
Hyperparameter Lower bound Upper bound Result Notes

(Probst et al. 2019a), various applications, 38 data sets

num.trees 1 2000 187,85 to
1908,25 *

replace FALSE Binary

sample.fraction 0.1 1 0,257 to 0,974 *

mtry 0 1 0,035 to 0,954 * Transformed:
mtry ×m

respect.unordered.factors FALSE oder
TRUE

binary

min.node.size 0 1 0,007 to 0,513 * Transformed:
nmin.node.size

(Schratz et al. 2019), spatial data, 1 data set

num.trees 10 10000 NA

mtry 1 11 NA

(Wong et al. 2019), medical data, 1 data set

num.trees 10 2000 1000

mtry 10 200 50
∗Results depend on data set (multiple data sets)

3.6 Gradient Boosting (xgboost)

3.6.1 Description

Boosting is an ensemble process. In contrast to random forests, see Sect. 3.5, the
individual models (here: decision trees) are not created and evaluated at the same
time, but rather sequentially. The basic idea is that each subsequent model tries to
compensate for the weaknesses of the previous models.

For this purpose, amodel is created repeatedly. Themodel is trainedwithweighted
data. At the beginning these weights are identically distributed. Data that are poorly
predicted or recognized by the model are given larger weights in the next step and
thus have a greater influence on the next model. All models generated in this way are
combined as a linear combination to form an overall model (Freund and Schapire
1997; Drucker and Cortes 1995).

An intuitive description of this approach is slow learning, as the attempt is not
made to understand the entire database in a single step, but to improve the under-
standing step by step (James et al. 2014). Gradient Boosting (GB) is a variant of
this approach, with one crucial difference: instead of changing the weighing of the
data, models are created sequentially that follow the gradient of a loss function. In
the case of regression, the models learn with residuals of the sum of all previous
models. Each individual model tries to reduce the weaknesses (here: residuals) of
the ensemble (Friedman 2001).
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In the following, we consider the hyperparameters of one version of GB:
XGBoost (Chen and Guestrin 2016). In principle, any models can be connected
in ensembles via boosting. We apply XGBoost to decision trees. As a reference
implementation, we refer to the R package xgboost (Chen et al. 2020). Brownlee
(2018) describes some empirical hyperparameter values for tuning XGBoost.

3.6.2 Hyperparameters of Gradient Boosting

XGBoost Hyperparameter nrounds

The parameter nrounds specifies the number of boosting steps. Since a tree is
created in each individual boosting step, nrounds also controls the number of
trees that are integrated into the ensemble as a whole. Its practical meaning can be
described as follows: larger values of nroundsmean a more complex and possibly
more precise model, but also cause a longer running time. The practical meaning is
therefore very similar to that of num.trees in random forests. In contrast to num.trees,
overfitting is a risk with very large values, depending on other parameters such as
eta, lambda, alpha. For example, the empirical results of Friedman (2001) show
that with a low eta, even a high value of nrounds does not lead to overfitting.

Type: integer, scalar.
Default: 0.
Sensitivity/robustness Similar to the random forests parameter num.trees,

nrounds also has a higher sensitivity, especially with low
values (Friedman 2001).

Heuristics: Heuristics cannot be derived from the literature. Often val-
ues of several hundred to several thousand trees are set as
the upper limit (Brownlee 2018).

Range: ∈ [1,∞[. Only integer values are valid.
Transformation: trans_2pow_round.
Bounds: lower = 0; upper = 11.
Constraints: none.
Interactions: There is a connection between the hyperparameters beta,

rounds, and subsample.

XGBoost Hyperparameter eta

The parameter eta is a learning rate and is also called “shrinkage” parameter. It
controls the lowering of the weights in each boosting step (Chen and Guestrin 2016;
Friedman 2002). It has the following practical meaning: lowering the weights helps
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to reduce the influence of individual trees on the ensemble. This can also avoid
overfitting (Chen and Guestrin 2016).

Type: double, scalar.
Default: log2(0.3).
Sensitivity: Empirical results show that XGBoost is more sensitive to eta

when eta is large (Friedman 2001). Generally speaking, smaller
values are better. In an empirical study, Probst et al. (2018)
describe eta as a parameter with comparatively high tunabil-
ity.

Heuristics: A heuristic is difficult to formulate due to the dependence on
other parameters and the data situation, but Hastie et al. (2017)
recommend

. . . the best strategy appears to be to set eta to be very small (eta
< 0.1) and then choose nrounds by early stopping.

This may lead to correspondingly longer runtimes due to large
nrounds. Brownlee (2018) mentions a heuristic, which
describes a search range depending on nrounds.

Range: eta ∈ [0, 1]. Using a logarithmic scale seems reasonable, e.g.,
2−10, . . . , 20), as used in the studies by Probst et al. (2018)
or Sigrist (2020), because values close to zero often show good
results.

Transformation: trans_2pow.
Bounds: lower = -10; upper = 0 .
Constraints: none.
Interactions: There is a connection between eta and nrounds: If one of

the two parameters increases, the other should be decreased if
the error remains the same (Friedman 2001; Probst et al. 2019a).
This is also demonstrated by Hastie et al. (2017):

Smaller values of eta lead to larger values of nrounds for the same
training risk, so that there is a trade-off between them.

In addition, Hastie et al. (2017) also point to correlations with the
subsample parameter: In an empirical study, subsample = 1
and eta = 1 show significantly worse results than subsample
= 0.5 and eta = 0.1. If subsample = 0.5 and eta = 1, the
results are even worse than for eta = 1 and subsample = 1. In
the best case (subsample = 0.5 and eta = 0.1), however, larger
values of nrounds are required to achieve optimal results.
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XGBoost Hyperparameter lambda

The parameter lambda is used for the regularization of the model. This parameter
influences the complexity of the model (Chen and Guestrin 2016; Chen et al. 2020)
(similar to the parameter of the same name in EN). Its practical significance can
be described as follows: as a regularization parameter, lambda helps to prevent
overfitting (Chen andGuestrin 2016).With larger values, smoother or simplermodels
are to be expected.

Type: double, scalar.
Default: 0.
Sensitivity: not known.
Heuristics: none known.
Range: lambda ∈ [0,∞[. A logarithmic scale seems to be useful, e.g.,

2−10, . . . , 210, as used in the study by Probst et al. (2019a) to
cover a wide range of very small and very large values.

Transformation: trans_2pow.
Bounds: lower = -10; upper = 10.
Constraints: none.
Interactions: Because both lambda and alpha control the regularization of

the model, an interaction is likely.

XGBoost Hyperparameter alpha

The authors of the R package xgboost, Chen and Guestrin (2016), did not mention
this parameter. The documentation of the reference implementation does not provide
any detailed information on alpha either. Due to the description as a parameter
for the l1 regularization of the weights (Chen et al. 2020), a highly similar use as
for the parameter of the same name in elastic net is to be assumed. Its practical
meaning can be described as follows: similar to lambda, alpha also functions as
a regularization parameter.

Type: double, scalar.
Default: -10.
Sensitivity: unknown.
Heuristics: No heuristics are known.
Range: alpha ∈ [0,∞[. A logarithmic scale seems to be useful, e.g.,

2−10, . . . , 210, as used in the study by Probst et al. (2019a) to
cover a wide range of very small and very large values.

Transformation: trans_2pow.
Bounds: lower = -10; upper = 10.
Constraints: none.
Interactions: Since both lambda and alpha control the regularization of the

model, an interaction is likely.
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XGBoost Hyperparameter subsample

In each boosting step, the new tree to be created is usually only trained on a subset
of the entire data set, similar to random forest (Friedman 2002). The subsample
parameter specifies the portion of the data approach that is randomly selected in each
iteration. Its practical significance can be described as follows: an obvious effect of
small subsample values is a shorter running time for the training of individual
trees, which is proportional to the subsample (Hastie et al. 2017).

Type: double, scalar.
Default: 1.
Sensitivity: The study by Friedman (2002) shows a high sensitivity

for very small or large values of subsample. In a rela-
tively large range of values from subsample (around
0.3 to 0.6), however, hardly any differences in model
quality are observed.

Determination heuristics: Hastie et al. (2017) suggest subsample = 0.5 as a
good starting value, but point out that this value can
be reduced if nrounds increases. With many trees
(nround is large) it is sufficient if each individual tree
sees a smaller part of the data, since the unseen data is
more likely to be taken into account in other trees.

Range: subsample ∈]0, 1]. Based on the empirical results
Friedman (2002); Hastie et al. (2017), a logarithmic
scale is not recommended.

Transformation: trans_id.
Bounds: lower = 0.1; upper = 1.
Constraints: none.
Interactions: There is a connection between the eta, nrounds, and

subsample.

XGBoost Hyperparameter colsample_bytree

The parameter colsample_bytree has similarities to the mtry parameter in
random forests. Here, too, a random number of features is chosen for the splits of a
tree. In XGBoost, however, this choice is made only once for each tree that is created,
instead for each split (xgboost developers 2020). Here colsample_bytree is a
relative factor. The number of selected features is therefore colsample_bytree
×n. Its practical meaning is similar to mtry: colsample_bytree enables the
trees of the ensemble to have a greater diversity. The runtime is also reduced, since
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a smaller number of splits have to be checked each time (if colsample_bytree
< 1).

Type: double, scalar.
Default: 1.
Sensitivity: The empirical study by Probst et al. (2019a) shows that the model

is particularly sensitive to changes for colsample_bytree
values close to 1. However, this sensitivity decreases in the vicin-
ity of more suitable values.

Heuristics: none known.
Range: colsample_bytree ∈]0, 1]. Brownlee (2018) mentions

search ranges such as colsample_bytree = 0.4, 0.6, 0.8, 1,
but mostly works with colsample_bytree = 0.1, 0.2, . . . , 1.

Transformation: trans_id.
Bounds: lower = 1/nFeatures; upper = 1.
Constraints: none.
Interactions: none known.

XGBoost Hyperparameter gamma

This parameter of a single decision tree is very similar to the parameter cp: Like cp,
gamma controls the number of splits of a tree by assuming a minimal improvement
for each split. According to the documentation (Chen et al. 2020):

Minimum loss reduction required to make a further partition on a leaf node of the tree. The
larger, the more conservative the algorithm will be.

The main difference between cp and gamma is the definition of cp as a relative
factor, while gamma is defined as an absolute value. This also means that the ranges
differ.

Default: -10.
Range: gamma ∈ [0,∞[. A logarithmic scale seems to make sense, e.g.,

2−10, . . . , 210, as, e.g., in the study by Thomas et al. (2018) to
cover a wide range of very small and very large values.

Transformation: trans_2pow.
Bounds: lower = -10; upper = 10.

XGBoost Hyperparameter maxdepth

This parameter of a single decision tree is already known as maxdepth.

Default: 6.
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Sensitivity/heuristics: Hastie et al. (2017) state:

Although in many applications J = 2 will be insufficient, it is
unlikely that J > 10 will be required. Experience so far indi-
cates that 4 ≤ J ≤ 8 works well in the context of boosting,
with results being fairly insensitive to particular choices in this
range.4

Transformation: trans_id.
Bounds: lower = 1; upper = 15.

XGBoost Hyperparameter min_child_weight

Like gamma and maxdepth, min_child_weight restricts the number of splits
of each tree. In the case of min_child_weight, this restriction is determined
using the Hessian matrix of the loss function (summed over all observations in each
new terminal node) (Chen et al. 2020; Sigrist 2020). In experiments by Sigrist (2020),
this parameter turns out to be comparatively difficult to tune: the results show that
tuning with min_child_weight gives worse results than tuning with a similar
parameter (limitation of the number of samples per sheet) (Sigrist 2020).

Type: double, scalar.
Default: 0.
Sensitivity: unknown.
Heuristics: none known.
Range: min_child_weight ∈ [0,∞[. A logarithmic scale seems to

make sense, e.g., 2−10, . . . , 210, as used in the study by Probst
et al. (2019a) to cover a wide range of very small and very large
values.

Transformation: trans_2pow.
Bounds: lower = 0; upper = 7.
Constraints: none.
Interactions: Interactions with parameters such as gamma and maxdepth are

probable, since all three parameters influence the complexity of
the individual trees in the ensemble.

Table3.6 shows XGBoost example parameter settings from the literature.

4 J is the number of nodes in a tree that is strongly influenced by maxdepth.
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Table 3.6 Survey: examples from literature about XGBoost tuning

Hyperparameter Lower bound Upper bound Result

(Probst et al. 2019a), several applications, 38 data sets

nrounds 1 5000 920.7 to 4847.15 *

eta 2−10 20 0.002 to 0.445 *

subsample 0.1 1 0.545 to 0.964 *

maxdepth x 1 15 2.6 to 14 *

min_child_weight 20 27 1.061 to 7.502 *

colsample_bytree 0 1 0.334 to 0.922 *

lambda 2−10 210 0.004 to 29.755 *

alpha 2−10 210 0.002 to 6.105 *

(Thomas et al. 2018), several applications, 16 data sets

eta 0.01 0.2

gamma 2−7 26

subsample 0.5 1

maxdepth x 3 20

colsample_bytree 0.5 1

lambda 2−10 210

alpha 2−10 210

(Wang 2019), Risk Classification, 1 data set

eta 0.005 0.2

subsample 0.8 1

maxdepth x 5 30

min_child_weight 0 10

colsample_bytree 0.8 1

gamma 0 0.02

(Zhou et al. 2020), Tunnel construction, 1 data set

nrounds 1 150 103

eta 0.00001 1 0.152

maxdepth x 1 15 15

lambda 1 15 13

alpha 1 15 1

This study, see Sect. 9.1, CID

nrounds 0 32 256

eta 2−10 0 0.125
∗Denotes that results depend on the data (several data sets)
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3.7 Support Vector Machines

3.7.1 Description

The SVM is a kernel-based method.

Definition 3.1 (Kernel) A kernel is a real-valued, symmetrical function k(x, x ′)
(usually positive definite), which often expresses some form of similarity between
two observations x, x ′.
The usefulness of kernels can be explained by the Kernel-Trick. The Kernel-Trick
describes the ability of kernels to transfer data into a higher dimensional feature space.
This allows classificationwith linear decision boundaries (hyperplanes) even in cases
where the data in the original feature space are not linearly separable (Schölkopf and
Smola 2001).

As reference implementation, we use the R package e10715 (Meyer et al. 2020),
which is based on libsvm (Chang and Lin 2011).

3.7.2 Hyperparameters of the SVM

SVM Hyperparameter kernel

The parameter kernel is central for the SVM model. It describes the choice of the
function k(x, x ′). In practice, k(x, x ′) can often be understood to be a measure of
similarity. That is, the kernel function describes how similar two observations are to
each other, depending on their feature values.

Type: character, scalar.
Default: 1 (radial).
Sensitivity: The empirical investigation of Probst et al. (2019a) shows “In

svm the biggest gain in performance can be achieved by tuning
the kernel, gamma or degree, while the cost parameter does
not seem to be very tunable.” This does not necessarily mean
that cost should not be tuned, as the tunability investigated by
Probst et al. (2019a) always considers a reference value (e.g., the
default).

Heuristics: Informally, it is often recommended to use kernel = radial
basis. This also matches well to results and observations from
the literature (Probst et al. 2019a; Guenther and Schonlau 2016).
With very large numbers of observations and/or featuresHsu et al.
(2016) suggest to use kernel = linear. These are infallible

5 https://cran.r-project.org/package=e1071.

https://cran.r-project.org/package=e1071


54 T. Bartz-Beielstein and M. Zaefferer

rules, other kernels may perform better depending on the data
set. This stresses the necessity of using hyperparameter tuning to
choose kernels.

Range: • linear: k(x, x ′) = xTx ′.
• polynomial: k(x, x ′) = (gamma xTx ′ + coef0)degree.
• radial basis: k(x, x ′) = exp(−gamma ||x − x ′||2).
• sigmoid: k(x, x ′) = tanh(gamma xTx ′ + coef0).

Transformation: trans_id.
Bounds: lower = 1 (radial); upper = 2 (sigmoid).
Constraints: none.
Interactions: The kernel functions themselves have parameters (degree,

gamma, and coef0), whose values only matter if the respec-
tive function is chosen.

SVM Hyperparameter degree

The parameter degree influences the kernel function if a polynomial kernel was
selected:

• polynomial: k(x, x ′) = (gamma xTx ′ + coef0)degree.

Integer values of degree determine the degree of the polynomial. Non-integer
values are possible, even though not leading to a polynomial in the classical sense.
If degree has a value close to one, the polynomial kernel approximates the linear
kernel. Else, the kernel becomes correspondingly nonlinear.

Type: double, scalar.
Default: not implemented, because parameter is not tuned.
Sensitivity: The empirical investigation of Probst et al. (2019a) shows “In

svm the biggest gain in performance can be achieved by tuning
the kernel, gamma or degree, while the cost parameter does
not seem to be very tunable.”

Heuristics: none are known.
Range: degree ∈ (0,∞).
Transformation: not implemented, because parameter is not tuned.
Bounds: not implemented, because parameter is not tuned.
Constraints: none.
Interactions: The parameter only has an impact if kernel = polynomial.
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SVM Hyperparameter gamma

The parameter gamma influences three kernel functions:

• polynomial: k(x, x ′) = (gamma xTx ′ + coef0)degree.
• radial basis: k(x, x ′) = exp(−gamma ||x − x ′||2).
• sigmoid: k(x, x ′) = tanh(gamma xTx ′ + coef0).

In case of polynomial and sigmoid, gamma acts as a multiplier for the scalar product
of two feature vectors. For radial basis, gamma acts as a multiplier for the distance
of two feature vectors.

In practice, gamma scales how far the impact of a single data sample reaches in
terms of influencing the model. With small gamma values, an individual observation
may potentially influence the prediction in a larger vicinity, since with increasing
distance between x and x’, their similarity will decrease more slowly (esp. with
kernel = radial basis).

Type: double, scalar.
Default: log(1/nFeatures,2).
Sensitivity: The empirical investigation of van Rijn and Hutter (2018) shows

that gamma is rather sensitive.
Heuristics: The reference implementation uses a simple heuristic, to deter-

mine gamma: gamma= 1/n (Meyer et al. 2020). Another imple-
mentation (the sigest function in kernlab6) first scales all
input data, so that each feature has zero mean and unit variance.
Afterward, a good interval for gamma is determined, by using
the 10 and 90% quantile of the distances between the scaled data
samples. By default, 50% randomly chosen samples from the
input data are used.

Range: gamma ∈ [0,∞). Using a logarithmic scale seems reasonable
(e.g., 2−10, . . . , 210 as used by Probst et al. 2019a), to cover a
broad spectrum of very small and very large values.

Transformation: trans_2pow.
Bounds: lower = -10; upper = 10.
Constraints: none.
Interactions: This parameter has no effect when kernel = linear. In addition,

empirical results show a clear interaction with cost (van Rijn
and Hutter 2018).

6 https://cran.r-project.org/package=kernlab.

https://cran.r-project.org/package=kernlab
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SVM Hyperparameter coef0

The parameter coef0 influences two kernel functions:

• polynomial: k(x, x ′) = (gamma xTx ′ + coef0)degree.
• sigmoid: k(x, x ′) = tanh(gamma xTx ′ + coef0).

In both cases, coef0 is added to the scalar product of two feature vectors.

Type: double, scalar.
Default: 0.
Sensitivity: Empirical results of Zhou et al. (2011) show that coef0 has

a strong impact in case of the polynomial kernel (but only for
degree = 2).

Heuristics: Guenther and Schonlau (2016) suggest to leave this parameter at
coef0 = 0.

Range: coef0 ∈ R.
Transformation: trans_id.
Bounds: lower = -1; upper = 1
Constraints: none.
Interactions: This parameter is only active ifkernel=polynomial orkernel

= sigmoid.

SVM Hyperparameter cost

The parameter cost (often written as C) is a constant that weighs constraint vio-
lations of the model. C is a typical regularization parameter, which controls the
complexity of the model (Cherkassky and Ma 2004), and may help to avoid overfit-
ting or dealing with noisy data.7

Type: double, scalar.
Default: 0.
Sensitivity: The empirical results of van Rijn and Hutter (2018) show that

cost has a strong impact on the model, while the investigation
of Probst et al. (2019a) determines only a minor tunability. This
disagreement may be explained, since cost may have a huge
impact in extreme cases, yet good parameter values are found
close to the default values.

Heuristics: Cherkassky and Ma (2004) suggest the following: cost =
max(|ȳ + 3σy |, |ȳ − 3σy |). Here, ȳ is the mean of the observed
y values in the training data, and σy is the standard deviation.

7 Here, complexity does not mean the number of model coefficients (as in linear models) or splits
(decision trees), but the potential to generate more active/rugged functions. In that context, C
influences the number of support vectors in the model. A high model complexity (many support
vectors) can create functions with many peaks. This may lead to overfitting.
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They justify this heuristic, by pointing out a connection between
cost and the predicted y: as a constraint, cost limits the output
values of the SVMmodel (regression) and should hence be set in
a similar order of magnitude as the observed y (Cherkassky and
Ma 2004).

Range: cost∈ [0,∞).Using a logarithmic scale seems reasonable (e.g.,
2−10, . . . , 210 as used by Probst et al. (2019a)), to cover a broad
spectrum of very small and very large values.

Transformation: trans_2pow.
Bounds: lower = -10; upper = 10
Constraints: none.
Interactions: Empirical results show a clear interaction with gamma (van Rijn

and Hutter 2018).

SVM Hyperparameter epsilon

The parameter epsilon defines a corridor or “ribbon” around predictions. Resid-
uals within that ribbon are tolerated by the model, i.e., are not penalized (Schölkopf
and Smola 2001). The parameter is only used for regression with SVM, not for clas-
sification. In the experiments in Sect. 12.1, epsilon is only considered when SVM
is used for regression.

Similar to cost, epsilon is a regularization parameter. With larger values,
epsilon allows for larger errors/residuals. This reduces the number of support
vectors (and incidentally, also the runtime). The model becomes more smooth
(cf. Schölkopf and Smola 2001, Fig. 9.4). This can be useful, e.g., to deal with
noisy data and avoid overfitting. However, the model quality may be decreased.

Type: double, scalar.
Default: -1.
Sensitivity: As described above, epsilon has a significant impact on the

model.
Heuristics: For SVM regression, Cherkassky and Ma (2004) suggest based

on simplified assumptions and empirical results: epsilon =
3σ

√
ln(n)

n . Here, σ 2 is the noise variance, which has to be esti-
mated from the data, see, e.g., Eqs. (22), (23), and (24) in
Cherkassky and Ma (2004). The noise variance is the remain-
ing variance of the observations y, which cannot be explained by
an ideal model. This ideal model has to be approximated with the
nearest neighbor model (Cherkassky and Ma 2004), resulting in
additional computational effort.

Range: epsilon ∈ (0,∞).
Transformation: trans_10pow.
Bounds: lower = -8; upper = 0.
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Table 3.7 Survey of examples from the literature, for tuning of SVM

Hyperparameter Lower bound Upper bound Result Notes

(Probst et al. 2019a), various applications, 38 data sets

kernel radial basis

cost 2−10 210 0,002 to 963,81 *

gamma 2−10 210 0,003 to 276,02 *

degree 2 5 2 to 4 *

(Mantovani et al. 2015), various applications, 70 data sets

cost 2−2 215

gamma 2−15 23

(van Rijn and Hutter 2018), various applications, 100 data sets

cost 2−5 215

gamma 2−15 23

coef0 −1 1 Only sigmoid

tolerance 10−5 10−1

(Sudheer et al. 2013), flow rate prediction (hydrology), 1 data set

cost 10−5 105 1,12 to 1,93 *

epsilon 0 10 0,023 to 0,983 *

gamma 0 10 0,59 to 0,87 *
∗Denotes that results depend on data set (multiple data sets)

Constraints: none.
Interactions: none are known.

In conclusion, Table3.7 provides a brief survey of examples from the literature,
where SVM was tuned.

3.8 Deep Neural Networks

3.8.1 Description

WhileDL describes themethodology, DeepNeural Networks (DNNs) are themodels
used in DL. DL models require the specification of a set of architecture-level param-
eters, which are important hyperparameters. Hyperparameters in DL are optimized
in the outer loop of the hyperparameter tuning process. They are to be distinguished
from the parameters of the DL method that are optimized in the initial loop, e.g.,
during the training phase of a Neural Network (NN) via backpropagation. Hyperpa-
rameter values are determined before the model is executed—they remain constant
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during model building and execution whereas parameters are modified. Selecting the
method for the parameter optimization is a typical Hyperparameter Tuning (HPT)
task. Available optimization methods such as ADAptive Moment estimation algo-
rithm (ADAM) are described in Sect. 3.8.2.

Typical questions regarding hyperparameters in DL models are as follows:

1. How many layers should be combined?
2. Which dropout rate prevents overfitting?
3. How many filters (units) should be used in each layer?

Several empirical studies and benchmarking suites are available, see Sect. 6.2. But to
date, there is no comprehensive theory that adequately explains how to answer these
questions. Recently, Roberts et al. (2021) presented a first attempt to develop a DL
theory.

Besides the hyperparameters discussed in this section, there are additional param-
eters used to defineweight initialization schemes or regularization penalties. Further-
more, it should be noted that hyperparameters in DL methods can be conditionally
dependent (this is also true for ML), e.g., on the number of layers as shown in the
following example:

Example: Conditionally Dependent Hyperparameters

Mendoza et al. (2019) consider besidesNNhyperparameters (e.g., batch size, number
of layers, learning rate, dropout output rate, and optimizer), hyperparameters con-
ditioned on solver type (e.g., β1 and β2) as well as hyperparameters conditioned on
learning-rate policy, and per-layer hyperparameters (e.g., activation function, num-
ber of units). For practical reasons, Mendoza et al. (2019) constrained the number of
layers to the range between one and six: firstly, they aimed to keep the training time
of a single configuration low, and secondly each layer adds eight per-layer hyper-
parameters to the configuration space, such that allowing additional layers would
further complicate the configuration process.

3.8.2 Hyperparameters of Deep Neural Networks

DL Hyperparameter layers

The parameter layer determines the number of layers of the NN. Only the number
of hidden layers are affected, because input and output layers are basic elements of
every NN. Larger values mean more complex models, which correspondingly also
have more model coefficients, a higher runtime, but possibly also a higher model
quality. There is also an increased risk of overfitting, if no regularization measures
are implemented or methods such as early-stopping be used (Prechelt 2012).
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Type: integer.
Default: 1.
Sensitivity: The influence of layers can be extreme. By varying this value,

extremely simple (no hidden layer or only one hidden layer with
very few neurons) or extremely complex models (thousands of
layers and neurons) can be generated. Moreover, the study of
Li et al. (2018) shows that network depth has a strong influ-
ence onweight optimization. The functional relationship between
weights andmodel quality becomes increasingly nonlinear as net-
work depth increases and contains more local optima. Thus, the
difficulty of weight optimization problem increases. At the same
time, this difficulty decreases when more neurons are used per
layer (Li et al. 2018). Also, “skip connections” (connections in
the network that skip layers) can help reduce the difficulty.

Heuristics: We are not aware of any quantitative heuristics. Bengio (2012)
recommend choosing the number of layers as large as possible,
considering the impact on computational resources. Larger net-
works exhibit better model performance as long as appropriate
regularization procedures are applied (Bengio 2012).

Range: layersi ∈ [1,∞), with i = {1, 2, . . . ,∞}. Only integer values
are valid.

Transformation: identity.
Bounds: lower = 1; upper = 4.
Constraints: none.
Interactions: An interaction of units and dropout with layers is

expected. These parameters together determine the total num-
ber of nodes in the network. This is also shown by the example
of Srivastava et al. (2014).

DL Hyperparameter units

The parameter units determines the size of the corresponding network layer (num-
ber of neurons in the layer). Only the hidden layers are affected, because the dimen-
sion of the input and output layers is pre-determined, i.e., the number of units of
the input layer depends on the dimensionality of the data and the number of units
of the output layer depends on the task (e.g., binary and multi-class classification
or regression). Similar to the layers, larger values mean more complex models,
which correspondingly also have more model coefficients, a higher runtime, but
possibly also a higher model quality. There is also an increased risk of overfitting,
should no regularization measures be taken or methods such as early-stopping be
used (Prechelt 2012).
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Type: integer, vector.
Default: 5.
Sensitivity: The influence of units can be extreme. By varying this vec-

tor, extremely simple (no hidden layer or only one hidden layer
with very few neurons) or extremely complex models (thousands
of layers and neurons) can be generated. Moreover, the study
of Li et al. (2018) shows that network depth has a strong influ-
ence onweight optimization. The functional relationship between
weights andmodel quality becomes increasingly nonlinear as net-
work depth increases and contains more local optima. Thus, the
difficulty of weight optimization problem increases. At the same
time, this difficulty decreases when more neurons are used per
layer (Li et al. 2018). Also, “skip connections” (connections in
the network that skip layers) can help reduce the difficulty.

Heuristics: We are not aware of any quantitative heuristics. Larger networks
exhibit better model performance as long as appropriate regular-
ization procedures are applied (Bengio 2012). In addition, it is
recommended from empirical results (Bengio 2012), to choose a
first hidden layer that has more neurons than the input layer (i.e.,
the first element of units should be larger than n).

Range: unitsi ∈ [1,∞), with i = {1, 2, . . . ,∞}. Only integer values
are valid.

Transformation: trans2_pow
Bounds: lower = 0; upper = 5
Constraints: none.
Interactions: An interaction of layers and dropout with units is

expected. These parameters together determine the total num-
ber of nodes in the network. This is also shown by the example
of Srivastava et al. (2014).

DL Hyperparameter activation

The parameter activation specifies the activation function of the network nodes
(neurons). In tensorflow, this parameter is often specified for each layer. This function
decides how the input values of each node are translated into an output value.

The choice of activation function can have a strong impact onmodel performance.
Among other things, activation influences an essential property of the network:
the ability to approximate nonlinear functions. Only nonlinear activation functions
allow this (Goldberg 2016).

Type: character/function, vector. Standard activation functions can be
selected via their name, else custom functions can be imple-
mented in tensorflow or keras.
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Default: relu (parameter is not tuned).
Sensitivity: unknown.
Heuristics: A heuristic is not known. A popular choice is activation =

relu (Bengio 2012). However, activation = tanh also shows
success (LeCun et al. 2012). The choice of activation function is
often empirically justified (Goldberg 2016), based on empirical
data or empirical research for a specific problem. This under-
scores the need to tune this parameter.

Range: activation∈ {tanh, sigmoid, relu, linear, swish,

…}.
Transformation: not implemented, because parameter is not tuned.
Bounds: not implemented, because parameter is not tuned.
Constraints: As a soft constraint, the choice of activation function may affect

whether or not GPU-acceleration can be used in tensorflow. That
is, some activation functions cannot be used if GPU support is
required.

Interactions: not known.

DL Hyperparameter dropout

Dropout is a commonly used regularization technique for DNNs: some percentage of
the layer’s output features will be randomly set to zero (“dropped out”) during train-
ing, i.e., dropout refers to the random removal of nodes (units) in the network (Chol-
let and Allaire 2018; Srivastava et al. 2014). The parameter dropout (often also
p (Srivastava et al. 2014)) is the probability that any node will be removed. Remov-
ing nodes randomly helps to avoid overfitting, dropout thus acts in the sense of
regularization (Srivastava et al. 2014). In tensorflow, this parameter is often specified
for each layer.

Type: double, vector.
Default: 0.
Sensitivity: A NN model’s quality can be very sensitive to dropout. In an

example, Srivastava et al. (2014) show that at a constant num-
ber of hidden nodes (network structure remains unchanged) the
model error on test data for values between dropout = 0.4 and
dropout = 0.6 is approximately constant. However, the model
error increases for larger and smaller values of dropout.

Heuristics: none known.
Range: dropout ∈ (0, 1].
Transformation: identity.
Bounds: lower = 0; upper = 0.4.
Constraints: none.
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Interactions: An interaction of dropout with units and layers is
expected. These parameters together determine the total number
of nodes in the network. This is also illustrated in the example of
Srivastava et al. (2014).

DL Hyperparameter learning_rate

The learning rate (learning_rate) is a parameter of the weight optimization
algorithm employed in the NN. It can be understood as a multiplier for the gradient
in each iteration of the NN training procedure. The result is used to determine new
values for the network weights (Bengio 2012).

The learning rate is essential to the model. When the gradient of the weights is
determined, the learning rate decides how large a step to take in the direction of the
gradient. Very large values can lead to faster progress on the one hand, but on the
other hand can lead to instability and thus prevent the convergence of the training.

Type: double, scalar/vector. Usually a scalar, but a schedule of different
values can also be supplied to most tensorflow optimizers.

Default: 1e-3.
Sensitivity: Learning rates have a significant impact on the model. Accord-

ing to Bengio (2012), this parameter is often the most important
parameter that should always be considered when tuning neural
networks.

Heuristics: LeCunet al. (2012) propose to estimate learning rates individually
for each weight, proportional to the root of the number of inputs
to a node. Bengio (2012), on the other hand, states “The optimal
learning rate is usually close to (by a factor of 2) the largest learn-
ing rate that does not cause divergence of the training criterion.”
Heuristics based on this observation require multiple restarts of
network training procedure (for example, start with large learn-
ing rate, stepwise divide by three until model training starts to
converge (Bengio 2012).)

Range: learning_rate ∈ (0,∞).
Transformation: identity.
Bounds: lower = 1e-6; upper = 1e-2.
Constraints: none.
Interactions: An interaction of batch_size, epochs, and learning_

rate is expected: Smaller learning rates or batch sizesmay result
in larger epochs being required for model convergence.
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DL Hyperparameter epochs

The parameter epochs determines the number of iterations (here: epochs), which
are executed during the training of the model. An epoch describes the update of the
network weights based on the calculated local gradient. Usually, within an epoch,
the entire training data set is considered for determining the gradient (Bengio 2012).
Each epoch can be subdivided again (depending on batch_size) into single steps.

In practice, epochs is often not a classical tuning parameter, since it mainly
affects the runtime of the tuning procedure. Larger values are generally better for the
model quality, but detrimental for the required runtime. However, larger runtimes
may also increase the risk of overfitting, if no countermeasures are employed.

Type: integer, scalar.
Default: 4.
Sensitivity: For small values of epochs, the NN is sensitive to changes

in epochs. It becomes increasingly insensitive to changes as
epochs increases (i.e., as the model increasingly converges).

Heuristics: None known.
Range: epochs ∈ [1,∞]. Only integer values are valid.
Transformation: trans_2pow
Bounds: lower = 3; upper = 7.
Constraints: none.
Interactions: See batch_size and learning_rate.

DL Hyperparameter optimizer

Optimization algorithms, e.g., Root Mean Square Propagation (RMSProp) (imple-
mented in Keras as optimizer_rmsprop) or ADAM (optimizer_adam).
Choi et al. (2019) considered RMSProp with momentum (Tieleman and Hinton
2012), ADAM (Kingma and Ba 2015), and ADAM (Dozat 2016) and claimed that
the following relations hold:

SGD ⊆ Momentum ⊆ RMSProp,

SGD ⊆ Momentum ⊆ Adam,

SGD ⊆ Nesterov ⊆ NAdam.

ADAM can approximately simulate MOMENTUM: MOMENTUM can be approx-
imated with ADAM, if a learning-rate schedule that accounts for ADAM’s bias
correction is implemented. Choi et al. (2019) demonstrated that these inclusion rela-
tionships are meaningful in practice. In the context of HPT and Hyperparameter
Optimization (HPO), inclusion relations can significantly reduce the complexity of
the experimental design. These inclusion relations justify the selection of a basic
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set, e.g., RMSProp, ADAM, and Nesterov-accelerated Adaptive Moment Estima-
tion (NADAM).

Type: factor.
Default: 5.
Sensitivity: unknown.
Heuristics: We are not aware of heuristics.
Range: optimizer ∈ { "SDG", RMSPROP", ADAGRAD",

ADADELTA", ADAM", ADAMAX", NADAM" }.
Transformation: identity.
Bounds: lower = 1; upper = 7.
Constraints: none.
Interactions: Necessarily, there is an interaction.

DL Hyperparameter loss

This parameter determines the loss function that is minimized when training the
network (optimizing the weights). The loss function can have a significant influence
on the quality of the model (Janocha and Czarnecki 2017). However, it is not a
typical tuning parameter, in part because the tuning procedure itself requires a con-
sistent loss function, to identify better configurations of the hyperparameters. The
loss parameter is therefore usually chosen separately by the user before the tuning
procedure.

Type: character, scalar.
Default: problem dependent, parameter is not tuned.
Sensitivity: not known.
Heuristics: not known.
Range: several standard loss functions (such as Mean Squared Error

(MSE)) are available in tensorflow, custom loss functions can
be provided by users.

Transformation: not implemented, because parameter is not tuned.
Bounds: not implemented, because parameter is not tuned.
Constraints: Some loss functions are specific to certain tasks (i.e., classifica-

tion: crossentropy, regression: MSE).
Interactions: unknown.

DL Hyperparameter batch_size

When determining the gradient of the network weights, either the whole data set can
be used for this or only a subset (here: batch). The size of this subset is specified by
batch_size.
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The parameter batch_size mainly affects the runtime of the training (Bengio
2012). However, batch_size also affects the quality of the model. Small batch
sizes may introduce a strong random element to weigh updates, which can hinder or
benefit the learning process. Shallue et al. (2019) and Zhang et al. (2019) have shown
empirically that increasing the batch size can increase the gaps between training times
for different optimizers.

Type: integer, scalar.
Default: 32.
Sensitivity: unknown.
Heuristics: We are not aware of heuristics, 32 is suggested as a good default

value (Bengio 2012).However, from the experience of the authors
of this expertise, this is highly dependent on the data situation,
computer architecture, and further configuration of the model.
Specifying batch_size as a function of n should also be con-
sidered.

Range: batch_size ∈ (1, n]. Only integer values are valid. Common
batch_size values are between 10 and several hundred (Ben-
gio 2012). But several thousands are also possible (Mendoza et al.
2016).

Transformation: not implemented, because parameter is not tuned.
Bounds: not implemented, because parameter is not tuned.
Constraints: none.
Interactions: Necessarily, there is an interaction between batch_size and

epochs, since both together determine the number of steps of the
training procedure. In addition, an interaction of batch_size,
epochs, and learning_rate is also expected. The inter-
action between batch_size and learning_rate is also
mentioned by Bengio (2012).

3.9 Summary and Discussion

On the basis of our literature survey, we recommend tuning the introduced hyperpa-
rameters ofMLmodels. In the experiments described in this study,we also investigate
five additional parameters:

• dropoutfact is a multiplier for dropout, which reduces or increases
dropout in each consecutive layer of the network;

• unitsfact performs the same job but for units; and
• beta_1, beta_2, and epsilon are parameters affecting the optimizer.

Reasonable bounds for all investigated parameters are summarized in Table3.8.
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Chapter 4
Hyperparameter Tuning Approaches

Thomas Bartz-Beielstein and Martin Zaefferer

Abstract This chapter provides a broad overview over the different hyperparameter
tunings. It details the process of HPT, and discusses popular HPT approaches and
difficulties. It focuses on surrogate optimization, because this is the most powerful
approach. It introduces Sequential Parameter Optimization Toolbox (SPOT) as one
typical surrogate method. SPOT is well established and maintained, open source,
available on Comprehensive R Archive Network (CRAN), and catches mistakes.
Because SPOT is open source andwell documented, the human remains in the loop of
decision-making. The introduction of SPOT is accompanied by detailed descriptions
of the implementation and program code. This chapter particularly provides a deep
insight in Kriging (aka Gaussian Process (GP) aka Bayesian Optimization (BO)) as
a workhorse of this methodology. Thus it is very hands-on and practical.

4.1 Hyperparameter Tuning: Approaches and Goals

The following HPT approaches are popular:

• manual search (or trial-and-error (Meignan et al. 2015)),
• simple Random Search (RS), i.e., randomly and repeatedly choosing hyperparam-
eters to evaluate,

• grid search (Tatsis and Parsopoulos 2016),
• directed, model free algorithms, i.e., algorithms that do not explicitly make use
of a model, e.g., Evolution Strategys (ESs) (Hansen 2006; Bartz-Beielstein et al.
2014) or pattern search (Lewis et al. 2000),
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• hyperband, i.e., a multi-armed bandit strategy that dynamically allocates resources
to a set of random configurations and uses successive halving to stop poorly per-
forming configurations (Li et al. 2016),

• Surrogate Model Based Optimization (SMBO) such as SPOT, (Bartz-Beielstein
et al. 2005, 2021).1

Manual search and grid search are probably the most popular algorithms for
HPT. Similar to suggestions made by Bartz-Beielstein et al. (2020a), we propose the
following recommendations for performing HPT studies:

(R-1) Goals: clearly state the reasons for performing HPT. Improving an existing
solution, finding a solution for a new, unknown problem, or benchmarking
two methods are only three examples with different goals. Each of these goals
requires a different experimental design.

(R-2) Problems: select suitable problems. Decide, how many different problems or
problem instances are necessary. In some situations, surrogates (e.g., Compu-
tational Fluid Dynamics (CFD) simulations) can accelerate the tuning (Bartz-
Beielstein et al. 2018).

(R-3) Algorithms: select a portfolio of ML and DL algorithms to be included in the
HPT experimental study. Consider base-line methods such as RS andmethods
with their default hyperparameter settings.

(R-4) Performance: specify the performance measure(s). See the discussion in
Sect. 2.2.

(R-5) Analysis: describe how the results can be evaluated. Decide, whether paramet-
ric or non-parametric methods are applicable. See the discussion in Chap. 5.

(R-6) Design: set up the experimental design of the study, e.g., how many runs
shall be performed. Tools from Design of Experiments (DOE) and Design
and Analysis of Computer Experiments (DACE) are highly recommended.
See the discussion in Sect. 5.6.5.

(R-7) Presentation: select an adequate presentation of the results. Consider the audi-
ence: a presentation for the management might differ from a publication in a
journal.

(R-8) Reproducibility: consider how to guarantee scientifically sound results and
how to guarantee a lasting impact, e.g., in terms of comparability. López-
Ibáñez et al. (2021a) present important ideas.

In addition to these recommendations, there are some specific issues that are caused
by the ML and DL setup.

We consider a HPT approach based on SPOT that focuses on the following topics:

Limited Resources. We focus on situations,where limited computational resources
are available. This may be simply due to the availability and

1 The acronym SMBO originated in the engineering domain (Booker et al. 1999; Mack et al. 2007).
It is also popular in theML community, where it stands for sequential model-based optimization.We
will use the terms sequential model-based optimization and surrrogate model-based optimization
synonymously.
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cost of hardware, or because confidential data has to be pro-
cessed strictly locally.

Understanding. In contrast to standard HPO approaches, SPOT provides sta-
tistical tools for understanding hyperparameter importance
and interactions between several hyperparameters.

Explainability. Understanding is a key tool for enabling transparency and
explainability, e.g., quantifying the contribution of ML and
DL components (layers, activation functions, etc.).

Replicablity. The software code used in this study is available in the open
source R software environment for statistical computing and
graphics (R) package SPOT via the CRAN. Replicability is
discussed in Sect. 2.7.2. SPOT is a well-established open-
source software, maintained for more than 15 years (Bartz-
Beielstein et al. 2005).

Furthermore, Falkner et al. (2018) claim that practical HPO solutions should fulfill
the following requirements:

• strong anytime and final performance,
• effective use of parallel resources,
• scalability, as well as robustness and flexibility.

For sure, we are not seeking the overall best hyperparameter configuration
that results in a method which outperforms any other method in every prob-
lem domain (Wolpert and Macready 1997). Results are specific for one problem
instance—their generalizability to other problem instances or even other problem
domains is not self-evident and has to be proven (Haftka 2016).

4.2 Special Case: Monotonous Hyperparameters

A special case is hyperparameters withmonotonous effect on the quality and run time
(and/or memory requirements) of the tuned model. In our survey (see Table 4.1), two
examples are included: num.trees (RF) and thresh (EN). Due to the mono-
tonicity properties, treating these parameters differently is a likely consideration. In
the following, we focus the discussion on num.trees as an example, since this
parameter is frequently discussed in literature and online communities (Probst et al.
2018).

It is known from the literature that larger values of num.trees generally lead
to better models. As the size increases, a saturation sets in, leading to progressively
lower quality gains. It should be noted that this is not necessarily true for every
quality measure. Probst et al. (2018), for example, show that this relation holds for
log-loss and Brier score, but not for Area Under the receiver operating characteristic
Curve (AUC).
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Table 4.1 Global hyperparameter overview. The column “Quality” shows all parameter, where a
monotonous relationship between parameter values andmodel quality is to be expected. (↑↑: quality
increases if parameter value increases, ↑↓: quality decreases if parameter value increases). Corre-
spondingly, the column “run time” shows the same information for the relationship of parameter
values and run time

Model Hyperparameter Quality Run time

KNN k ↑↑
p

EN alpha

lambda

thresh ↑↓ ↑↓
DT minsplit ↑↓

minbucket ↑↓
cp ↑↓
maxdepth ↑↑

RF num.trees ↑↑ ↑↑
mtry ↑↑
sample.fraction ↑↑
replace

respect.unordered.factors

xgBoost eta

nrounds ↑↑
lambda

alpha

subsample ↑↑
colsample_bytree ↑↑
gamma ↑↓
max_depth ↑↑
min_child_weight ↑↓

SVM kernel

degree

gamma

coef0

cost

epsilon

Because of this relationship, Probst et al. (2018) claim that num.trees should
not be optimized. Instead, it is recommended setting the parameter to a “computation-
ally feasible large number” (Probst et al. 2018). For certain applications, especially
for relatively small or medium-sized data sets, we support this assessment. However,
at least in perspective, the analysis in this book considers tuning hyperparameters
for very large data sets (many observations and/or many features). For this use case,
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we do not share this recommendation, because the required run time of the model
plays an increasingly important role and is not explicitly considered in the recom-
mendation. In this case, a “computationally feasible large number” is not trivial to
determine.

In total, we consider five solutions for handling monotonous hyperparameters:

(M-1) Set manually: The parameter is set to the largest possible value that is still
feasible with the available computing resources. This solution involves the
following risks:

a. Single evaluations during tuning waste time unnecessarily.
b. Interactions with parameters (e.g., mtry) are not considered.
c. The valuemay be unnecessarily large (from amodel quality point of view).
d. The determination of this value can be difficult, it requires detailed knowl-

edge regarding: size of the data set, efficiencyof themodel implementation,
available resources (memory/computer cores / time).

(M-2) Manual adjustment of the tuning: After a preliminary examination (as rep-
resented, e.g., by the initial design step of SPOT) a user intervention takes
place. Based on the preliminary investigation, a value that seems reasonable
is chosen by the user and is not changed in the further course of the tuning.
This solution involves the following risks:

a. The preliminary investigation itself takes too much time.
b. The decision after the preliminary investigation requires intervention by

the user (problematic for automation). While this is feasible for individual
cases, it is not practical for numerous experiments with different data (as
in the experiments of the study in Chap. 12). Moreover, this reduces the
reproducibility of the results.

c. Dependingon the scope and approachof the preliminary study, interactions
with other parameters may not be adequately accounted for.

(M-3) No distinction: parameters like num.trees are optimized by the tuning
procedure just like all other hyperparameters. This solution involves the fol-
lowing risks:

a. The upper bound for the parameter is set too low, so potentially good mod-
els are not explored by the tuning procedure. (Note: bounds set too tight for
the search space are a general risk that can affect all other hyperparameters
as well).

b. The upper bound is set too high, causing individual evaluations to use
unnecessary amounts of time during tuning.

c. The best found value may become unnecessarily large (from a model
quality point of view).

(M-4) Multi-objective: run time andmodel quality can be optimized simultaneously
in the context of multi-objective optimization. This solution involves the
following risks:



76 T. Bartz-Beielstein and M. Zaefferer

a. Again, manual evaluation is necessary (selection of a sector of the Pareto
front) to avoid that from a practical point of view irrelevant (but possibly
Pareto-optimal) solutions are investigated.

b. This manual evaluation also reduces reproducibility.

(M-5) Regularization viaweighted sum: The number of trees (or similar parameters)
can be incorporated into the objective function. In this case, the objective
function becomes a weighted sum of model quality and number of trees (or
run time), with a weighting factor θ .

a. The new parameter of the tuning procedure, θ , has to be determined.
b. Moreover, the optimization of a weighted sum cannot find certain Pareto-

optimal solutions if the Pareto front is non-convex.

In the experimental investigation in Chap. 12, we use solution (M-3). That is, the
corresponding parameters are tuned but do not undergo any special treatment during
tuning. Due to the large number of experiments, user interventions would not be
possible and would also complicate the reproducibility of the results. In principle,
we recommend this solution for use in practice.

In individual cases, or if a good understanding of algorithms and data is available,
solution (M-2) can also be used. For this, SPOT can be interrupted after the first
evaluation step, in order to set the corresponding parameters to a certain value or to
adjust the bounds if necessary (e.g., if num.trees was examined with too low an
upper bound).

4.3 Model-Free Search

4.3.1 Manual Search

A frequently applied approach is that ML and DL methods are configured manu-
ally (Bergstra andBengio 2012).Users apply their own experience and trial-and-error
to find reasonable hyperparameter values.

In individual cases, this approach may indeed yield good results: when expert
knowledge about data, methods, and parameters is available. At the same time, this
approach has major weaknesses, e.g., it may require significant amount of work time
by the users, bias may be introduced due to wrong assumptions, limited options for
parallel computation, and extremely limited reproducibility. Hence, an automated
approach is of interest.



4 Hyperparameter Tuning Approaches 77

4.3.2 Undirected Search

Undirected search algorithms determine new hyperparameter values independently
of any results of their evaluation. Two important examples are Grid Search and RS.

Grid Search covers the search space with a regular grid. Each grid point is evalu-
ated. RS selects new values at random (usually independently, uniform distributed)
in the search space.

Grid Search is a frequently used approach, as it is easy to understand and imple-
ment (including parallelization). As discussed by Bergstra and Bengio (2012), RS
shares the advantages of Grid Search. However, they show that RS may be prefer-
able to Grid Search, especially in high-dimensional spaces or when the importance of
individual parameters is fairly heterogeneous. They hence suggest to use RS instead
Grid Search if such simple procedures are required. Probst et al. (2019a) also use aRS
variant to determine the tunability of models and hyperparameters. For these reasons,
we employ RS as a baseline for the comparison in our experimental investigation in
Chap. 12.

Next toGridSearch andRS, there are other undirected searchmethods.Hyperband
is an extension of RS, which controls the use of certain resources (e.g., iterations,
training time) (Li et al. 2018). Another relevant set of methods is the Design of
Experiments methods, such as Latin Hypercube Designs (Leary et al. 2003).

•! Attention: Random Search Versus Grid Search

Interestingly, Bergstra and Bengio (2012) demonstrate empirically and show theo-
retically that randomly chosen trials are more efficient for HPT than trials on a grid.
Because their results are of practical relevance, they are briefly summarized here: In
grid search the set of trials is formed by using every possible combination of values,
grid search suffers from the curse of dimensionality because the number of joint
values grows exponentially with the number of hyperparameters.

A Gaussian process analysis of the function from hyper-parameters to validation set per-
formance reveals that for most data sets only a few of the hyper-parameters really matter,
but that different hyper-parameters are important on different data sets. This phenomenon
makes grid search a poor choice for configuring algorithms for new data sets (Bergstra and
Bengio 2012).

Let � denote the space of hyperparameter response functions.
Bergstra and Bengio (2012) claim that RS is more efficient in ML than grid search
because a hyperparameter response function ψ ∈ � usually has a low effective
dimensionality (see Definition 2.25), i.e., ψ is more sensitive to changes in some
dimensions than others (Caflisch et al. 1997).

The observation that only a few of the parameters matter can also be made in
the engineering domain, where parameters such as pressure or temperature play a
dominant role. In contrast to DL, this set of important parameters does not change
fundamentally in different situations. We assume that the high variance in the set of
important DL hyperparameters is caused by confounding.
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Due to its simplicity, it turns out in many situations that RS is the best solu-
tion, especially in high-dimensional spaces. Hyperband should also be mentioned in
this context, although it can result in a worse final performance than model-based
approaches, because it only samples configurations randomly and does not learn
from previously sampled configurations (Li et al. 2016). Bergstra and Bengio (2012)
note that RS can probably be improved by automating what manual search does, i.e.,
using SMBO approaches such as SPOT.

HPT is a powerful technique that is an absolute requirement to get to state-of-
the-art models on any real-world learning task, e.g., classification and regression.
However, there are important issues to keep in mind when doing HPT: for example,
validation-set overfitting can occur, because hyperparameters are usually optimized
based on information derived from the validation data.

4.3.3 Directed Search

One obvious disadvantage of undirected search is that a large amount of the com-
putational effort may be spent on evaluating solutions that cover the whole search
space. Hence, only a comparatively small amount of the computational budget will
be spent on potentially optimal or at least promising regions of the search space.

Directed search on the other hand may provide a more purposeful approach. Basi-
cally any gradient-free, global optimization algorithm could be employed. Prominent
examples are Iterative Local Search (ILS) (Hutter et al. 2010b) and Iterative Racing
(IRACE) (López-Ibáñez et al. 2016). Metaheuristics like Evolutionary Algorithms
(EAs) or Swarm Optimization are also applicable (Yang and Shami 2020). In com-
parison to undirected search procedures, directed search has two frequent drawbacks:
an increased complexity that makes implementation a larger issue, and being more
complicated to parallelize.

We employ a model-based directed search procedure in this book, which is
described in the following Sect. 4.4.

4.4 Model-Based Search

A disadvantage of model-free, directed search procedures is that they may require a
relatively large number of evaluations (i.e., long run times) to approximate the values
of optimal hyperparameters.

Tuning ML and DL algorithms can become problematic if complex methods are
tuned on large data sets, because the run time for evaluating a single hyperparameter
configuration may go up into the range of hours or even days. Model-based search
is one approach to resolve this issue. These search procedures use information gath-
ered during the search to learn the relationship between hyperparameter values and
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performance measures (e.g., misclassification error). The model that encodes this
learned relationship is called the surrogate model or surrogate.

Definition 4.1 (Surrogate Optimization) The surrogate optimization uses two
phases.

Construct Surrogate Generate (random) solutions. Evaluate the (expensive) objec-
tive function at these points. Construct a surrogate, S, of the objective function,
e.g., by building a GP aka Kriging model (surrogate).

Search for Minimum Search for a minimum of the objective function on the
(cheap) surrogate. Choose the best point as a candidate. Evaluate the objective
function at the best candidate point. This point is called an infill point. Update the
surrogate using this value and search again.

The advantage of this surrogate optimization is that a considerable part of the
evaluation burden (i.e., the computational effort) can be shifted from real evaluations
to evaluations of the surrogate, which should be faster to evaluate.

In HPT, mixed optimization problems are common, i.e., the variables are con-
tinuous or discrete (Cuesta Ramirez et al. 2022). Bartz-Beielstein and Zaefferer
(2017) provide an overview of metamodels that have or can be used in optimization.
They show how it was made possible by the realization that GP kernels (covariance
functions) in mixed variables can be created by composing continuous and discrete
kernels. In this case, the infill criterion (acquisition function) is defined over the
same space as the objective function. Therefore maximizing the acquisition function
is also a mixed variables problem.

One variant of model-based search is SPOT (Bartz-Beielstein 2005), which be
will described in Sect. 4.5.

4.5 Sequential Parameter Optimization Toolbox

SMBO methods are common approaches in simulation and optimization. SPOT has
been developed, because there is a strong need for sound statistical analysis of sim-
ulation and optimization algorithms. SPOT includes methods for tuning based on
classical regression and analysis of variance techniques; tree-based models such as
Classification and Regression Trees (CART) and random forest; BO (Gaussian pro-
cessmodels, akaKriging), and combinations of differentmeta-modeling approaches.

Basic elements of the Kriging-based surrogate optimization such as interpolation,
expected improvement, and regression are presented in the Appendix, see Sect. 4.6.
The Sequential Parameter Optimization (SPO) toolbox implements a modified ver-
sion of this method and will be described in this section.

SPOT implements key techniques such as exploratory fitness landscape analysis
and sensitivity analysis. SPOT can be used for understanding the performance of
algorithms and gaining insight into algorithm’s behavior. Furthermore, SPOT can be
used as an optimizer and for automatic and interactive tuning.
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Details of SPOT and its application in practice are given by Bartz-Beielstein et al.
(2021). SPOT was originally developed for the tuning of optimization algorithms.
The requirements and challenges of algorithm tuning in optimization broadly reflect
those of tuning machine learning models. SPOT uses the following approach (outer
loop).

Setup: In a first step, several candidate solutions (here: different combinations of
hyperparameter values) are created. These are steps (S-1) and (S-2) in the function
spot, see Fig. 4.1.

Evaluate: All new candidate solutions are evaluated (here: training the respective
ML or DL model with the specified hyperparameter values and measuring the
quality / performance). This is step (S-3).

Termination: Checkwhether a termination criterion has been reached (e.g., number
of iterations, evaluations, run time, or a satisfying solution has been found). These
are steps (S-4) to (S-9).

Select: Samples for building the surrogate Sare selected. This is step (S-10).
Training: The surrogate Swill be trained with all data derived from the evaluated

candidate solutions, thus learning how hyperparameters affect model quality. This
is step (S-11).

Surrogate search: The trainedmodel is used to perform a search for new, promising
candidate solutions. These are steps (S-12) and (S-16).

Budget: Optimal Computing Budget Allocation (OCBA) is used to determine the
number of repeated evaluations. This is step (S-17).

Evaluation The new solutions are evaluated on the objective function, e.g., the loss
is determined. These are steps (S-18) to (S-22).

Exploit: An optimizer is used to perform a local search on Sto refine the best
solution found. These are steps (S-23) and (S-24). Whereas optimization on the
surrogate in the main loop is a weighted combination of exploration and exploita-

(S-01) (S-02)

Setup,
Initial Design

(S-03) to (S-08);

(S-18) to (S-21)

Evaluate.
Impute,

Check, Log

(S-09)

Terminate?

(S-10)

Select Subset

(S-11, S-12)

Build Surrogate 
Model

Surrogate 
Objective Function

(S-13) to (S16)

Get Start Points,
Search Surrogate,
Compile Results,

Handle Duplicates

(S-17)

OCBA

(S-22)

OCBA Select

(S-23),(S-24)

Starting Point,
Direct 

Optimization

yes

no

Fig. 4.1 Visual representation of model-based search with SPOT
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tion, using Expected Improvenment (EI) as a default weighting mechanism, this
final optimization step is purely exploitative.

Note, that it can be useful to allow for user interaction with the tuner after the
evaluation step. Thus, the user may affect changes of the search space (stretch or
shrink bounds on parameters, eliminate parameters). However, we will consider an
automatic search in our experiments.

Weuse theR implementationofSPOT, as providedby theRpackageSPOT (Bartz-
Beielstein et al. 2021, 2021c). The SPOTworkflowwill be described in the following
sections.

In the remainder of this book, SPOT will refer to the general method, whereas
spot denotes the function from the R package SPOT.

Steps, subroutines and data of the spot process are shown in Fig. 4.2.

4.5.1 spot as an Optimizer

spot uses the same syntax as optim, R’s general-purpose optimization based
on Nelder-Mead, quasi-Newton, and conjugate-gradient algorithms (R Core Team
2022). spot can be called as shown in the following example.

Example: spot

SPOT comes with many pre-defined functions from optimization, e.g., Sphere,
Rosenbrock, or Branin. These implementations use the prefix “fun”, e.g.,
funSphere is the name of the sphere function. The package SPOTMisc pro-
vides funBBOBCall, an interface to the real-parameter Black-Box Optimization
Benchmarking (BBOB) function suite (Mersmann et al. 2010a). Furthermore, users
can also specify their own objective functions.

Searching for theoptimumof the (two-dimensional) sphere functionfunSphere,
i.e., f (x) = ∑2

i=1 x
2
i , on the interval between (−1,−1) and (1, 1) can be done as

follows:

library("SPOT")
spot(x = NULL, fun = funSphere, lower = c(-1, -1), upper = c(1, 1))

Four arguments are passed to spot: no explicit starting point for the optimization
is used, because the parameter x was set to NULL, the function funSphere, and
the lower and upper bounds. The length of the lower bound argument defines the
problem dimension n.
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Table 4.2 SPOT parameters. This table shows the mandatory parameters. The list control can
be used to pass additional parameters to spot. Additional arguments to the objective function fun
can be passed via “...”, similar to the varargs method in other programming languages

Parameter Default value Description

x NULL Starting point

fun Objective function, e.g., funSphere, or as
described in Sect. 8.44

lower Lower bound, defines the problem dimension n

upper Upper bound

control List See description in Table 4.3

... Used to pass those additional arguments on to the
objective function fun

•> Mandatory Parameters

The argumentsx,fun,lower, andupper aremandatory forspot, they are shown
in Table 4.2.

Additional arguments can be passed tospot. They allow a very flexible handling,
e.g., for passing extra arguments to the objective function fun. To improve the
overview, parameters are organized as lists. The “main” list is called control, see
Table 4.3. It collects spot’s parameters, some of them are organized as lists. They
are shown in Table 4.4.

Thecontrol list is used formanagingSPOT’s parametrization, e.g., for defining
hyperparameter types and ranges.

4.5.2 spot’s Initial Phase

The initial phase consists of five steps (S-1) to (S-5). The corresponding R code is
shown in Sect. 4.7.

(S-1) Setup. After performing an initial check on the control list, the control list
is completed.
The control list contains the parameters from Table 4.3.

(S-2) Initial design. The parameter seedSPOT is used to set the seed for spot
before the initial design X is generated. The design type is specified via
control$design. The recommended design function is designLHD,
i.e., a Latin Hypercube Design (LHD), which is also the default configura-
tion.
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Table 4.3 SPOT: parameters of the control list

Parameter Default value, type Description

design designLHD,
function

The design function is used to generate the initial
design (see spot) and to generate multiple start
points (see getMultiStartPoints)

directOpt optimNLOPTR,
function

Optimizer used for direct optimization after SMBO is
done

funEvals 20 Number of objective function (fun) evaluations

infillCriterion NULL, function A function defining an infill criterion to be used while
optimizing a model

model buildKriging,
function

A function that builds a statistical model of the
observed data

multiStart 1 (no multi starts),
integer

Number of restarts of the optimizer on the
surrogate model

noise FALSE, logical

OCBA paramFALSE, logical Use OCBA

OCBABudget 3, integer Budget for OCBA

optimizer function Optimizer on surrogate model

parNames character, paste0 (“x”,
1:dimension)

Hyperparameter names

plots paramFALSE, logical Show progress plots

progress paramFALSE, logical Show numerical information about the progress

replicateResults paramFALSE, logical Evaluate configuration(s), do not perform SMBO

replicates integer Number of replicates

returnFullControlList logical Return the full control list

seedFun seed function for
objective function

seedSPOT seed used for spot

subsetSelect selectAll Subset used for fitting the surrogate model

tolerance numerical Sqrt(.Machine$double.eps)

transformFun vector Variable transformation

types rep (“numeric”,
dimension)

Hyperparameter types

verbosity integer Verbosity

xNewActualSize integer Number of new design points proposed by the
surrogate model

designControl list Parameters used by the design function

directOptControl list Parameters used by the direct function

modelControl list Parameters used by the surrogate model

optimizerControl list Parameters used by the optimizer

subsetControl list Parameters used by the subsetSelect function

time list Time related parameters

yImputation list List of functions to determine imputations,
handleNAsMethod
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Fig. 4.3 Initial design. The
first ten points created by
designLHD
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Ten initial design points are available now, because the default value of the param-
eter designControl$size, which specifies the initial design size, is set to 10 if
the function designLHD is used (Fig. 4.3).

Program Code: Steps (S-1) and (S-2)

Steps (S-1) and (S-2) are implemented as follows:

## (S-1) Setup:
fun <- funNoise
lower <- c(-1, -1)
upper <- c(1, 1)
control <- list(
OCBA = TRUE,
OCBABudget = 3,
replicates = 2,
noise = TRUE,
multiStart = 2,
designControl = list(replicates = 2)

)
control <- spotFillControlList(control, lower, upper)
## (S-2) Initial design:
set.seed(control$seedSPOT)
x <- control$design(
x = NULL,
lower = lower,
upper = upper,
control = control$designControl

)
x <- repairNonNumeric(x, control$types)
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Example: Modifying the initial design size

Arbitrary initial design sizes can be generated by modifying the size argument of
the designControl list:

control$designControl$size <- 5

Here is the full code for starting spot with an initial design of size five:

spot(
x = NULL,
fun = funSphere,
lower = c(-1, -1), upper = c(1, 1),
control = list(designControl = list(size = 5))

)

Because the lower bound was set to (-1, -1), a two-dimensional problem is
defined, i.e., f (x1, x2) = x21 + x22 . The result from this spot run is stored as a list
in the variable return.

Variable types are assumed to be numeric, which is the default type if no other
type is specified.Type information,which is available fromconfig$types, is used
to transform the variables. The function spot can handle the data types numeric,
integer, andfactor. The functionrepairNonNumericmaps non-numerical
values to integers.

(S-3) Evaluation of the Initial Design. Using objectiveFunction
Evaluation, the objective function fun is evaluated on the initial design
matrix x.
In addition to xnew, a matrix of already known solutions, to determine
whether Random Number Generator (RNG) seeds for new solutions need
to be incremented, can be passed to the function objectiveFunction
Evaluation.

•! Transformation of Variables

If variable transformation functions are defined, the function transformX is
applied to the parameters during the execution of the function
objectiveFunctionEvaluation.

The function objectiveFunctionEvaluation returns the matrix y.

(S-4) Imputation: Handling Missing Values. The feasibility of the y-matrix is
checked. Methods to handle NA and infinite y-values are applied, which are
available via the function imputeY.
The spot loop starts after the initial phase. The function spotLoop is called.



88 T. Bartz-Beielstein and M. Zaefferer

Program Code: Steps (S-3) and (S-4)

Steps (S-3) and (S-4) are implemented as follows:

## (S-3) Eval initial design:
y <- objectiveFunctionEvaluation(
x = NULL,
xnew = x,
fun = fun,
control = control

)
## (S-4) Imputation:
if (!is.null(control$yImputation$handleNAsMethod)) {
y <- imputeY(
x = x,
y = y,
control = control

)
}

4.5.3 The Function spotLoop

(S-5) Calling the spotLoop function. After the initial phase is finished, the func-
tion spotLoop is called, which manages the main loop. It is implemented
as a stand-alone function, because it can be called separately, e.g., to continue
interrupted experiments. With this mechanism, spot provides a convenient
way for continuing experiments on different computers or extending existing
experiments, e.g., if the results are inconclusive or a pre-experimental study
should be performed first.

Example: Continue existing experiments

The studies in Sects. 5.8.1, 5.8.2, and 5.8.3 start with a relatively small pre-
experimental design. Results from the pre-experimental tests are combined with
results from the full experiment.

(S-6) Consistency Check and Initialization. Because the spotLoop can be used to
continue an interrupted spot run, it performs a consistency check before the
main loop is started.

(S-7) Imputation. The function defined by the argument
control$yImputation$handleNAsMethod is called to handle NA s,
Inf s, etc. This is necessary here, because spotLoop can be used as an
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entry point to continue an interrupted spot optimization run. How to con-
tinue existing spot runs is explained in the spotLoop documentation.

(S-8) Counter and Log Data. Furthermore, counters and logging variables are ini-
tialized. The matrix yBestVec stores the best function value found so far. It
is initialized with the minimum value of the objective function on the initial
design. Note, ySurr, which keeps track of the objective function values on
the surrogate S, has NA s, because no surrogate was built so far:

Program Code: Steps (S-5) to (S-8)

## (S-5) Enter spotLoop:

## (S-6) Initial check:
initialInputCheck(x, fun, lower, upper, control, inSpotLoop = TRUE)
dimension <- length(lower)
con <- spotControl(dimension)
con[names(control)] <- control
control <- con
rm(con)
control <- spotFillControlList(control, lower, upper)

## (S-7) Imputation:
if (!is.null(control$yImputation$handleNAsMethod)) {
y <- imputeY(

x = x,
y = y,
control = control

)
}

## (S-8) Counter and logs:
count <- nrow(y)
modelFit <- NA
ybestVec <- rep(min(y[, 1]), count)
ySurr <- matrix(NA, nrow = 1, ncol = count)

4.5.4 Entering the Main Loop

(S-9) Termination Criteria, Conditions. The main loop is entered as follows:

while ((count < control$funEvals) &
(difftime(Sys.time(), control$time$startTime, units = ’mins’)
< control$time$maxTime))
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Two termination criteria are implemented:

a. the number of objective function evaluations must be smaller than
funEvals and

b. the time must be smaller than maxTime.

(S-10) Subset Selection for the Surrogate. Surrogates can be built with the full or a
reduced set of available x- and y-values. A subset selection method, which is
defined via control$subsetSelect, can be used before the surrogate
Sis built. If subsetSelect is set to selectAll, which is the default, all
points are used. Fitting the surrogate Swith a subset of the available points
only appears to be counterintuitively, but can be reasonable, e.g., if the sample
points are too close to each other or if the problem changes dynamically.

(S-11) Fitting the Surrogate.SPOTcanuse arbitrary regressionmodels as surrogates,
e.g., RF or GP models (Kriging).

The arguments x and y are mandatory for the function model. The model
function must return a fit object that provides a predict method. A Gaussian
process model, which performs well in many situations and can work well with
discrete and continuous hyperparameters, is SPOT’s default model. Random forest
is less suited as a surrogate for continuous parameters, as it has to approximate
said parameters in a step-wise constant manner. The function control$model
is applied to the x- and y-matrices. A default model is fitted to the data with the
function buildKriging.

Program Code: Steps (S-9) to (S-11)

Steps (S-9) to (S-11) are implemented as follows:

## (S-9) Termination (while loop):

## (S-10) Subsect select:
selectRes <- control$subsetSelect(
x = x,
y = y[, 1, drop = FALSE],
control = control$subsetControl

)

## (S-11) Surrogate fit:
modelFit <- control$model(
x = selectRes$x,
y = selectRes$y,
control = control$modelControl

)
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Table 4.5 Surrogates in spot require two arguments, x and y. The return values of the build*
functions are shown below

Return Value Type Description

x matrix x values

y matrix y values

fit object Fitted model

pNames character Names of the independent variables

yName character Name of the dependent variable

class character Name of the model class

Background: Surrogates

There is a naming convention for surrogates in spot: functions names should start
with the prefix “build”. Surrogates in spot use the same interface. They accept
the arguments x, y, which must be matrices, and the list control. They fit a model,
e.g.,buildLM uses thelm, which provides amethodpredict. Eachmodel returns
an object of the corresponding model class, here: "spotLinearModel", with a
predict method. The return value is implemented as a list with the entries from
Table 4.5.

Note, buildLM is a very simple model. SPOT’s workhorse is a Kriging model,
that is fitted via Maximum Likelihood Estimation (MLE). buildKriging is
explained in Sect. 4.6.5.

(S-12) Objective Function on the Surrogate (Predict). After building the surrogate,
themodelFit (surrogatemodel) is available. It is used to define the function
funSurrogate, which works as an objective function on the surrogate
S: funSurrogate does not evaluate solutions on the original function
f , but on the surrogate S. Thus, spot searches for the hyperparameter
configuration that is predicted to result in the best possible model quality.
Therefore, an objective function is generated based on the modelFit via
predict.

Program Code: Step (S-12)

Step (S-12) is implemented as follows:

## (S-12) Surrogate optimization function:
funSurrogate <- evaluateModel(
modelFit,
control$infillCriterion,
control$verbosity

)
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Background: Surrogate and Infill Criteria

The function evaluateModel generates an objective function that predicts func-
tion values on the surrogate. Some surrogate optimization procedures do not use the
function values from the surrogate S—they use an infill criterion instead.

Definition 4.2 (Infill Criterion, Acquisition Function) Infill criteria are methods that
guide the exploration of the surrogate. They combine information from the predicted
mean and the predicted variance generated by the GPmodel. In BO, the term “acqui-
sition function” is used for functions that implement infill criteria.

For example, the function buildKriging provides three return values that
can be used to generate elementary infill criteria. These return values are specified
via the argument target, which is a vector of strings. Each string specifies a
value to be predicted, e.g., "y" for mean, "s" for standard deviation, and "ei"
for expected improvement. In addition to these elementary values, spot provides
the function infillCriterion to specify user-defined criteria. The function
evaluateModel that manages the infill criteria in spot is shown below.

evaluateModel <-
function(object,

infillCriterion = NULL) {
evalModelFun <- function(x) {
res <- predict(object = object, newdata = x)[object$target]
return(res)

}
if (is.null(infillCriterion)) {
return(function(x) {
res <- evalModelFun(x)
return(res)

})
} else {
return(function(x) {
return(infillCriterion(evalModelFun(x), object))

})
}

}

Example: Expected Improvement

EI is a popular infill criterion, which was defined in Eq. (4.10). It is calcu-
lated as shown in Eq. (4.11) and can be called from evaluateModel via
modelControl = list(target = c("ei"). The following code shows
an EI implementation that returns a vector with the negative logarithm of the
expected improvement values,− log10(EI). The functionexpectedImprovement
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is called, if the argument "ei" is selected as a target, e.g., spot
(,fun,l,u,control=list(modelControl=list(target="ei"))).

expectedImprovement <- function(mean, sd, min) {
EITermOne = (min - mean) * pnorm((min - mean) / sd)
EITermTwo = sd * (1 / sqrt(2 * pi))

* exp(-(1 / 2) * ((min - mean) ˆ 2 / (sd ˆ 2)))
- log10(EITermOne + EITermTwo + (.Machine$double.xmin))

}

(S-13) Multiple Starting Points. If the current best point is feasible, it is used as
a starting point for the search on the surrogate S. Because the surrogate
can be multi-modal, multiple starting points are recommended. The func-
tiongetMultiStartPoints implements amulti-startmechanism.spot
provides the function getMultiStartPoints.
In addition to the current best point further starting points can be used. Their
amount can be specified by the value of multiStart. If multiStart >

1, then additional starting points will be used. The design function, which
was used for generating the initial design in Sect. 4.5.2, will be used here to
generate additional points.

(S-14) Optimization on the Surrogate. The search on the surrogate Scan be per-
formed next. The simplest objective function is optimLHD, which selects
the point with the smallest function value from a relatively large set of
LHD points. Other objective functions are available, e.g., optimLBFGS
or optimDE. To find the next candidate solution, the predicted value of
the surrogate is optimized via Differential Evolution (Storn and Price 1997).
Other global optimization algorithms can be used as well. Even RS would be
a feasible strategy.

•> Mandatory Parameters

Optimization functions must use the same interface as spot, i.e., function(x,
fun,lower,upper,control=list(),...). The arguments fun, lower,
and upper are mandatory for optimization functions. This is similar to the interface
of R’s general-purpose optimization function optim.

As described in Sect. 4.5.4, the optimization on the surrogate Scan be performed
with or without pre-defined starting points. We describe a search without starting
points first.
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(S-14a) Search Without Starting Points. If no starting points for the search are pro-
vided, the optimizer, which is specified via control$optimizer, is
called.
The result from this optimization is stored in the list optimResSurr. The
optimal value from the search on the surrogate isoptimResSurr$xbest,
the corresponding y-value is optimResSurr$ybest. Alternatively, the
search on the surrogate can be performed with starting points.

(S-14b) Search With Starting Points. If starting points are used for the optimiza-
tion on the surrogate, these are passed via x = x0 to the optimizer.
Several starting points result in several optimResSurr$xbest and
optimResSurr$ybest values from which the best, i.e., the point with
the smallest y-value, is selected.
For example, if multiStart = 2 is selected, the current best and one
random point will be used.
The optimization on the surrogateS is performed separately for each starting
point and the matrix xnew is computed.
xnew is determined based on the multi-start results.

(S-15) Compile Results from the Search on the Surrogate. The function value of
xnew (from (S-14a) or (S-14b)) is saved as ySurrNew. Note, this function
values can be modified using control$modelControl$target, e.g.,
"y", "s2, or "ei", i.e., the optimization on the surrogate can be based on
the predicted new value "y", a combination of "y" and the variance or the
EI "ei".

(S-16) Noise, Repeats, and Consistency Checks for New Points. After the new
solution candidate xnew and its associated function value on the surro-
gate ySurrNew have been determined, spot checks for duplicates and
determines the number of replicates. This step treats noisy and determinis-
tic objective functions in a different way.
If control$noise == TRUE, then replicates are allowed, i.e., a single
solution x canbe evaluated several times. Ifcontrol$noise == FALSE,
then every solution is evaluated only once.

Program Code: Steps (S-13) to (S-16)

Steps (S-13) to (S-16) are implemented as follows:

## (S-13) Random starting points for optimization on the surrogate
x0 <- getMultiStartPoints(x, y, control)
resSurr <- matrix(NA, nrow = nrow(x0), ncol = ncol(x0) + 1)

## (S-14b) Search on the surrogate with starting point/s x0:
for (i in 1:nrow(x0)) {
optimResSurr <- control$optimizer(

x = x0[i, , drop = FALSE],
funSurrogate,
lower,



4 Hyperparameter Tuning Approaches 95

upper,
control$optimizerControl

)
resSurr[i, ] <- c(optimResSurr$xbest, optimResSurr$ybest)

}

## (S-15) Compile surrogate results:
m <- which.min(resSurr[, ncol(x) + 1])
## Determine xnew based on multi start results
xnew <- resSurr[m, 1:ncol(x), drop = FALSE]
## value on the surrogate (can be "y", "s2, "ei", "negLog10ei" etc.)
ySurrNew <- resSurr[m, ncol(x) + 1]

## (S-16) Duplicate handling:
xnew <- duplicateAndReplicateHandling(xnew, x, lower, upper, control)
# Repair non-numeric results
xnew <- repairNonNumeric(xnew, control$types)

Background: Duplicates and Replicates

The function duplicateAndReplicateHandling checks whether the new
solution xnew has been evaluated before. In this case, it is taken as it is and no addi-
tional evaluations are performed. If xnew was not evaluated before, it will be evalu-
ated. The number of evaluations is defined via control$replicates. Duplicate
and replicate handling in spot depends on the setting of the parameter noise. If
the value is TRUE then a test whether xnew is new or has been evaluated before is
performed. If xnew is new (was not evaluated before), then it should be evaluated
replicates times. Assume, control$replicates < − 3, i.e., three initial
replicates are required and xnewwas not evaluated before. Then two additional eval-
uations should be done, i.e., xtmp contains two entries which are combined with
one already existing entry in xnew.

control$replicates <- 3
xtmp <- NULL
for (i in 1:nrow(xnew)) {
if (!any(apply(x, 1, identical, xnew[i, ]))) {
xtmp <- rbind(xtmp, xnew[rep(i, control$replicates - 1), ])

}
}
xnew <- rbind(xnew, xtmp)
xnew

## [,1] [,2]

## [1,] -0.01292055 -0.02666901

## [2,] -0.01292055 -0.02666901

## [3,] -0.01292055 -0.02666901
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If the parameter noise has the value FALSE, two cases have to be distinguished.
First, if xnew was not evaluated before, then it should be evaluated once (and not
replicates times), because additional evaluation is useless. They would deter-
ministically generate the same result.

for (i in 1:nrow(xnew)) {
if (any(apply(x, 1, identical, xnew[i, ]))) {
warning("Duplicate is replaced by random solution.")
control$designControl$replicates <- 1
control$designControl$size <- 1
xnew[i, ] <-
designUniformRandom(, lower, upper, control$designControl)

}
}
xnew

## [,1] [,2]

## [1,] -0.01292055 -0.02666901

## [2,] -0.01292055 -0.02666901

## [3,] -0.01292055 -0.02666901

Second, if xnew was evaluated before, then a warning is issued and a randomly
generated solution for each entry in xnew will be used.

# xnew has two already known solutions:
xnew <- x[1:2, ]
for (i in 1:nrow(xnew)) {
if (any(apply(x, 1, identical, xnew[i, ]))) {
warning("Duplicate is replaced by random solution.")
control$designControl$replicates <- 1
control$designControl$size <- 1
xnew[i, ] <-
designUniformRandom(, lower, upper, control$designControl)

}
}
xnew

## [,1] [,2]

## [1,] 0.6704420 0.1762307

## [2,] 0.5094811 0.3023359

A type check is performed, i.e., all non-numeric values produced by the optimizer
are rounded.

(S-17) OCBA for Known Points. OCBA is called next if OCBA and noise are both
set to TRUE: the function repeatsOCBA returns a vector that specifies how
often each known solution should be re-evaluated (or replicated). This func-
tion can spend a budget of control$OCBABudget additional evaluations.
The solutions proposed by repeatsOCBA are added to the set of new x can-
didates xnew. Because OCBA calculates an estimate of the variance, it is
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based on evaluated solutions and their function values, i.e., x and y values
respectively.

Program Code: Step (S-17)

Step (S-17) is implemented as follows:

## (S-17) OCBA:
if (control$noise &
control$OCBA) {
xnew <- rbind(xnew, repeatsOCBA(x, y[, 1, drop = FALSE], control$OCBABudget))

}

Background: Optimal Computational Budget Allocation

OCBAis a very efficient solution to solve the “general ranking and selection problem”
if the objective function is noisy (Chen 2010;Bartz-Beielstein et al. 2011). It allocates
function evaluations in an uneven manner to identify the best solutions and to reduce
the total optimization costs.

Theorem 4.1 Given a total number of optimization samples N to be allocated to k
competing solutions whose performance is depicted by random variables with means
ȳi (i = 1, 2, . . . , k), and finite variances σ 2

i , respectively, as N → ∞, the Approx-
imate Probability of Correct Selection (APCS) can be asymptotically maximized
when

Ni

N j
=

(
σi/δb,i

σ j/δb, j

)2

, i, j ∈ {1, 2, . . . , k}, and i �= j �= b, (4.1)

Nb = σb

√
√
√
√

k∑

i=1,i �=b

N 2
i

σ 2
i

, (4.2)

where Ni is the number of replications allocated to solution i , δb,i = ȳb − ȳi , and
ȳb ≤ mini �=b ȳi (Chen 2010).

(S-18) Evaluating New Solutions. To avoid exceeding the available budget of objec-
tive function evaluations, which is specified via control$funEvals, a
check is performed. Solution candidates are passed to the function
objectiveFunctionEvaluation, which calculates the associated
objective function values ynew on the function fun.

(S-19) Imputation. Because the evaluation of solution candidates might result in
infinite Inf or Not-a-Number NaN ynew values, the function imputeY,
which handled non-numeric values, is called.
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(S-20) Update Counter and Log Data.Next, counters count and ySurr, informa-
tion about the function values on the surrogate S, are updated.
Calculation of the progress and preparation of progress plots conclude the
main loop. The last step of the main loop compiles the list return, which
is returned to the spot function.

(S-21) Reporting after the While-Loop. After the while loop is finished, results are
compiled. Some objective functions return several values (Multi Objective
Optimization (MOO)). The corresponding values are stored as logInfo,
because the default spot function uses only one objective function value.
This mechanism enables spot handling MOO problems. The values of the
transformed parameters are stored as xt. Important for noisy optimization
is the following feature: OCBA can be used for the selection of the best
value. The function ocbaRanking computes the best x and y values,
xBestOcba andyBestOcba, respectively.yBestOcba is themean value
of the corresponding x-parameter setting xBestOcba.

Program Code: Steps (S-18) to (S-22)

Steps (S-18) to (S-22) are implemented as follows:

## (S-18) Evaluate xnew:
ynew <- tryCatch(
expr = {
objectiveFunctionEvaluation(
x = x,
xnew = xnew,
fun = fun,
control = control

)
},
error = function(e) {
if (!is.null(control$yImputation$handleNAsMethod)) {
n <- nrow(xnew)
m <- ncol(y)
return(matrix(rep(NA, m * n), nrow = n))

}
}

)
## (S-19) Impute:
colnames(xnew) <- colnames(x)
x <- rbind(x, xnew)
y <- rbind(y, ynew)
if (!is.null(control$yImputation$handleNAsMethod)) {
y <- imputeY(
x = x,
y = y,
control = control

)
}
## (S-20) Update counter, logs, etc.:
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ySurr <- c(ySurr, ySurrNew)
count <- count + nrow(ynew)
indexBest <- which.min(y[, 1, drop = FALSE])
ybestVec <- c(ybestVec, y[indexBest, 1, drop = FALSE])
## END while loop
## (S-21) Reporting after while loop in spotLoop
if (ncol(y) > 1) {
logInfo <- y[, -1, drop = FALSE]

} else {
logInfo <- NA

}
if (length(control$transformFun) > 0) {
xt <- transformX(xNat = x, fn = control$transformFun)

} else {
xt <- NA

}
# (S-22) OCBA-best selection:
if (control$noise & control$OCBA) {
ocbaRes <- ocbaRanking(
x = x,
y = y,
fun = fun,
control = control

)
control$xBestOcba <- ocbaRes[1, 1:(ncol(ocbaRes) - 1)]
control$yBestOcba <- ocbaRes[1, ncol(ocbaRes)]

}
# Compile results in spotLoop
result <- list(
xbest = x[indexBest, , drop = FALSE],
ybest = y[indexBest, 1, drop = FALSE],
xBestOcba = matrix(control$xBestOcba, ncol = length(lower)),
yBestOcba = matrix(control$yBestOcba, ncol = length(lower)),
x = x,
xt = xt,
y = y[, 1, drop = FALSE],
logInfo = logInfo,
count = count,
msg = "budget exhausted",
modelFit = modelFit,
ybestVec = ybestVec,
ySurr = ySurr

)
## END spotLoop()

The function spotLoop ends here and the final steps of the main function spot,
which are summarized in the following section, are executed.
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Table 4.6 spot: return parameters

Parameter Value, type Description

xbest matrix Best x values

ybest matrix Best y values

xBestOcba matrix Best x values

yBestOcba matrix Best y values

x matrix x values

xt matrix Transformed x values

y matrix y values

logInfo matrix Additional y information, also
multi-objective values

count integer Number of function
evaluations

msg character Information about the
optimization

modelFit

yBestVec matrix History of best y values

ySurr matrix y values on the surrogate

control list Control parameters

4.5.5 Final Steps

To exploit the region of the best solution from the surrogate, S, which was deter-
mined during the SMBO in the main loop with spotLoop, SPOT allows a local
optimization step. If control$directOptControl$funEvals is larger than
zero, this optimization is started. If the best solution from the surrogate, xbest,
satisfies the inequality constraints, it is used as a starting point for the local optimiza-
tion with the local optimizer control$directOpt. For example, directOpt
= optimNLOPTR or directOpt = optimLBFGSB, can be used.

Results from the direct optimization will be appended to the matrices of the
x and y values based on SMBO. SPOT returns the gathered information in a list
(Table 4.6). Because SPOT focuses on reliability and reproducibility, it is not the
speediest algorithm.

4.6 Kriging

Basic elements of the Kriging-based surrogate optimization such as interpolation,
expected improvement, and regression are presented. The presentation follows the
approach described in Forrester et al. (2008a).
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4.6.1 The Kriging Model

Consider sample data X and y from n locations that are available in matrix form: X is
a (n × k) matrix, where k denotes the problem dimension and y is a (n × 1) vector.
The observed responses y are considered as if they are from a stochastic process,
which will be denoted as ⎛

⎜
⎝

Y(x(1))
...

Y(x(n))

⎞

⎟
⎠ .

The set of random vectors (also referred to as a “random field”) has a mean of 1μ,
which is a (n × 1) vector. The random vectors are correlated with each other using
the basis function expression

Cor
(
Y(x(i)), Y(x(l))

) = exp

⎧
⎨

⎩
−

k∑

j=1

θ j |x (i)
j − x (l)

j |p j

⎫
⎬

⎭
.

The (n × n) correlation matrix of the observed sample data is

� =
⎛

⎜
⎝

Cor
(
Y(x(i)), Y(x(l))

)
. . . Cor

(
Y(x(i)), Y(x(l))

)

...
...

...

Cor
(
Y(x(i)), Y(x(l))

)
. . . Cor

(
Y(x(i)), Y(x(l))

)

⎞

⎟
⎠ . (4.3)

Note: correlations depend on the absolute distances between sample points |x (n)
j −

x (n)
j | and the parameters p j and θ j .
To estimate the values of θ and p, they are chosen to maximize the likelihood of

y, which can be expressed as

L
(
Y(x(1)), . . . , Y(x(n))|μ, σ

) = 1

(2πσ)n/2
exp

{−∑n
j=1

(
Y( j) − μ

)2

2σ 2

}

,

which can be expressed in terms of the sample data

L
(

Y(x(1)), . . . , Y(x(n))|μ, σ
)

= 1

(2πσ)n/2|�|1/2 exp

{
−(y − 1μ)T�−1(y − 1μ)

2σ 2

}

,

and formulated as the log-likelihood:

ln(L) = −n

2
ln(2πσ) − 1

2
ln |�|−(y − 1μ)T�−1(y − 1μ)

2σ 2
. (4.4)
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Optimization of the log-likelihood by taking derivatives with respect to μ and σ

results in

μ̂ = 1T�−1yT

1T�−11T
(4.5)

and

σ̂ = (y − 1μ)T�−1(y − 1μ)

n
. (4.6)

Substituting (4.5) and (4.6) into (4.4) leads to the concentrated log-likelihood:

ln(L) = −n

2
ln(σ̂ ) − 1

2
ln |�|. (4.7)

Note: To maximize ln(L), optimal values of θ and p are determined numerically,
because (4.7) is not differentiable.

4.6.2 Kriging Prediction

For a new prediction ŷ at x, the value of ŷ is chosen so that it maximizes the likelihood
of the sample data X and the prediction, given the correlation parameter θ and p.
The observed data y is augmented with the new prediction ŷ which results in the
augmented vector ỹ = (yT , ŷ)T . A vector of correlations between the observed data
and the new prediction is defined as

ψ =
⎛

⎜
⎝

Cor
(
Y(x(1)), Y(x)

)

...

Cor
(
Y(x(n)), Y(x)

)

⎞

⎟
⎠ =

⎛

⎜
⎝

ψ (1)

...

ψ (n)

⎞

⎟
⎠ .

The augmented correlation matrix is constructed as

�̃ =
(

� ψ

ψT 1

)

.

Similar to (4.4), the log-likelihood of the augmented data is

ln(L) = −n

2
ln(2π) − n

2
ln(σ̂ 2) − 1

2
ln |�̂| − (ỹ − 1μ̂)T �̃

−1
(ỹ − 1μ̂)

2σ̂ 2
. (4.8)

The MLE for ŷ can be calculated as

ŷ(x) = μ̂ + ψT �̃
−1

(y − 1μ̂). (4.9)
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Equation 4.9 reveals two important properties of the Kriging predictor.

• The basis function impacts the vectorψ , which contains the n correlations between
the new point x and the observed locations. Values from the n basis functions are

added to a mean base term μ with weightings w = �̃
(−1)

(y − 1μ̂).
• The predictions interpolate the sample data. When calculating the prediction at
the i th sample point, x(i), the i th column of �−1 is ψ , and ψ�−1 is the i th unit
vector. Hence, ŷ(x(i)) = y(i).

4.6.3 Expected Improvement

The EI is a criterion for error-based exploration, which uses the MSE of the Kriging
prediction. The MSE is calculated as

s2(x) = σ 2

(

1 − ψT�−1ψ + (1 − 1T�−1�)2

1T�−11

)

.

Here, s2(x) = 0 at sample points, and the last term is omitted in Bayesian settings.
Since the EI extends the Probability of Improvement (PI), it will be described first.

Let ymin denote the best-observed value so far and consider ŷ(x) as the realization
of a random variable. Then, the probability of an improvement I = ymin − Y(x) can
be calculated as

P(I (x)) = 1

2

{

1 + erf

(
ymin − ŷ(x)

ŝ
√
2

)}

.

The EI does not calculate the probability that there will be some improvement, it
calculates the amount of expected improvement. The rationale of using this expec-
tation is that we are less interested in highly probable improvement if the magnitude
of that improvement is very small. The EI is defined as follows.

Definition 4.3 (Expected Improvement)

E(I (x)) =
{

(ymin − ŷ(x))�
(

ymin−ŷ(x)

ŝ(x)

)
+ ŝφ

(
ymin−ŷ(x)

ŝ(x)

)
if ŝ > 0

0 if ŝ = 0
, (4.10)

where�(.) and φ(.) are the Cumulative Distribution Function (CDF) and Probability
Distribution Function (PDF), respectively.

The EI is evaluated as

E(I (x)) = (
ymin − ŷ(x)

) 1

2

{

1 + erf

(
ymin − Ŷ(x)

ŝ
√
2

)}

+ ŝ
1√
2π

exp

{
−(ymin − ŷ(x))2

2ŝ2

}

.

(4.11)
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4.6.4 Infill Criteria with Noisy Data

The EI infill criterion was formulated under the assumption that the true underly-
ing function is deterministic, smooth, and continuous. In deterministic settings, the
Kriging predictor should interpolate the data. Noise can complicate the modeling
process: predictions can become erratic, because there is a high MSE in regions far
away from observed data. Therefore, the interpolation property should be dropped
to filter noise. A regression constant, λ, is added to the diagonal of � and � + λI is
used. Then, � + λI does not contain ψ as a column and the data is not interpolated.
The same method of derivation as in interpolating Kriging (Eq. 4.9) can be used for
regression Kriging. The regression Kriging prediction is given by

ŷr (x) = μ̂r + ψT (� + λI)−1(y − 1μ̂r ),

where

μ̂r = 1T (� + λI)−1y
1T (� + λI)−11

.

Including the regression constant λ the following equation allows the calculation of
an estimate of the error in the Kriging regression model for noisy data:

ŝ2r (x) = σ̂ 2
r

{

1 + λ − ψT (� + λI)−1ψ + (1 − 1T (� + λI)−1ψ)2

1T (� + λI)−11

}

, (4.12)

where

σ̂ 2
r = (y − 1μ̂r )

T (� + λI)−1(y − 1μ̂r )

n
.

Note: Eq. (4.12) includes the error associated with noise in the data. There is nonzero
error in all areas which leads to nonzero EI in all areas. As a consequence, resam-
pling can occur. Resampling can be useful if replicates result in different outcomes.
Although the possibility of resampling can destroy the convergence to the global
optimum, resampling can be a wanted feature in optimization with noisy data. In a
deterministic setting, resampling is an unwanted feature, because new evaluations of
the same point do not provide additional information and can stall the optimization
process.

Re-interpolation can be used to eliminate the errors due to noise in the data from
the model. Re-interpolation bases the estimated error on an interpolation of points
predicted by the regression model at the sample locations. It proceeds as follows:
calculate values for the Kriging regression at the sample locations using

ŷr = 1μ̂ + �(� + λI)−1(y − 1μ̂).

This vector can be substituted into Eq. (4.9), which is substituted into (4.6). This
results in
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σ̂ 2
ri = (y − 1μ̂)T (� + λI)−1�(� + λI)−1(y − 1μ̂)

n
.

Using the interpolating Kriging error estimate (4.12), the re-interpolation error esti-
mate reads

ŝ2ri(x) = σ̂ 2
ri

{

1 − ψT�−1ψ + (1 − 1T (� + λI)−1ψ)2

1T (� + λI)−11

}

.

4.6.5 spot’s Workhorse: Kriging

This section explains the implementation of the function buildKriging in SPOT.

(K-1) Set Parameters. buildKriging uses the parameters shown in Table 4.7. It
returns an object of class kriging, which is basically a list, with the options
and found parameters for the model which has to be passed to the predict
method of this class.

Program Code: Step (K-1)

buildKriging <- function(x, y, control = list()) {
## (K-1) Set Parameters
k <- ncol(x) # dimension
n <- nrow(x) # number of observations
con <- list(
thetaLower = 1e-4,
thetaUpper = 1e2,
types = rep("numeric", k),
algTheta = optimDE,
budgetAlgTheta = 200,
optimizeP = FALSE,
useLambda = TRUE,
lambdaLower = -6,
lambdaUpper = 0,
startTheta = NULL,
reinterpolate = TRUE,
target = "y"

)
fit <- control
fit$x <- x
fit$y <- y
LowerTheta <- rep(1, k) * log10(fit$thetaLower)
UpperTheta <- rep(1, k) * log10(fit$thetaUpper)
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Table 4.7 buildKriging: besides the design matrix x with corresponding observations y, the
function accepts a list with the parameters shown below

Parameter Value, type Description

types character vector A character vector giving the data type of each
variable. All but factor will be handled as
numeric, factor (categorical) variables will be
subject to the Hamming distance

thetaLower 1e-4, numerical Lower boundary for theta

thetaUpper 1e2 Upper boundary for theta

algTheta optimDE,
function

Algorithm used to find theta via MLE

budgetAlgTheta 200, integer Budget for the algorithm algTheta. The value
will be multiplied with the length of the model
parameter vector to be optimized

optimizeP FALSE, logical Specifies whether the exponents (p) should be
optimized. Otherwise, they will be set to two

useLambda TRUE, logical Whether to use the regularization constant lambda
(nugget effect)

lambdaLower -6, numerical Lower boundary for log10(lambda)

lambdaUpper 0, numerical Upper boundary for log10(lambda)

startTheta NULL, numerical Optional start value for theta optimization

reinterpolate TRUE, logical Whether re-interpolation should be performed

target "y", character
vector

Values of the prediction. Each element specifies a
value to be predicted, e.g., "y" for mean, "s" for
standard deviation, "ei" for EI

(K-2) Normalization.
The function normalizeMatrix is used to normalize the data, i.e., each
column of the (n, k)-matrix X has values in the range from zero to one.

Program Code: Step (K-2)

## (K-2) Normalize input data
fit$normalizeymin <- 0
fit$normalizeymax <- 1
res <- normalizeMatrix(fit$x, ymin, ymax)
fit$scaledx <- res$y
fit$normalizexmin <- res$xmin
fit$normalizexmax <- res$xmax

(K-3) Correlation Matrix. Prepare correlation matrix � (Eq. (4.3)) and start points
for the optimization.Thedistancematrix is determined.The i-th rowof (k, n2)-
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matrix A contains the distances between the elements of the i-th column
(dimension). A(1, 1) is the distance of the first element to the first element in
the first dimension, A(1, 2) the distance of the first element to the second ele-
ment in the first dimension, A(1, n + 1) is the distance of the second element
to the first element in the first dimension, and so on.

Program Code: Step (K-3)

## (K-3) Prepare distance/correlation matrix
A <- matrix(0, k, n * n)
for (i in 1:k) {
if (control$types[i] != "factor") {
A[i, ] <-
as.numeric(as.matrix(dist(fit$scaledx[, i]))) # euclidean distance

} else {
tmp <-
outer(fit$scaledx[, i], fit$scaledx[, i], "!=") # hamming distance

class(tmp) <- "numeric"
A[i, ] <- tmp

}
}

(K-4) Prepare Starting Points.

(K-4.1) θ . The starting point for the optimization of θ is determined. If no explicit
starting point is specified, then

θ0 = n/(100k) (4.13)

is chosen.
(K-4.2) p. The parameter optimizeP determines whether p should be optimized

or not. In the latter case, p = 2 is set and the matrix A is squared. Otherwise,
the starting point for the optimization of p is chosen as p0 = 1.9 and the
search interval is set to [0.01, 2].

(K-4.3) Nugget. If a nugget effect should be integrated, the starting point for the
optimization of λ is set to

λ0 = λlower + λupper

2
(4.14)

(K-4.4) Penalty. The penalty value is set to

φ = n × log(Var(y)) + 1e4. (4.15)
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Note: this penalty value should not be a hard constant. The scale of
the likelihood, i.e., n × log(SigmaSqr) + LnDet Psi at least depends on
log(Var(y)) and the number of samples. Hence, large number of samples
may lead to caseswhere the penalty is lower than the likelihood ofmost valid
parameterizations. A suggested penalty is therefore φ = n × log(Var(y)) +
1e4. Currently, this penalty is set in the buildKriging function, when
calling krigingLikelihood.

Program Code: Step (K-4)

## (K-4) Prepare starting points, search bounds and penalty value
## for MLE optimization
## 4.1 theta
x1 <- rep(n / (100 * k), k) # start point for theta
## 4.2 p
LowerTheta <- c(LowerTheta, rep(1, k) * 0.01)
UpperTheta <- c(UpperTheta, rep(1, k) * 2)
x3 <- rep(1, k) * 1.9 # start values for p
x0 <- c(x1, x3)
## 4.3 lambda
# start value for lambda:
x2 <- (fit$lambdaUpper + fit$lambdaLower) / 2
x0 <- c(x0, x2)
# append regression constant lambda (nugget)
LowerTheta <- c(LowerTheta, fit$lambdaLower)
UpperTheta <- c(UpperTheta, fit$lambdaUpper)
x0 <- matrix(x0, 1) # matrix with one row
opts <- list(funEvals = fit$budgetAlgTheta * ncol(x0))
## 4.4 penalty
penval <- n * log(var(y)) + 1e4

(K-5) Objective.Theobjective functionfitFun for theMLEoptimizeralgTheta
is defined in this step.

(K-6) krigingLikelihood. The function krigingLikelihood, see Sect. 4.6.6, is
called.
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Program Code: Steps (K-5) and (K-6)

## (K-5) MLE objective function
fitFun <-
function(x, fX, fy, optimizeP, useLambda, penval) {

krigingLikelihood(x, fX, fy, optimizeP, useLambda, penval)$NegLnLike
}

## (K-6) See krigingLikelihood

(K-7) Performing theOptimizationwithfitFun.Theoptimizer is called as follows:

Program Code: Step (K-7)

## (K-7) MLE optimization
res <- fit$algTheta(
x = x0,
fun =
function(x, fX, fy, optimizeP, useLambda, penval) {
apply(x, 1, fitFun, fX, fy, optimizeP, useLambda, penval)

},
lower = LowerTheta,
upper = UpperTheta,
control = opts,
fX = A,
fy = fit$y,
optimizeP = fit$optimizeP,
useLambda = fit$useLambda,
penval = penval

)

(K-8) Compile Results. Step Compile return values: The return values from the
optimization run, which are stored in the list res, are added to the list fit
that specifies the object of the class kriging. The list fit contains the
following optimized values: θ∗ as Theta, 10θ∗

as dmodeltheta, p∗, as P,
λ∗, as Lambda and 10λ∗

, as dmodellambda.
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Program Code: Step (K-8)

## (K-8) Compile results from MLE optimization (to fit object)
Params <- res$xbest
nevals <- as.numeric(res$count[[1]])
fit$Theta <- Params[1:k]
fit$dmodeltheta <- 10ˆParams[1:k]
fit$P <- Params[(k + 1):(2 * k)]
fit$Lambda <- Params[length(Params)]
fit$dmodellambda <- 10ˆParams[length(Params)]

(K-9) Use Results to Determine Likelihood and Best Parameters. The function
krigingLikelihood is called with these optimized values, θ∗, p∗, and
λ∗ to determine the values used for the fit of the Kriging model.

Program Code: Step (K-9)

## (K-9) Evaluate with optimized parameters
res <-
krigingLikelihood(

c(fit$Theta, fit$P, fit$Lambda),
A,
fit$y,
fit$optimizeP,
fit$useLambda

)

(K-10) Compile the fit Object. The return values from this call to
krigingLikelihood are added to the fit object.

Program Code: Step (K-10)

## (K-10) Add results from MLE evaluation to fit object
fit$yonemu <- res$yonemu
fit$ssq <- as.numeric(res$ssq)
fit$mu <- res$mu
fit$Psi <- res$Psi
fit$Psinv <- res$Psinv
fit$nevals <- nevals
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fit$like <- res$NegLnLike
fit$returnCrossCor <- FALSE

(K-11) Calculate the mean objective function value. In addition to the results from
theMLE optimization, the mean objective function value of the best x value,
ymin, is calculated and stored in the fit list as min. This value is needed
for the EI computation.
Now the fit is available and can be used for predictions. The corresponding
code is shown below.

4.6.6 krigingLikelihood

Step: MLE optimization with krigingLikelihood. The objective function
accepts the following parameters: x, a vector, which contains the parameters
log10(theta), log10(lambda), and p, AX, a three-dimensional array, constructed by
buildKriging from the sample locations, Ay, a vector of observations at sample
locations, optimizeP, logical, which specifies whether or not to optimize parame-
ter p (exponents) or fix at two, useLambda, logical, which specifies whether to use
the nugget, and penval, a penalty value which affects the value returned for invalid
correlation matrices or configurations. The function krigingLikelihood per-
forms the following calculations: The θ and λ values are updated:

θ j = 10θ0 ( j = 1, . . . , n) (4.16)

λ = 10λ (4.17)

AX [ j, ] = |(| AX)
p
j ( j = 1, . . . , n) (4.18)

(L-1) Starting Points.
(L-2) Correlation Matrix �. The matrix � can be calculated. If

useLambda == TRUE, the nugget effect λ is added.
(L-3) Cholesky Factorization. Since� > 0, its Cholesky factorization is computed.
(L-4) Determinant. The natural log of the determinant of �, LnDetPsi is calcu-

lated, because it is numerically more reliable and also faster than using det
or determinant.

(L-5) Matrix inverse, mean, error, and likelihood.
Using chol2inv, the following values can be calculated: ln(L) (Eq. (4.7)),
μ̂ (Eq. (4.5)), and σ̂ (Eq. (4.6)). Together with the matrices � and �−1, and
the vector 1μ, these values are combined into a list, which is returned from
the function krigingLikelihood.

The following code illustrates the main components of krigingLikelihood.
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Program Code: krigingLikelihood Function

krigingLikelihood <-
function(x,

AX,
Ay,
optimizeP = FALSE,
useLambda = TRUE,
penval = 1e8) {

## (L-1) Starting Points
nx <- nrow(AX)
theta <- 10ˆx[1:nx]
if (optimizeP) {
AX <- abs(AX)ˆ(x[(nx + 1):(2 * nx)])

}
lambda <- 0
if (useLambda) {
lambda <- 10ˆx[length(x)]

}
n <- dim(Ay)[1]
## (L-2) Correlation Matrix Psi
Psi <- exp(-matrix(colSums(theta * AX), n, n))
if (useLambda) {
Psi <- Psi + diag(lambda, n)

}
## (L-3) cholesky decomposition
cholPsi <- try(chol(Psi), TRUE)
## (L-4) Determininant
LnDetPsi <- 2 * sum(log(abs(diag(cholPsi))))
## (L-5.1) Psi Inverted
Psinv <- try(chol2inv(cholPsi), TRUE)
psisum <- sum(Psinv)
## (L-5.2) Mean
mu <- sum(Psinv %*% Ay) / psisum
## (L-5.3) yoneMu, SigmSqr
yonemu <- Ay - mu
SigmaSqr <- (t(yonemu) %*% Psinv %*% yonemu) / n
## (L-5.4) Log Likelihood
NegLnLike <- n * log(SigmaSqr) + LnDetPsi
## (L-5.5) Compile Result
list(
NegLnLike = NegLnLike,
Psi = Psi,
Psinv = Psinv,
mu = mu,
yonemu = yonemu,
ssq = SigmaSqr

)
}
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4.6.7 Predictions

The buildKriging function from the R package spot provides two Kriging
predictors: predictionwith andwithout re-interpolation.Re-interpolation is presented
here, because it prevents an incorrect approximation of the error which might cause
a poor global convergence. Re-interpolation bases the computation of the estimated
error on an interpolation of points predicted by the regression model at the sample
locations, see Forrester et al. (2008a).

The functionpredictKrigingReinterpolation requires twoarguments:
(i) object, the Kriging model (settings and parameters) of class kriging, and
(ii) newdata, the design matrix to be predicted.

The function normalizeMatrix2 is used to normalize the data. It uses infor-
mation from the normalization performed during the Kriging model building phase,
namely normalizexmin and normalizexmax to ensure the same scaling of
the known and new data. Furthermore, the following optimized parameters from the
Kriging model are extracted: scaledx, dmodeltheta, dmodellambda, Psi,
Psinv, mu, and yonemu.

For re-interpolation, the error in the model excluding the error caused by noise is
computed. The following modifications are made:

PsiB <-
Psi - diag(lambda, n) + diag(.Machine$double.eps, n)

SigmaSqr <-
as.numeric(t(yonemu) %*% Psinv %*% PsiB %*% Psinv %*% yonemu) /

n
Psinv <- try(solve.default(PsiB), TRUE)
if (class(Psinv)[1] == "try-error") {
Psinv <- ginv(PsiB)

}

The MLE for ŷ is
ŷ(x) = μ̂ + ψT�−1(y − 1μ̂). (4.19)

This is Eq. (2.40) in Forrester et al. (2008a). It is implemented as follows:

psi <- matrix(0, k, n)
for (i in 1:nvar) {
tmp <- expand.grid(AX[, i], x[, i])
if (object$types[i] == "factor") {
tmp <- as.numeric(tmp[, 1] != tmp[, 2])ˆp[i]

} else {
tmp <- abs(tmp[, 1] - tmp[, 2])ˆp[i]

}
psi <- psi + theta[i] * matrix(tmp, k, n, byrow = TRUE)

}

psi <- exp(-psi)

f <- mu + as.numeric(psi %*% (Psinv %*% yonemu))
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Depending on the setting of the parameter target, the values y and s or y, s,
and ei are returned.

res <- list(y = f)
if (any(object$target %in% c("s", "ei"))) {
#
Psinv <- try(solve.default(PsiB), TRUE)
if (class(Psinv)[1] == "try-error") {
Psinv <- ginv(PsiB)

}
#
SSqr <-
SigmaSqr * (1 - diag(psi %*% (Psinv %*% t(psi))))

s <- sqrt(abs(SSqr))
res$s <- s
if (any(object$target == "ei")) {
res$ei <- expectedImprovement(f, s, object$min)

}
}
if (object$returnCrossCor) {
res$psi <- psi

}
res

4.7 Program Code

One complete spot run is shown below. To increase readability, only one iteration
of the spotLoop is performed.

Program Code: spot Run

## (S-1) Setup:
fun <- funNoise
lower <- c(-1, -1)
upper <- c(1, 1)
control <- list(
OCBA = TRUE,
OCBABudget = 3,
replicates = 2,
noise = TRUE,
multiStart = 2,
designControl = list(replicates = 2)

)
control <- spotFillControlList(control, lower, upper)

## (S-2) Initial design:
set.seed(control$seedSPOT)
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x <- control$design(
x = NULL,
lower = lower,
upper = upper,
control = control$designControl

)
x <- repairNonNumeric(x, control$types)

## (S-3) Eval initial design
y <- objectiveFunctionEvaluation(
x = NULL,
xnew = x,
fun = fun,
control = control

)

## (S-4) Imputation
if (!is.null(control$yImputation$handleNAsMethod)) {
y <- imputeY(
x = x,
y = y,
control = control

)
}

## (S-5) Enter spotLoop:

## (S-6) Initial check:
initialInputCheck(x, fun, lower, upper, control, inSpotLoop = TRUE)
dimension <- length(lower)
con <- spotControl(dimension)
con[names(control)] <- control
control <- con
rm(con)
control <- spotFillControlList(control, lower, upper)

## (S-7) Imputation:
if (!is.null(control$yImputation$handleNAsMethod)) {
y <- imputeY(
x = x,
y = y,
control = control

)
}

## (S-8) Counter and logs:
count <- nrow(y)
modelFit <- NA
ybestVec <- rep(min(y[, 1]), count)
ySurr <- matrix(NA, nrow = 1, ncol = count)

## (S-9) Termination (while loop):

## (S-10) Subsect select:
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selectRes <- control$subsetSelect(
x = x,
y = y[, 1, drop = FALSE],
control = control$subsetControl

)

## (S-11) Surrogate fit:
modelFit <- control$model(
x = selectRes$x,
y = selectRes$y,
control = control$modelControl

)

## (S-12) Surrogate optimization function:
funSurrogate <- evaluateModel(
modelFit,
control$infillCriterion,
control$verbosity

)

## (S-13) Random starting points: surrogate optimization
x0 <- getMultiStartPoints(x, y, control)
resSurr <- matrix(NA, nrow = nrow(x0), ncol = ncol(x0) + 1)

## (S-14b) Surrogate optimization:
for (i in 1:nrow(x0)) {
optimResSurr <- control$optimizer(
x = x0[i, , drop = FALSE],
funSurrogate,
lower,
upper,
control$optimizerControl

)
resSurr[i, ] <- c(optimResSurr$xbest, optimResSurr$ybest)

}

## (S-15) Compile surrogate results:
m <- which.min(resSurr[, ncol(x) + 1])
## Determine xnew based on multi start results
xnew <- resSurr[m, 1:ncol(x), drop = FALSE]
## value on the surrogate (can be "y", "s2, "ei", "negLog10ei" etc.)
ySurrNew <- resSurr[m, ncol(x) + 1]

## (S-16) Duplicate handling:
xnew <- duplicateAndReplicateHandling(xnew, x, lower, upper, control)
# Repair non-numeric results
xnew <- repairNonNumeric(xnew, control$types)

## (S-17) OCBA
if (control$noise & control$OCBA) {
xnew <- rbind(xnew, repeatsOCBA(
x, y[, 1, drop = FALSE],
control$OCBABudget
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))
}

## (S-18) Evaluate xnew
ynew <- tryCatch(
expr = {
objectiveFunctionEvaluation(
x = x,
xnew = xnew,
fun = fun,
control = control

)
},
error = function(e) {
message("Error in objectiveFunctionEvaluation()!")
print(e)
if (!is.null(control$yImputation$handleNAsMethod)) {
message("Error will be corrected.")
n <- nrow(xnew)
m <- ncol(y)
return(matrix(rep(NA, m * n), nrow = n))

}
}

)

## (S-19) Impute
colnames(xnew) <- colnames(x)
x <- rbind(x, xnew)
y <- rbind(y, ynew)
if (!is.null(control$yImputation$handleNAsMethod)) {
y <- imputeY(
x = x,
y = y,
control = control

)
}

## (S-20) Update counter, logs, etc.
ySurr <- c(ySurr, ySurrNew)
count <- count + nrow(ynew)
indexBest <- which.min(y[, 1, drop = FALSE])
ybestVec <- c(ybestVec, y[indexBest, 1, drop = FALSE])

## END while loop

## (S-21) Reporting after while loop in spotLoop
if (ncol(y) > 1) {
logInfo <- y[, -1, drop = FALSE]

} else {
logInfo <- NA

}
if (length(control$transformFun) > 0) {
xt <- transformX(xNat = x, fn = control$transformFun)

} else {
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xt <- NA
}
## (S-22) OCBA-based selection of the best
if (control$noise & control$OCBA) {
ocbaRes <- ocbaRanking(
x = x,
y = y,
fun = fun,
control = control

)
control$xBestOcba <- ocbaRes[1, 1:(ncol(ocbaRes) - 1)]
control$yBestOcba <- ocbaRes[1, ncol(ocbaRes)]

}
# Compile results in spotLoop
result <- list(
xbest = x[indexBest, , drop = FALSE],
ybest = y[indexBest, 1, drop = FALSE],
xBestOcba = matrix(control$xBestOcba, ncol = length(lower)),
yBestOcba = matrix(control$yBestOcba, ncol = length(lower)),
x = x,
xt = xt,
y = y[, 1, drop = FALSE],
logInfo = logInfo,
count = count,
msg = "budget exhausted",
modelFit = modelFit,
ybestVec = ybestVec,
ySurr = ySurr

)
## END spotLoop()

if (control$directOptControl$funEvals > 0) {
## (S-23) Starting point for direct optimization
xbest <- result$xbest
if (!is.null(control$directOptControl$eval_g_ineq) &&
(
control$directOptControl$opts$algorithm == "NLOPT_GN_ISRES" &
control$directOptControl$eval_g_ineq(xbest) < 0

)) {
x0 <- NULL

} else {
x0 <- xbest

}

# Direct optimization on the real fun
optimResDirect <- control$directOpt(
x = x0,
fun = fun,
lower = lower,
upper = upper,
control$directOptControl

)

## (S-24) Update results adding direct
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if (result$ybest > optimResDirect$ybest) {
result$xbest <- optimResDirect$xbest
result$ybest <- optimResDirect$ybest

}
result$x <- rbind(result$x, optimResDirect$x)
result$y <- rbind(result$y, optimResDirect$y)

}

The result from one spotLoop is saved in the variable result.
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Chapter 5
Ranking and Result Aggregation

Thomas Bartz-Beielstein, Olaf Mersmann, and Sowmya Chandrasekaran

Abstract This chapter explores different methods to analyze the results of Hyper-
parameter Tuning (HPT) experiments. Four different scenarios and two different
approaches are presented. On the one hand, rankings and especially consensus rank-
ings are introduced to aggregate the results of many different HPT results. On the
other hand, statistical significance analysis and power analysis are used for a detailed
analysis of single algorithms and pairwise algorithm comparisons. This chapter dis-
cusses issues with sample size determination, power calculations, hypotheses, and
wrong conclusions from hypothesis testing. On top of the established methods, we
add and explain severity, a frequentist approach that extends the classical concept
of p-values. Mayo’s concept of severity offers one solution to these issues, and one
might achieve even better results by applying severity.

5.1 Comparing Algorithms

Aggregating the results of any kind of hyperparameter tuning or other large-scale
modeling experiment poses its own set of challenges. Generally, we can differentiate
between four settings (Bartz-Beielstein and Preuss 2011):

Definition 5.1 [Algorithm-Problem Designs]

Single Algorithm Single Problem (SASP): Analyzing the result of a single algo-
rithm or learner on a single optimization problem or data set.
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Single Algorithm Multiple Problem (SAMP): Comparing the results of a single
algorithm or learner on many different optimization problems or data sets.

Multiple Algorithm Single Problem (MASP): Comparing the results of multiple
algorithms or learners on a single optimization problem or data set.

Multiple Algorithm Multiple Problem (MAMP): Comparing the results of multi-
ple algorithms or learners on many different optimization problems or data sets.

The SASP setting is fundamentally different from the other three settings, because
we are not comparing results but merely analyzing them. That is, we are evaluating
the performance of an optimization algorithm A on a single problem instance π . In
the second scenario, we have multiple problem instances π1, …, πp. That means,
the second setting is a generalization of the first setting, where we might want to
check if our algorithm generalizes to different instances from the same domain or
even generalizes to different domains. The third setting generalizes the first by intro-
ducing more algorithms A1, …, Aa . Here, we want to compare the performance of
these algorithms on a single problem instance and more than likely choose a “best”
algorithm. Finally, the last scenario is a combination of the previous two, where we
have a algorithms being benchmarked on p problem instances.

For now, we will ignore the challenges posed by the SASP and SAMP settings
and focus on the comparison of multiple algorithms. We will denote the random
performance measure we use to evaluate an algorithm with Y . Even for deterministic
algorithms, it is justified to view this as a random variable since the result still heavily
depends on the initial starting parameters, etc. We will assume that we have collected
n Independent and Identically Distributed (IID) samples of our performancemeasure
Y for each algorithm and performance metric. These are denoted with y1, . . . , yn .

During all of the following discussions on comparing algorithms, we should
always remember that the No Free Lunch theorem (Wolpert and Macready 1997)
tells us there is no single best algorithm in both the learning and the optimization
setting. We are interested in comparing algorithms and choosing one that is fit for
purpose; we cannot hope to find a single “best” algorithm.

5.2 Ranking

When we are in the MASP setting, there are many established statistical frame-
works to analyze the observed performance metrics; see for example Chiarandini
and Goegebeur (2010) or Bartz-Beielstein (2015). Here, we will look at a somewhat
different approach based on rankings as described in Mersmann et al. (2015). The
advantage of ranking-based approaches is their scale invariance.

Consider the case where we have only two algorithms A1 and A2. For each
algorithm, we observe n values of our performance metric

Algorithm A1: yA1
1 , . . . , yA1

n

Algorithm A2: yA2
1 , . . . , yA2

n
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and we want to decide ifA1 is

1. “better than or equal to” A2 (denoted by A1 � A2);
2. “similar to”A2 (denoted by A1 � A2);
3. “worse than” A2 (denoted by A1 ≺ A2).

Saying A is worse than B is nothing more than saying B is better than or equal
toA:

A ≺ B ⇐⇒ B � A.

We can also simplify when we consider two algorithms to be similar. We say two
algorithms are similar if both are better than or equal to the other one:

A � B ⇐⇒ A � B ∧ B � A.

Therefore, it is enough to specify the binary relation � if we want to decide if some
algorithm dominates another algorithm. We call � the dominance relation for our
performancemetric. One waywould be using statistical hypothesis tests as discussed
in Sect. 5.6.1 but if n is large,1 it can be something as simple as the comparison of the
mean performance measure attained by each algorithm. It is also possible to think of
scenarios where wemight be more interested in a consistent result. In these cases, we
might compare the variance of the observed performance measures. Finally, if we are
really only interested in the absolute best performance the algorithm can deliver, we
should compare the minimal or maximal performance measure obtained. For a more
detailed description of the different choices available, see Mersmann et al. (2010b).
But for now, let’s just assume that we are able to define such a dominance relation.

Our dominance relation can have the following useful properties:

reflexive: A � A for all A under test. That is, every algorithm is better than or
equal to itself. This is a property we want in any dominance relation.

antisymmetric: A � B ∧ B � A =⇒ A � B. This is a weaker form of our
“similar to” definition above that suffices for our further reasoning.

transitive: A � B and B � C, then A � C.
complete: For all distinct pairs of algorithms, either A � B or B � A.

At a minimum, we want our relation to be reflexive and transitive. We call such
a relation a preorder and it is the first step toward a relation that induces an order,
i.e., gives us a meaningful comparison of all algorithms based on simple pairwise
comparisons. Next, we want antisymmetry which gives us a partial order and finally
if the partial order is complete, we get a linear order. A linear order has quite a few
requirements which must be fulfilled. Instead, we could ask ourselves what are the
minimum properties we would want? We would certainly want our relation to be
transitive since otherwise we won’t have a ranking, and we also want the relation

1 And see below for reasons why maybe it shouldn’t be too large.
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to be complete so that we can compare all algorithm pairs. An order with just these
properties is called a weak order and will become important later in our discussion
of rankings.

Let’s illustrate what we have so far with an example. Assume we have a = 5
algorithms and that we measured the performance of each algorithm n = 15 times.
We can store these results in a 5 × 15 matrix. Each row stores the results for one
algorithm and each column is one observation of the performance measure.

t(Y)

## A_1 A_2 A_3 A_4 A_5
## [1,] 11.25802 9.184456 10.91332 9.699683 9.533216
## [2,] 11.44358 9.227654 11.13609 9.632939 9.339878
## [3,] 11.49753 9.979770 10.69170 9.411786 9.480409
## [4,] 11.45181 9.654419 10.87821 9.883699 9.456854
## [5,] 11.34973 9.359485 10.86492 9.697134 9.416884
## [6,] 11.67326 9.681364 10.55226 9.586506 9.064084
## [7,] 11.35203 9.958682 11.04233 9.623864 9.254671
## [8,] 11.77464 10.094786 11.07630 9.704412 9.397412
## [9,] 11.35842 9.629653 10.96289 9.586520 9.082003
## [10,] 11.63193 9.664293 11.18674 8.969936 9.164142
## [11,] 11.82829 9.363114 10.88976 9.625530 9.388907
## [12,] 11.09319 9.807767 10.76145 9.495107 9.426344
## [13,] 11.31520 9.587748 11.12167 9.605600 9.365461
## [14,] 11.34429 9.806837 10.87282 9.684919 9.095553
## [15,] 11.49815 9.856715 11.32392 9.848501 9.052752

From these raw results, we could derive the incidence matrix of our dominance
relation by comparing the mean performance of each algorithm:

I <- matrix(0, nrow(Y), nrow(Y))
rownames(I) <- colnames(I) <- rownames(Y)
for (i in 1:nrow(Y)) {
for (j in 1:nrow(Y)) {
I[i, j] <- mean(Y[i, ]) >= mean(Y[j, ])

}
}
I

## A_1 A_2 A_3 A_4 A_5
## A_1 1 1 1 1 1
## A_2 0 1 0 1 1
## A_3 0 1 1 1 1
## A_4 0 0 0 1 1
## A_5 0 0 0 0 1
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And from that the dominance relation using the relations package (Meyer and
Hornik 2022):

r_mean <- relation(incidence = I)

We can now check if it is a preorder, partial order, or a linear order:

relation_is_preorder(r_mean)

## [1] TRUE

relation_is_partial_order(r_mean)

## [1] TRUE

relation_is_linear_order(r_mean)

## [1] TRUE

relation_is_weak_order(r_mean)

## [1] TRUE

Not surprisingly, we find that the relation is indeed a linear order. Using a small
helper function, we can pretty print the order

show_relation <- function(r) {
classes <- relation_classes(r)
class_names <- sapply(
classes,
function(x) paste0("{", paste(x, collapse = ", "), "}")

)
paste(class_names, collapse = " > ")

}

show_relation(r_mean)

## [1] "{A_1} > {A_3} > {A_2} > {A_4} > {A_5}"

As expected, algorithm A1 dominates all other algorithms since it has the highest
mean performance of 11.4580052.

Let’s see what happens if we use a more nuanced approach using hypothesis tests
to derive our dominance relation
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I <- matrix(0, nrow(Y), nrow(Y))
rownames(I) <- colnames(I) <- rownames(Y)
for (i in 1:nrow(Y)) {
for (j in 1:nrow(Y)) {
I[i, j] <- if (i != j) {
t.test(Y[i, ], Y[j, ],
paired = TRUE,
alternative = "less"

)$p.value > 0.05
} else {
1

}
}

}
r_ht <- relation(incidence = I)
show_relation(r_ht)

## [1] "{A_1} > {A_3} > {A_2, A_4} > {A_5}"

The resulting dominance relation is not a linear order, because it is not antisymmetric
since A2 � A4 but A2 �= A4. It is however still a weak order since it is complete
and transitive.

relation_is_preorder(r_ht)

## [1] TRUE

relation_is_partial_order(r_ht)

## [1] FALSE

relation_is_linear_order(r_ht)

## [1] FALSE

relation_is_weak_order(r_ht)

## [1] TRUE

While a ranking derived from a dominance relation does not give us as many
insights as some of the more advanced techniques based on ANOVA or multiple
comparison tests, it does extract the essential information we need. From a ranking,
we can derive clear preferences for some algorithm or see that a group of algorithms
performs similarly.

The real advantage of the ranking-based approach becomes apparent when we
leave the MASP setting and go over to the MAMP setting. We can view the MAMP
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setting as p2 MASP settings. For each problem instance πi , . . . , πp, we can derive
a ranking of the algorithms with the above methodology. This amounts to each
problem instance voicing its opinion about which algorithm is preferable.Why is this
advantageous when compared to direct performance measure calculations? Because
in most cases, the scale of our performance measure is specific to the problem
instance. We cannot compare the performance measure observed on one problem
instancewith that on another problem instance.Whatwecan compare are theobtained
ranks. The ranking is scale-invariant and allows us to aggregate the results of many
different MASP scenarios into one MAMP comparison.

5.3 Rank Aggregation

Before we dive into aggregation methods for rankings, let’s look at a motivating toy
example. An ice cream plant is trying to determine the favorite flavor of ice cream
for kids. They let three children rank the flavors based on how well they like them
and get the following result:

chocolate � vanilla � strawberry � cherry � blueberry

vanilla � strawberry � cherry � blueberry � chocolate

strawberry � cherry � blueberry � chocolate � vanilla

Here, the children are the “problem instances” and the ice cream flavors are the
“algorithms” being ranked. If we simply average the rank for each flavor and then
rank the flavors based on this average, we get the following (unsurprising) result:

vanilla � strawberry � cherry � chocolate � blueberry (5.1)

Since blueberries are expensive and kids seem to dislike them, they rank last. In fact,
we might have suspected that and not taken the flavor blueberry into account. If we
remove the blueberry flavor from all three rankings and again calculate the average
ranking, we get

vanilla � strawberry � chocolate � cherry (5.2)

Notice howdeleting the least liked flavor from the list resulted in cherry and chocolate
switching positions. Surely, this is not the kind of behavior we would want. But in
fact, if we remove the other fruit flavor (cherry), we get an average ranking of

vanilla � strawberry � chocolate (5.3)

There appears to be no clear preference anymore!

2 Remember p denotes the number of different problem instances in our MAMP setting.
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We could also view this as a “fruit conspiracy”. Strawberry, cherry, and blueberry,
full well knowing that only strawberry has any chance of winning, are in cahoots
and all enter the competition. By entering all three fruit flavors, the results seem to
be skewed in their favor.

We will see that this is an unfortunate side effect of any so-called Consensus
Method (CM) for rankings. We have seen in the previous section that, depending on
our choice of dominance relation, we arrive at different rankings of our algorithms
under test. This is to be expected, since we are ranking them based on different
definitions of what we consider to be a better algorithm. We will see that there are
different methods for deriving a consensus from our set of rankings and that methods
offer different trade-offs between properties that the consensus fulfills. So, before we
have seen the first consensus method, we need to accept the fact that from this point
forward, we cannot objectively define the best algorithm. Instead, our statement of
which algorithm is best depends on our subjective choice of a CM. But not all hope
is lost. What we can define are criteria we would want, an ideal CM to have, and
then make an informed choice about the trade-off between these criteria.

1. ACM that takes into account all rankings instead ofmimicking one predetermined
ranking is said to be non-dictatorial.

2. A CM that, given a fixed set of rankings, deterministically returns a complete
ranking is called a universal consensus method or is said to have a universal
domain.

3. A CM is independent of irrelevant alternatives, if given two sets of rankings
R = r1, . . . , rk and S = s1, . . . , sk inwhich for every i ∈ 1, . . . , k the order of two
algorithms A1 and A2 in ri and si is the same; the resulting consensus rankings
rank A1 and A2 in the same order. Essentially, this means that introducing a
further algorithm does not lead to a rank reversal between any of the already
ranked algorithms. While this might seem highly desirable (see the above ice
cream example), it is also a very strict requirement.

4. A CM which ranks an algorithm higher than another algorithm if it is ranked
higher in a majority of the individual rankings fulfills the majority criterion.

5. ACM is calledPareto efficient if given a set of rankings inwhich for every ranking
an algorithm ai is ranked higher than an algorithm aj, the consensus also ranks ai
higher than aj.

No consensus method can meet all of these criteria because the independence of
irrelevant alternatives (IIA) and the majority criterion are incompatible. But even
if we ignore the majority criterion, there is no consensus method which fulfills the
remaining criteria (Arrow 1950). So it is not surprising that if we choose different
criteria for our CM, we may get very different consensus rankings.

At this point, we might ask ourselves why bother finding a consensus if it is sub-
jective in the end. And to a certain extent that is true, but it still gives us valuable
insights into which algorithms might warrant further investigation and which algo-
rithms perform poorly. However, we have to take care that no accidental or intentional
manipulation of the consensus takes place. This can easily happen if the IIA is not



5 Ranking and Result Aggregation 129

fulfilled. Remember how introducing the irrelevant fruit flavors in our toy ice cream
example changed the consensus drastically. By adding many similar algorithms or
variants of one algorithm, we can skew our analysis and provoke unwanted rank
reversals.

Generally, we can differentiate between positional and optimization-based meth-
ods. Positional methods calculate sums of scores for each algorithm Ai over all
rankings. The final order is determined by the score obtained by each algorithm.
This amounts to

Ai � A j ⇐⇒ si >= s j, Ai � A j ⇐⇒ si = s j

with the score of algorithm Ai given by

si =
p∑

k=1

s(Ai , rπk ).

Here, s denotes a score function and rπk is the ranking inferred from problem instance
πk . The score function takes as arguments an algorithm and a ranking and returns
the score of the algorithm in that ranking.

The simplest score function we might use assigns a value of one to the best
algorithm in each ranking while all other algorithms get a value of zero. Although
this is somewhat intuitive, undesirable consensus rankings can occur. Consider the
situation with two different rankings of three algorithms:

A1 � A2 � A3 and A3 � A2 � A1.

Using the above score function, we would obtain the following scores:

s1 = 1 + 0 = 1 s2 = 0 + 0 = 0 s3 = 0 + 1 = 1

which leads to the consensus ranking

{A1 � A2} � A2.

This is counterintuitive since the two rankings are opposed and we’d expect them to
cancel out and give

{A1 � A2 � A2}.

The Borda count method (de Borda 1781) solves this issue and assigns an algorithm
one point for each algorithm that is not better than

sBC(Ai , r) =
∑

i �= j

I(Ai � A j ).
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In the case of no ties, it reduces the ranks of the data. For our example rankings
above, we get

s1 = 2 + 0 = 2 s2 = 1 + 1 = 2 s3 = 0 + 2 = 2

and the consensus ranking
{A1 � A2 � A2}

which is more intuitive than the previous result. Unfortunately, the Borda method
does not fulfill the majority or the IIA criterion. It is still a popular consensus method
because it can be easily implemented and understood. The main criticism voiced in
the literature is that it implicitly, like all positional consensus methods, assumes a
distance between the positions of a ranking.

A completely different approach is to frame the CM as an optimization problem
where we want to find a ranking that minimizes a function of the distances to all
of the individual rankings. Cook and Kress (1992) give a gentle introduction to this
line of thought and present a wide variety of possible distance functions. Central
to this is a notion of betweenness, expressed by pairwise comparisons. Here, we
will focus on the axiomatically motivated symmetric difference distance function3

originally proposed by Kemeny and Snell (1962), but the general procedure is the
same regardless of the distance function chosen. First, we pick a set C of admissable
consensus rankings. This could be the set of all linear or weak orderings of our
algorithms. Then, we solve the following optimization problem:

argmin
c∈C L(c) = argmin

c∈C

p∑

i=1

d(c, rπi )
�, � ≥ 1.

Setting � = 1 results in what is called a median consensus ranking and � = 2 results
in a mean consensus ranking.

Let’s revisit the ice cream example and see what the consensus is according to
Borda or using the symmetric difference.

show_relation(child1)

## [1] "{chocolate} > {vanilla} > {strawberry} > {cherry} > {blueberry}"

show_relation(child2)

## [1] "{vanilla} > {strawberry} > {cherry} > {blueberry} > {chocolate}"

show_relation(child3)

## [1] "{strawberry} > {cherry} > {blueberry} > {chocolate} > {vanilla}"

3 The symmetric difference counts the number of cases where Ai � A j is contained in one of the
relations but not the other.
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The Borda consensus among the three children is

ranks <- relation_ensemble(child1, child2, child3)
r_borda <- relation_consensus(ranks, "Borda")
show_relation(r_borda)

## [1] "{strawberry} > {vanilla} > {cherry} > {chocolate} > {blueberry}"

and the symmetric difference-based consensus among all linear orderings of the
flavors is

r_sd <- relation_consensus(ranks, "symdiff/L")
show_relation(r_sd)

## [1] "{vanilla} > {strawberry} > {cherry} > {blueberry} > {chocolate}"

We see that the Borda consensus falls into the “fruit-gang trap” and ranks the
strawberry flavor first. The symmetric difference-based consensus on the other hand
ranks vanilla higher than strawberry because in two out of three rankings, it ranks
higher than strawberry.

Unfortunately,we cannot give a general recommendation regarding the introduced
consensus methods as each method offers a different trade-off of the consensus
criteria (Saari and Merlin 2000). The symmetric difference combined with linear or
weak orderings meet the majority criterion and thus cannot meet the IIA criterion
simultaneously. However, on real data, as seen in the ice cream example, they rarely
result in rank reversals if algorithms are added or dropped. The Borda count method
does not fulfill either of these criteria. Saari and Merlin (2000) however showed that
both methods always rank the respective winner above the loser of the other method.

Finally, it is important to note that consensus rankings generally do not admit
nesting in a hierarchical structure. For example, separate consensus rankings could
be of interest for problem instances with specific features. While this certainly is a
valid and meaningful approach, one has to keep in mind that an overall consensus of
these separate consensus rankings does not necessarily have to equal the consensus
ranking directly generated based on all individual rankings.

5.4 Result Analysis

Many of theMachine Learning (ML) andDeepLearning (DL)methods are stochastic
in nature as there is randomness involved as a part of optimization or learning. Hence,
thesemethods could yield different results to the samedata for every run.To access the
performance of themodel, one single evaluationmay not be sufficient. To statistically
evaluate the variance of the obtained results, multiple repeats have to be performed
and the summary statistics of the performance measure are to be reported.

Generally, the performance of the ML and DLmethods can be analyzed consider-
ingmodel quality and runtime. Themodel quality is determined using the RootMean
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Squared Error (RMSE) for the regression models and the Mean Mis-Classification
Error (MMCE) for the classification models as discussed in Sect. 2.2.

Often, these quality metrics are compared among different algorithms to analyze
their performances.Hence, the tuners aim tominimize thesemetrics. As thesemetrics
can be affected by the algorithm’s and tuner’s stochastic nature, the experiment has to
be repeated for a specific number of times. It enables better estimation of the model
quality parameter using descriptive and Exploratory Data Analysis (EDA) tools.
Also, statistical inference is highly recommended in understanding the underlying
distribution of the model quality parameters.

EDA is a statistical methodology for analyzing data sets to summarize their main
characteristics (Tukey 1977; Chambers et al. 1983). The EDA tools are employed to
analyze and report the performance of theMLmodels. This includes both descriptive
and graphical tools. The numerical measures include reporting the mean, median,
best, worst, and standard deviation of the performance measures of the algorithms
obtained for certain number of repeats. They measure the central tendency and the
variability of the results. The graphical tools like histograms, and box and violin
plots provide information about the shape and the distribution of the performance
measures, respectively. These statistics are necessary, but are not always sufficient
to evaluate the performances. Kleijnen (1997), Bartz-Beielstein et al. (2010), Myers
et al. (2016),Montgomery (2017), andGramacy (2020) are good startingpoints.More
information about various techniques and best practices in analyzing the performance
measures can be found in Bartz-Beielstein et al. (2020b).

5.5 Statistical Inference

Statistical inferencemeans drawing conclusions frompartial information of a popula-
tion about thewhole population usingmethods based on data analysis and probability
theory. Statistical inference is recommended in making decisions about identifying
the best algorithm and tuner. The key ingredient of statistical inference is hypothesis
testing (Neyman 1950). As a part of pre-data analysis, the null hypothesis H0 can be
formulated as “There is no statistically significant difference between the compared
algorithms”, while the alternative hypothesis H1 states that there exists a statistically
significant difference between the compared algorithms. Hypothesis testing will be
outlined in Sect. 5.6.1.

The hypothesis testing can be classified into parametric and non-parametric tests.
For the case of parametric tests, the distributional assumptions have to be satisfied,
one of which is Normal, Independent and Identically Distributed (NIID) data. If
the distributional assumptions are not met, non-parametric tests are employed. For
the case of single pairwise comparison, the most commonly used parametric test is
the t-test (Sheskin 2003) and its non-parametric counter-part is the Wilcoxon-rank
sum test (Hart 2001). And in case of multiple comparisons, one commonly used
parametric test is the one-way ANOVA (Lindman 1974), while its non-parametric

http://dx.doi.org/10.1007/978-981-19-5170-1_2
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test counter-part is the Kruskal-Wallis rank sum test (Kruskal and Wallis 1952). The
following sections analyze parametric tests.

5.6 Definitions

5.6.1 Hypothesis Testing

Generally, hypothesis testing can be either one-sided or two-sided:
H0 : τ ≤ 0 versus H1 : τ > 0 (one-sided) or H0 : τ = 0 versus H1 : τ �= 0 (two-
sided), where H0 and H1 denote the corresponding hypotheses that will be explained
in this section. For the purpose of performance comparison of the two methods,
we consider a one-sided test and question whether method A is better than method
B. Let p(A) and p(B) represent the performance of method A and B, respec-
tively. If we consider a minimization problem, the smaller the values the bet-
ter the performance of the method. For method A to be better than method B,
p(A) < p(B) ⇔ p(B) − p(A) > 0 ⇔ τ > 0.

To state properties of the hypothesis, the symbol μ will be used for the mean,
whereas the symbol τ denotes the difference between two means. For example,
τ = μ1 − μ0 or variations of the mean, e.g., τ = μ + �.

Definition 5.2 (One-sided Hypothesis Test) The hypothesis is then formulated as

H0 : τ ≤ 0 versus H1 : τ > 0, (5.4)

where τ denotes the range of possible values.

Definition 5.3 (Test Statistic) The test statistic d(Y ) reflects the distance from H0

in the direction of H1. Assuming the data follow a normal distribution, i.e., Y ∼
N(μ0, σ

2), the test statistic reads

d(Y ) = √
n(Ȳ − μ0)/σ. (5.5)

In the remainder of this chapter, we assume that data are NIID.

Definition 5.4 (Cut-off Point: c1−α) The c1−α is a threshold value or the cut-off
point.

Definition 5.5 (Upper-tail of the StandardNormalDistribution: u1−α) u1−α denotes
the value of the normal distribution which cuts off the upper-tail probability of α.

Based on the test statistic from Eq.5.5, we can calculate the cut-off point
c1−α: d(Y ) = √

n(Ȳ − μ0)/σ = u1−α ⇔ Ȳ = μ0 + (u1−α)σ/
√
n = c1−α. When a

test statistic is observed beyond the cut-off point, d(Y ) > c1−α , we reject the H0 at
a significance level α. Otherwise the H0 is not rejected.

This hypothesis test can lead to two kinds of errors based on the decision taken.
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Fig. 5.1 Hypothesis test

Definition 5.6 (Type I and II Errors) They are the Type I and the Type II errors,
which are pre-specified before the experiment is carried out.

1. A Type I error occurs while incorrectly rejecting the null hypothesis when it is
true. The probability of committing a Type I error is called the significance level
and is denoted as α. In other words, α is the acceptable probability for Type I
error to occur, which is decided by the user. The Type I error can be represented
as shown in Fig. 5.1. α = PH0(d(Y ) > c1−α).

2. AType II error occurs while incorrectly rejecting the alternative hypothesis, when
it is true: β = PH1(d(Y ) ≤ c1−α).

The notation PH (y) represents the probabilistic assignments under a model, i.e.,
the probability of y under the hypothesis H . The power (1 − β) is the probability of
correctly rejecting the null hypothesis when it is false.

Definition 5.7 (Paired Samples) Two samples X1 and X2 are considered paired, if
there is a relation that assigns each element in X1 uniquely to one element in X2.

Example: Paired Samples

Therefore, we consider results from running deterministic optimization methods A
and B paired, if they are using the same starting points (the starting points can be
used for indexing the sample points). The starting points are randomly generated,
using the same seed for each sample.
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Example: Conjugate Gradient versus Nelder-Mead

We will consider the performance differences between two optimization methods.
To enable replicability, we have chosen two optimization methods (optimizers) that
are available “out of the box” in every R installation via the optim function. They
are described in the R help system as follows (R Core Team 2022):

1. Method Conjugate Gradient (CG) is a conjugated gradients method based
on Fletcher and Reeves (1964). Conjugate gradient methods will generally be
more fragile than the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) method,
but as they do not store a matrix they may be successful in much larger optimiza-
tion problems.

2. Method Nelder and Mead Simplex Algorithm (NM) uses only function values
and is robust but relatively slow (Nelder and Mead 1965). It will work reasonably
well for non-differentiable functions.

CG andNMwill be tested on the two-dimensional Rosenbrock function (Rosenbrock
1960). The function is defined by

f (x1, x2) = (1 − x1)
2 + 100(x2 − x21 )

2. (5.6)

It has a global minimum at (x1, x2) = (1, 1). To keep the discussion focused, assume
that results from n = 100 runs of each method are available, i.e., in total, 200 runs
were performed. Let yi, j denote the result of the j th repetition of the i th method,
i.e., the vector y1,· represents 100 results of the CG runs.

We will consider the performance differences d j = y1, j − y2, j , j = 1, . . . , n,
with corresponding mean d̄ = 9.02. Based on

Sd =
(∑n

j=1(d j − d)2

n − 1

)1/2

(5.7)

we can calculate the sample standard deviation of the differences as Sd = 30.73.
As d̄ is positive, we can assume that method NM is superior. We are interested to

see whether the difference in means is smaller or larger than μ0 and formulate the
test problem as

H0 : μ ≤ μ0 versus H1 : μ > μ0,

in our case: μ0 = 0. And, if H0 is rejected then it signifies that NM outperforms CG
for the given test function.

We will use the test statistic as defined in (5.5) which follows a standard normal
distribution if H0 is true (μ ≤ μ0). Then

P

(
Y − μ0

σ/
√
n

> u1−α

)
≤ α, otherwise P

(
Y − μ0

σ/
√
n

> u1−α

)
> α, (5.8)

where u1−α denotes the cut-off point; see Definition 5.5.
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The test T (α) results in rejecting the null hypothesis H0 if d(y) > u1−α and in
not rejecting H0 otherwise. For α = 0.025 and u1−α = 1.96, we get d(y) = (y −
μ0)/(σ/

√
n) = 2.93 > 1.96 = u1−α , i.e., H0 will be rejected.

A sample size of n = 100 was chosen without any statistical justification: it
remains unclear whether ten samples might be sufficient or whether one thousand
samples should have been used. The power calculation, which will be discussed next,
provides a proven statistical tool to determine adequate sample sizes for planned
experimentation.

5.6.2 Power

The power function that is used to calculate the power for several alternatives μ1 is
defined as

Definition 5.8 (Power Function)

Pow(μ1) = Pμ=μ1

(
Y − μ0

σ/
√
n

> u1−α

)
= 1 − 	

(
u1−α − μ1 − μ0

σ/
√
n

)
(5.9)

where μ1 = μ0 + � and � denotes the relevant difference.

In our example, we set up a one-sided test with H0 : μ0 = 0 and the following
parameters:

1. significance level: α = 0.025
2. beta (1-power): β = 1 − 0.8 = 0.2
3. relevant difference: � = 10
4. between-sample standard deviation: σ = 30.73.

The relationship between power and sample size is illustrated in Fig. 5.2.

5.6.3 p-Value

The p-value quantifies how strongly the data contradicts the null hypothesis, and
it allows others to make judgments based on the significance level of their choice
(Mayo 2018; Senn 2021).

Definition 5.9 (p -value) A p-value is the probability of observing an outcome as
extreme or more extreme than the observed outcome ȳ if the null hypothesis is true.
It is defined as the α′ value with
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Fig. 5.2 Power for n = 100 (black) and n = 200 (red) for varying μ1 values. This figure illustrates
that larger sample sizes result in higher power

d(Y ) > u1−α′ ⇔ α′ = 1 − 	
(√

n(ȳ − μ0)/σ
)
,

under the assumption that H0 is true.

If an effect τ measures the true difference between the performance of two methods
and y is a statistic used to measure the difference between methods, a one-sided
p-value can be defined as

Pτ=0(y ≥ ȳ) (5.10)

where ȳ is the observed value of the statistic if H0 is true. The p value can be used
for going beyond the simple decision reject or not reject.

Senn (2002) claims that p-values are a perfectly reasonable way for scientists to
communicate the results of a significance test, even when making decisions rather
than conclusions. Small p-values indicate that either H0 is not true or a very unlikely
event has occurred (Fisher 1925).

Example: CG versus NM continued

Considering the CG versus NM example (Sect. 5.6.1), the observed difference d̄ =
9.02, and the corresponding p-value of 0.0017 is obtained.

5.6.4 Effect Size

The effect size is an easy scale-free approach to quantifying the size of the perfor-
mance difference between the two methods.

Definition 5.10 (Effect size) The effect size is the standardized mean difference
between the two methods, say A and B (Cohen 1977):
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Cohen’s d = ȳA − ȳB
Sp

(5.11)

Sp =
√

(nB − 1)s2B + (nA − 1)s2A
nA + nB − 2

, (5.12)

where ȳA and ȳB is the sample mean of the method A and B, respectively. The Sp

is the pooled standard deviation, nA, nB are the sample size of each method, and
sA, sB are the standard deviation of each method. As a guideline, Cohen suggested
effect size as small (0.2), medium (0.5), and large (0.8) but with a strong caution to
the applicability in different fields.

Hedges and Olkin (1985) identified that Cohen’s d is biased and it slightly over-
estimates the standard deviation and introduced a correction measure as

Hedge’s g = 1 − 3

4(nA + nB) − 9
× Cohen’s d. (5.13)

Example: CG versus NM continued

Again, considering the CG versus NM example (Sect. 5.6.1), Cohen’s d and Hedge’s
g, which are the standardized mean difference between the two methods, can be
calculated using (5.11) and (5.13) as d = 0.415 and g = 0.4134, respectively. Both
values indicate that the observed mean difference is of a smaller magnitude.

5.6.5 Sample Size Determination and Power Calculations

Adequate sample size is essential for comparing algorithms. Even for deterministic
optimizers, it is recommended to perform several runs with varying starting points
instead of using results from one run of each algorithm. But “the more the merrier” is
not efficient in this context, because additional runs incur additional costs. Statistical
inference provides tools for tackling this trade-off between cost and effectiveness.

5.6.5.1 Five Basic Factors

Theusual point of view is that the sample size is the determined function of variability,
statistical method, power, and difference sought. We consider a one-sided test as
defined in Eq.5.4.

Definition 5.11 (Five basic factors) While discussing sample size requirements,
Senn (2021) introduced the following conventions regarding symbols:

α: the probability of a type I error, given that the null hypothesis is true.
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β: the probability of a type II error, given that the alternative hypothesis is true.
�: the difference sought. In most cases, one speaks of the “relevant difference” and

this in turn is defined “as the difference one would not like to miss”. Notation:
In hypothesis testing, � denotes a particular value within the range of possible
values τ .

σ : the presumed standard deviation of the outcome.
n: the number of runs of each method. Because two methods are compared; the

total number is 2 × n.

5.6.5.2 Sample Size

Based on the definition of the type II error rate for 1 − β for μ1, the sample size can
be calculated for the type II error rate, i.e.,

	

(
u1−α − μ1 − μ0

σ/
√
n

)
= β ⇔ n = σ 2

(μ1 − μ0)2
(u1−α − uβ)2 = σ 2

�2
(u1−α − uβ)2,

which gives an estimate of the required sample size n = n(α, β, σ, μ0, μ1) =
n(α, β, σ,�).

Any four factors from Definition 5.11 are enough to determine the fifth factor
uniquely. First, we consider the formula for sample size, n as a function of α, β, �,
and σ . For a one-sided test of size α, the (approximate) formula for sample size is

n ≈ 2 × (u1−α + u1−β)2σ 2/�2, (5.14)

where u1−α denotes the value of the normal distribution which cuts off the upper-tail
probability of α.

Hence, for the CG versus NM example (Sect. 5.6.1), if the relevant difference is
� = 10 then approximately 148 completing runs per method are required.

Example: Sample size determination

Compare two optimization methods, say A = CG and B = NM. Therefore, we set
up a one-sided test with the following parameters:

1. significance level: α = 0.05
2. beta (1-power): β = 1 − 0.8 = 0.2
3. relevant difference: � = 200
4. between-sample standard deviation: σ = 450.

We will use the function getSampleSize from the R package SPOT to determine
the sample size n. All calculations shown in this chapter are implemented in this
package.
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library("SPOT")
nsamples <- round(getSampleSize(
mu0 = 0, mu1 = 200,
alpha = 0.05, beta = 0.2,
sigma = 450,
alternative = "one.sided"

), 0)

Based on Eq. 5.14, approximately n = 63 completing runs per method are
required.

Although sample size calculation appears to be transparent and simple, there are
several issues with this approach that will be discussed in the following.

5.6.6 Issues

In this section, we will consider issues with sample size determination, with power
calculations, and with hypotheses and wrong conclusions from hypothesis testing.
Our presentation (and especially the examples) is based on the discussion in Senn
(2021).

Issues with sample size determination can be caused by the computation of the
standard deviation, σ : This computation is a chicken or egg dilemma, because the
between-sample standard deviationwill be unknownuntil the result of the experiment
is known. But the experiment must be planned before it can be run. Furthermore,
Eq. 5.14 is only an approximate formula, because it is based on the assumption that
the standard deviation is known. The experiments we use are based on using an
estimate obtained from the examined sample.

There is no universal standard for a relevant difference �. This creates another
problem in determining sample size, since significant differences are application-
dependent.

Errors can cause issues with sample size determination, because the levels of α

and β are relative: α is an actual value used to determine significance in analysis,
while β is a theoretical value used for planning (Senn 2021). Frequently, the error
values are chosen as α = 0.05 and β = 0.20. However, in some cases, the value of β
ought to be much lower, but if only a very small number of experiments are feasible,
a very low value of β might not be realistic. The same considerations are true for α,
because α and β cannot be reduced simultaneously without increasing the sample
size.

In practice, sample size calculation might be flawed. For example, n = 10 or
n = 100 are popular sample sizes, but they are often chosenwithout any justification.
Some authors justify their selection by claiming that “this is done by everyone”.



5 Ranking and Result Aggregation 141

In some situations, there is enough knowledge to plan an experiment, i.e., the
number of experiments to be performed is known. Nuclear weapons tests are an
extreme example of this situation.

Furthermore, Senn (2021) claims that the sample size calculation can be “an
excuse for a sample size and not a reason”. In practice, there is a usually undesirable
tendency to “adjust” certain factors, notably the difference sought and sometimes
the power, in light of practical sample size requirements.

Tip: Sample Size Determination

Perform pre-experimental runs to compute the (approximate) sample size before the
full experiment is started.

In addition to issues with sample size determination, also issues with power cal-
culations might arise. The fact that a sample size has been chosen which seemingly
has 80% power does not guarantee that there is an 80% chance that there is an effect
(alternative H1 is true) (Senn 2021). Even if the whole experimental setup and pro-
cess are correct, external failures can happen and that is outside of the experimenter’s
control: The methods or the algorithm may not work. Importantly, if an algorithm
does not work we must recognize this; see the example in Sect. 5.8.2.1. But even if
the algorithm is successful, it may not produce a relevant difference. Or, looking at
another extreme, the algorithm might be better than planned for—so the sample size
could have been chosen smaller. In addition, experimental errors might occur that
are not covered by the assumptions made for the power (sample size) calculation.
The calculations are made under the assumption that the experiment is performed
correctly. Or, as Senn (2021) states: Sample size calculation does not allow for “acts
of God” or dishonest or incompetent investigators. Thus, although we can affect the
probability of success by adjusting the sample size, we cannot fix it.

Finally, there are issues with hypotheses and wrong conclusions based on hypoth-
esis testing. Selecting the correct hypothesis pair, e.g., H0 : τ ≤ 0 versus H1 : τ > 0
(one-sided) or H0 : τ = 0 versus H1 : τ �= 0 (two-sided) is not always obvious.

In the context of clinical testing, Senn (2021) states that the following statement
is a surprisingly widespread piece of nonsense:

If we have performed a power calculation, then upon rejecting the null hypothesis, not only
may we conclude that the treatment is effective but also that it has a clinically relevant effect.

Consider, for example, the comparison of an optimization method, A with a
second one, say method B, based on a two-sided test. Let τ be the true difference in
performance (A versus B). We then write the two hypotheses,

H0 : τ = 0 versus H1 : τ �= 0. (5.15)
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Fig. 5.3 Power as a function of the relevant difference � for a two-parallel-group experiment
(black = 40, red = 80, and green = 160 runs). If the relevant difference � is 200, n = 80 runs per
method are needed for 80% power

By rejecting the null hypothesis, we are in favor of the alternative, H1, which states
that there is a non-zero difference. The sign of this difference might indicate whether
A is superior or inferior to B.

Replacing Eq.5.15 with

H0 : τ = 0 versus H1 : τ ≥ � (5.16)

would imply that we know one algorithm is better than the other before the exper-
iments are performed. But this is usually not known prior to the experiment—the
whole point of the experiment is to determine which algorithm performs better.
Therefore, we will consider a one-sided test as specified in Eq. 5.4. This procedure
will be exemplified in Sect. 5.8.

Wehave highlighted some important issueswith sample size determination, power
calculations, and hypotheses tests. Senn (2021) mentions many more, and the reader
is referred to his discussion.

Tips

Plotting the power function for an experiment is recommended. This is illustrated in
Fig. 5.3.

Last but not the least, issues with the “large n problem”, i.e., the topic “large
versus small samples”, should be considered. Senn (2021), Sect. 13.2.8 states:

1. other things being equal, significant results are more indicative of efficacy if
obtained from large experiments rather than small experiments.



5 Ranking and Result Aggregation 143

2. But consider: if the sample size is increased, not only is the power of finding
a relevant difference, �, increased, but the smallest detectable difference also
decreases.

5.7 Severity

5.7.1 Motivation

Severity has been proposed as an approach to tackle the issues discussed in Sect. 5.6.6
by philosopher of science Mayo (1996). To explain the concept of severity, we start
with an example that was taken from (Senn 2021).

Example: High Power

Consider an algorithm comparison using a one-sided test with α = 0.025 but with a
very high power, say 99%, for a target relevant difference of � = 200. The standard
deviation of the differences in themean is taken to be 450. Note, except for drastically
reducing the error of the second kind from β = 0.2 down to β = 0.01, this example
is similar to the Example “Sample Size Determination” in Sect. 5.6.5. A one-sided
hypothesis test as specified in Eq. 5.4 with the following parameters is performed:

1. significance level: α = 0.025
2. power: 1 − β = 0.99
3. relevant difference: � = 200
4. between-sample standard deviation: σ = 450.

A standard power calculation, see Eq. 5.14, suggests n ≈ 186 samples for each
configuration, which we round up to 2 × 200 = 400 in total. This value gives a
standard error for the difference of 450 × √

2/200 = 45.
We run the experiments (assuming unpaired, i.e., independent samples) and the

result is significant, i.e., we have observed a difference of ȳ = 90.We get the p-value
0.0231.

How canwe interpret the results from this experiment, e.g., the p-value?Although
the p-value of 0.0231 is statistically significant, i.e., p-value < α, we cannot con-
clude that the H1 is true. The probability of occurrence of a type I error has to be
acknowledged. The situation is shown in Fig. 5.4. Observing a ȳ = 90 is more likely
under H0 than under H1. This is evident by comparing the height of the density curve
at ȳ = 90 both under the H0 and H1, respectively. Hence, this is more likely to be
the case of a type I error. Although the power is relatively high (1 − β = 0.99), it
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Fig. 5.4 Severity (red), type I error rate (gray), and power (blue). Since ȳ is larger than c1−α , the
null hypothesis is rejected

would be an error to claim that the experiment has an effect � = μ1 − μ0 = 200.4

There are two reasons:

1. This test did not make extensive use of ȳ, the actual difference observed. The
actual difference observed is only used to calculate the test statistic and to decide
whether the null hypothesis should be rejected.

2. Going beyond the simple decision reject or not reject, the p value can be used.
The actual difference observed, ȳ = 90, is closer to 0 than to 200. Because 90 is
farther away from 200 than from 0, this is far from good evidence that the true
difference is as large as the relevant difference of 200.

Senn (2021) proposed ways for solving this problem, e.g., using a so called point-
estimate of the true difference together with associated confidence limits, or using
an irrelevant difference approach, or using severity.

5.7.2 Severity: Definition

Severity is a measure of the plausibility of a result which considers the decision and
the data: after the decision is made, the severity of rejecting or not rejecting the null
hypothesis can be calculated. It uses post-data information and provides means for
answering the question:

How can we ensure that the results are not only statistically but also scientifically relevant?

The concept of Severity was introduced by Mayo and Spanos (2006) (see also Mayo
2018):

4 Note: μ0 + � = μ1.
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Table 5.1 Power (1 − β), significance level (α), p-value, and severity. PH0 denotes the probability
under the assumption that H0 is true, whereas PH1 denotes the probability under the assumption
that H1 is true

1 − β α p-value Severity

PH1 (Y > c1−α) PH0 (Y > c1−α) PH0 (Y > ȳ) Snr : PH1 (Y > ȳ)

Sr : PH1 (Y ≤ ȳ)

PH1 (d(Y ) > u1−α) PH0 (d(Y ) > u1−α) PH0 (d(Y ) > d(ȳ)) Snr :
PH1 (d(Y ) > d(ȳ))

Sr : PH1 (d(Y ) ≤ d(ȳ))

The result that hypothesis H is not rejected is severe only if it is very unlikely that this result
will also occur if H is false.

Severity offers a meta-statistical principle for evaluating the proposed statistical
conclusions. It shows how well-tested (not how likely) hypotheses are. It is therefore
an attribute of the entire test procedure. The severity of the test and the resulting
outcome can be evaluated.

Definition 5.12 (Severity) Severity is defined separately for the non-rejection (Snr )
and the rejection (Sr ) of the null hypothesis as in (5.17).

Snr = PH1(d(Y ) > d(y))

Sr = PH1(d(Y ) ≤ d(y)). (5.17)

The Snr values increasemonotonically from 0 to 1 as a function of τ . The Sr values
decrease monotonically from 1 to 0 as a function of τ . The closer the value is to 1,
the more reliable is the decision made with the hypothesis test. The key difference
between power and severity is that severity depends on the data and the test statistic,
i.e., d(y) instead of c1−α .

The severity is an analogous probability to Eq. 5.10 that considers non-zero τ

values. The severity of rejection, which considers values in the other direction, y ≤ ȳ
is calculated as

Sr (τ
′) = Pτ=τ ′(y ≤ ȳ), (5.18)

if H0 is rejected and Snr (τ ′) = Pτ=τ ′(y ≥ ȳ), otherwise. Table 5.1 shows the relations
between power (1 − β), significance level (α), p-value, and severity.

Example: High Power (Continued)

Figure 5.5 plots the severity for the given example against every possible value of
the true difference in the performance τ (Senn 2021).

Labeled on the graph are values of τ = ȳ, the observed difference, for which the
severity is 0.5, and τ = �, the value used for planning. The severity of rejecting H0

is only 0.0075 for this value. Figure 5.5 exhibits that τ > 200 has a very low severity.
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Fig. 5.5 Severity of rejecting H0, SR as a function of � = μ1 − μ0. SR(0) = 1 − p

The p-value, here 0.0231, is smaller than α = 0.025. Note, in case of rejection
H0, severity is 1 − p for � = μ1 − μ0 = 0. The severity of not rejecting the null
hypothesis is the same as the p-value for � = 0.

Example: Conjugate Gradient versus Nelder-Mead (Continued)

Let us now revisit the CG versus NM example (Sect. 5.6.1) and calculate the severity.
Given the observed difference 9.02 and sample size n=100, the decision based on the
p-value of 0.0017 is to reject H0. Considering a target relevant difference of� = 10,
the severity of rejecting H0 is 0.37 and is shown in the left panel in Fig. 5.6. The
right panel in Fig. 5.6 shows the severity of rejecting H0 as a function of τ . Based
on the result of the hypothesis test for the given data, NM seems to outperform CG.
And, claiming that the true difference is as large as or larger than 10 has a very low
severity, whereas differences smaller than 7 are well supported by severity.

5.7.3 Two Examples

We will use two illustrative examples for severity calculations that are based on the
discussions in Mayo (2018), Bönisch and Inderst (2020), and Senn (2021). In each
example, 100 samples from a N(μ, σ 2)-distributed random variables are drawn,
but with different means. The first example represents a situation in which the true
difference is small compared to the variance in the data, whereas the second example
represents a situation in which the difference is relatively large. The first example
uses the sample mean μ1 = 1e − 6 (data set I), the second sample μ2 = 3 (data set
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Fig. 5.6 Left: Severity of rejecting H0 (red), power (blue) for a target relevant difference � = 10.
Right: Severity of rejecting H0 as a function of τ
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Fig. 5.7 Data sets I and II. Histograms showing artificial data. Left: mean = 1e-6; right: mean =
3. Standard deviation σ = 10 in both cases

II). The same standard deviation (σ = 10) is used in both cases. Histograms of the
data are shown in Fig. 5.7.

In both examples, a one-sided test is performed as defined in (5.4) with the fol-
lowing parameters:

1. significance level: α = 0.05
2. power: 1 − β = 0.8
3. relevant difference: � = 2.5
4. between-sample standard deviation: σ = 10.
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Fig. 5.8 Severity of not rejecting the null for a target relevant difference � = 2.5. Right: Severity
of not rejecting H0 as a function of τ

Example: Data set I: Severity of not rejecting the null hypothesis

First, using data set I (100 samples from a N(μ1, σ
2) distributed random variable,

with μ1 = 1e − 6 and σ = 10), the severity of not rejecting the null hypothesis
is analyzed. Assume, the value ȳ = 1.0889 was observed, i.e., a statistically not
significant difference (p-value 0.1381046 > 0.05) is observed. But it would be a
mistake to conclude from this result that the size of the difference is zero.

Figure 5.8 illustrates this situation by applying the concept of severity. The right
panel in Fig. 5.8 provides a graphic depiction of answers to the following question
for different values of τ : if the actual difference is at least τ , what is the probability
of the observed estimate being higher than the actually observed value of ȳ = 1.089?

The greater this probability, the stronger the observed evidence is against that
particular τ value. For two numbers, the answer is already known: for τ = 0, namely
0.14, which is the p-value, and for τ = ȳ, which is 50%. The p-value indicates that
the null hypothesis of “no difference” cannot be rejected for α = 0.05.

Because of the high variance in the data, the histogram is relatively broad (see
the left panel in Fig. 5.7). This is now directly reflected in the assessment of other
possible τ values (other initial hypotheses for a difference). For example, the severity
of the evidence only crosses the threshold of 80% at a τ -value of approximately 2.
This can be seen on the vertical axis in the right panel in Fig. 5.8. Therefore, if
the actual difference was at least 2, then there would be a probability of 80% of
estimating a value higher than the observed value 1.09. Even if the null hypothesis
is not rejected, it cannot be concluded that the magnitude of the difference is zero.
With high severity (80%), it can be concluded that the differences larger than 2 are
unlikely. The right panel in Fig. 5.8 shows the severity of evidence (vertical axis) for
all initial hypotheses (horizontal axis).
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Table 5.2 Data set I: result analysis

p-value Decision Power Cohen’s d Hedge’s g Severity

0.14 H0 not
rejected

0.8037649 0.1212286 0.1212286 � ≥ 2 are
well supported

The result statistic is presented in Table 5.2. The effect size suggests that the
difference is of a smaller magnitude.

Example: Data set II: Severity of rejecting the null hypothesis

Data set II, with μ2 = 3 and σ = 10, is used to analyze the severity of rejecting the
null hypothesis, i.e., the statistically significant estimate of ȳ = 2.62, resulting in the
null hypothesis (of “there is no difference”) being rejected, is considered.

Asserting this is evidence for a difference of exactly ȳ = 2.62 is not justified.
Besides the null hypothesis, no further hypotheses were tested, e.g., “is the difference
exactly 2.62?” or “is the difference at least 2.62?”. Statistically, it was shown that
there is a very low probability that there is no positive difference. So the evidence
strongly (“severely”) argues against the lack of an effect.

In the following, the test result is used to evaluate further hypotheses, e.g., that
the difference is “not higher than at most τ ,” where τ represents a possible difference
of, say, ȳ = 4 or ȳ = 5. The central question in this context is: How strongly does
the experimental evidence speak against such an alternative null hypothesis, i.e., a
difference of at most τ? This situation is comparable to the question of whether the
null hypothesis can be rejected with sufficient certainty. This question can only be
answered with a probability of error that can be estimated.

The following results were inspired by Bönisch and Inderst (2020), who present a
similar discussion in the context of “damage estimation”. For τ = 0, the probability
that the observed estimate is less than the observed value ȳ = 2.62 is 1 − p = 99.56
%. Applying these results to other hypotheses about the value of τ leads to results
shown in Fig. 5.9: For example, if τ = 1.75, the probability of observing a value
smaller than ȳ is 80.84%. For τ = 2.5, the probability would decrease to 54.85%.
Consider—similar to the power value of 0.8—an 80% threshold as a minimum
requirement for severity, then an estimate of ȳ = 2.62 that there is a sufficient severity
against a difference up to τ = 1.75 is obtained (Table5.3).
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Fig. 5.9 Severity of rejecting H0 (red), power (blue), and error (gray) for a target relevant difference
� = 2.5. Right: Severity of rejecting H0 as a function of τ

Table 5.3 Data set II: result analysis

p-value Decision Power Cohen’s d Hedge’s g Severity

0 H0 rejected 0.8037649 0.2737213 0.2737213 � ≤ 2 are
well supported

5.7.4 Discussion of the 80% Threshold

Although a threshold of 80% was used in Fig. 5.9, it remains unclear at which
threshold the level should be set. Demanding a severity of 90% has the consequence
that even the assumption of a difference of at least 1.9 is not supported. Given that
severity should also take into account domain-specific knowledge, a general value
cannot be recommended. Visualizations such as Fig. 5.9 can help to get objective and
rational results.

5.7.5 A Comment on the Normality Assumption

Wediscussed the extended classical hypothesis testingmechanismwithMayo’s error
statistics. Central tool in error statistics is severity, which allows a post-data analysis.
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Severity can be applied to inferential statistics, no matter what the underlying
distribution is Spanos (1999). We have discussed the normal distribution, because
we will apply severity analysis to benchmarking (Sect. 5.8). In this context, the
normality assumption holds, because most of the examples in this chapter use 50 or
even more samples. The normality assumption is sometimes misunderstood: it does
not require the population to resemble a normal distribution. It requires the sampling
distribution of the mean difference should be approximately normal. In most cases,
the central limit theoremwill impart normality to the (hypothetical) distribution. This
happens even to moderate n values, when the underlying population is not extremely
asymmetric, e.g., caused by extreme outliers.

5.8 Severity: Application in Benchmarking

Now thatwehave the statistical tools available, i.e., power analysis plus error statistics
(severity), we can evaluate their adequacy for scenarios in algorithm benchmarking.

The following experiments demonstrate how to perform a comparison of two
algorithms. Our goal is not to provide a full comparison of many algorithms on
many problems, i.e., MAMP, but to highlight important insights gained by severity.
Therefore, two algorithms and three optimization problems were chosen. To cover
the most important scenarios, three independent MASP studies will be performed.
Each study compares two algorithms, say A and B, on one problem instance.

The function makeMoreFunList from the R package SPOTMisc generates
a list of functions presented in More et al. (1981), which is one of the most cited
benchmark suites in optimization with more than 2000 citations. This list can be
passed to the runOptim function, which performs the optimization. runOptim
uses the arguments from Table 5.4.

We will compare the optimization methods CG and NM on the Rosenbrock, the
Freudenstein and Roth, and Powell’s Badly Scaled test function that were defined in
More et al. (1981).

Table 5.4 runOptim arguments

Parameter Description Default value

fl Function list

method The method used by optim: “Nelder-Mead”, “BFGS”,
“CG”, “L-BFGS-B”, “SANN”, or “Brent”.

“Nelder-Mead”

n Repeats. If n > 1, different start points (randomized) will
be used

2

k Subset of benchmark functions All implemented
functions

verbosity Level of information to be shown 0
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5.8.1 Experiment I: Rosenbrock

5.8.1.1 Pre-experimental Planning

In our first experiment, we will use the Rosenbrock function; see Eq.5.6. This is
the first function in More et al. (1981)s study, so we will pass the argument k = 1
to the runopt() function. To estimate the number of function evaluations, a few
pre-experimental runs of the algorithms are performed. These pre-experimental runs
are also necessary for testing numerical instabilities, expected behavior, and correct
implementations. In our case, n = 20 pre-experimental runs were performed.

library("SPOT")
set.seed(1)
k <- 1 # More function no. 1
n0 <- 20 # Pre-experimental runs
moreFl <- makeMoreFunList()
resCG0 <- runOptim(
fl = moreFl,
method = "CG",
n = n0,
k = k

)
resNM0 <- runOptim(
fl = moreFl,
method = "Nelder-Mead",
n = n0,
k = k

)

A data.frame with 20 observations is available for each algorithm, e.g., for CG:

str(resCG0)

## ’data.frame’: 20 obs. of 3 variables:
## $ f: num 1 1 1 1 1 1 1 1 1 1 ...
## $ r: num 1 2 3 4 5 6 7 8 9 10 ...
## $ y: num 0.10644 0.0686 0.00577 0.08434 3.65499 ...

Looking at the summary of the results is strongly recommended. R’s summary
is the first choice.

summary(resCG0$y)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000939 0.068510 0.080510 0.549287 0.119892 3.654986

summary(resNM0$y)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.900e-08 5.740e-07 1.439e-06 1.622e-04 3.233e-06 3.206e-03
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The summaries indicate that NM is superior and that CG has some outliers. A
graphical inspection is shown in Fig. 5.10. Taking care of extreme outliers is recom-
mended in further analysis.

We are interested in the mean difference in the methods’ performances. The pre-
experimental runs indicate that the difference is ȳ = 0.55. Because this value is
positive, we can assume that method NM is superior. The standard deviation is sd =
1.14. Based on Eq. 5.14, and with α = 0.05, β = 0.2, and� = 0.5, we can determine
the number of runs for the full experiment with the getSampleSize() function.

For a relevant difference of 0.5, approximately 65 completing runs per algorithm
are required. Figure 5.11 illustrates the situation for various � and three n values.
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Fig. 5.10 Results from CG on Rosenbrock. Histogram to inspect outliers
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Fig. 5.11 Rosenbrock (function 1). Power as a function of the relevant difference � for a two-
parallel-group experiment (black = 40, red = 80, and green = 160 runs). If the relevant difference
is 0.5, n = 160 runs per algorithm are needed for 80% power
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Although we do not know any “true” relevant difference for artificial (dimension
less) test functions, we consider the distance � = 0.5 as relevant and, to play safe,
choose n = 80 algorithm runs for the full experiment.

5.8.1.2 Performing the Experiments on Rosenbrock

The full experiments can be conducted as follows. The 20 results from the pre-
experimental runs will be “recycled”, only 60 additional runs must be performed.
How to combine existing results with new ones was discussed in Sect. 4.5.3. The
corresponding code is similar to the code that was used for the pre-experimental
experiments in Sect. 5.8.1.1.

summary(resCG$y)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000053 0.037231 0.079467 0.681190 0.107427 4.332730

summary(resNM$y)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.000e-09 1.430e-07 8.260e-07 8.207e-05 2.686e-06 3.206e-03

Figure 5.12 shows a histogram of the results.
The numerical summary of these results is

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000052 0.037222 0.079464 0.681108 0.107421 4.332730
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Fig. 5.12 Rosenbrock: Difference between CG and NM results (y = CG - NM)

http://dx.doi.org/10.1007/978-981-19-5170-1_4
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Table 5.5 Experiment I: result analysis

p-value Decision Power Cohen’s d Hedge’s g Severity

0 H0 rejected 0.961397 0.7348167 0.7313231 � ≤ 0.5 are
well supported
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Fig. 5.13 Rosenbrock. Severity for rejecting H0. Given data from the experiment, claiming that
the true difference is as large or larger than 1.0 has a very low severity, whereas differences as large
as 0.5 are well supported by severity

The sample mean of the differences is ȳ = 0.68. Obviously, NM is superior
and there is a difference in performance. The question remains: how large is this
difference? To answer this question, we will analyze results from these runs with
severity.

The summary result statistic is presented in Table 5.5. The effect size suggests that
the difference is of medium magnitude. The corresponding severity plot is shown in
Fig. 5.13.

5.8.1.3 Discussion

Results indicate that the NMmethod is superior. Beyond the classical analysis based
on EDA tools and hypothesis tests, severity allows further conclusions: It shows that
performance differences smaller than 0.5 are well supported. Although the situation
is clear, the final choice is up to the experimenter. They might include additional
criteria such as run time, costs, and robustness in their final decision. And last but
not the least: The question of whether a difference of 0.5 is of practical relevance is
highly dependent on external factors.
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5.8.2 Experiment II: Freudenstein-Roth

The two-dimensional Freudenstein and Roth Test Function (Freudenstein and Roth
1963), which is number k = 2 in More et al. (1981)s list, will be considered next.
The function is defined as

f (x1, x2) = (x1 − 13 + ((5 − x2)x2 − 2)x2)
2 + (x1 − 29 + ((1 + x2)x2 − 14)x2)

2.

5.8.2.1 Pre-experimental Planning: Freudenstein and Roth

Similar to the study of the Rosenbrock function, 20 pre-experimental runs are per-
formed. We take a look at the individual results.

summary(resCG0$y)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.3928 19.6811 77.9517 57.7497 81.2694 86.3797

summary(resNM0$y)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 48.98 48.98 48.98 48.98 48.98 48.98

The summaries indicate that NM is not able to find improved values. A floor effect
occurred (Bartz-Beielstein 2006). The experiment is too difficult for NM. No further
experiments will be performed, because NM is not able to find improvements. A
re-parametrization of the NM (via hyperparameter tuning) is recommended, before
additional experiments are performed.

Although CG appears to be superior and can find values as small as 0.3928, it has
problems with outliers as can be seen in Fig. 5.14.

5.8.2.2 Discussion

An additional, experimental performance analysis (that focuses on the mean) is not
recommended in this case, because the result is clear: CG outperforms NM.

5.8.3 Experiment III: Powell’s Badly Scaled Test Function

Powell’s two-dimensional Badly Scaled Test function, which is number k = 3 in
More et al. (1981)s list, will be considered next.
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Fig. 5.14 Results from method CG on Freudenstein Roth. Histogram to inspect outliers

The function is defined as

f (x1, x2) = f 21 + f 22

with
f1 = 1e4x1x2 − 1 and f2 = exp(−x1) + exp(−x2) − 1.0001.

5.8.3.1 Pre-experimental Planning: Powell’s Badly Scaled Test
Function

First, we take a look at the individual results. The summaries do not clearly indicate
which algorithm is superior. A graphical inspection is shown in Fig. 5.15. Both
methods are able to find improvements, but both are affected by outliers. The pre-
experimental runs indicate that the difference is ȳ = −0.21. Because this value is
negative,wewill continue the analysis under the assumption (hypothesis) thatmethod
CG is superior.

We are interested in the mean difference in the algorithms’ performances.
The standard deviation is sd = 1.5. Based on Eq. 5.14, and with α = 0.05, β =

0.2, and � = 0.5, we can determine the number of runs for the full experiment.
For a relevant difference of 0.5, approximately 112 completing runs per algorithm

are required. Figure 5.16 illustrates the situation for various � and three n values.
Although we do not know any “true” relevant difference for artificial (dimension

less) test functions, we consider a distance � = 0.5 as relevant and choose n = 120
algorithm runs for the full experiment.
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Fig. 5.15 Results from CG and NM on Powell’s badly scaled test function. Histograms to inspect
outliers
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Fig. 5.16 Powell’s badly scaled test function: Power as a function of the relevant difference �

for a two-parallel-group experiment (black = 40, red =80, and green = 120 runs). If the relevant
difference is 0.5, n = 120 runs per algorithm are needed for 80% power

5.8.3.2 Performing the Experiments: Powell’s Badly Scaled Test
Function

The full experiments can be conducted as follows. Results from the pre-experimental
runs will be “recycled”, only 100 additional runs must be performed.

A graphical inspection is shown in Fig. 5.17, which shows a histogram of the
results. As expected, both algorithms are able to find improvements, but are affected
by outliers.

Figure 5.18 shows a histogram of the differences. The numerical summary of
these results is
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## [1] "CG"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.003772 0.094777 0.323066 0.998882 0.710185 22.565737
## [1] "NM"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000026 0.110220 0.329906 0.757107 1.040480 8.932574
## [1] "diff"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -8.81704 -0.25991 -0.02496 0.24177 0.36554 21.58666
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Fig. 5.17 Results from CG and NM on Powell’s badly scaled test function (n = 120). Histograms
to inspect outliers
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Fig. 5.18 Powell’s badly scaled test function: Difference between CG and NM results (y = CG–
NM)
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Table 5.6 Experiment III: Result Analysis

p-value Decision Power Cohen’s d Hedge’s g Severity

0.17 H0 not
rejected

0.6274005 0.1184404 0.1180668 � ≥ 0.5 are
well supported
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Fig. 5.19 Powell’s badly scaled test function: Left: Severity of not rejecting H0 (red), power (blue)
for a target relevant difference of � = 0.5. Right: Severity of not rejecting H0 as a function of �

The summary result statistic is presented in Table 5.6. The effect size suggests
that the difference is of a smaller magnitude. For the chosen � =0.5, the severity
value is at 0.85 and thus it strongly supports the decision of not rejecting the H0.

5.8.3.3 Discussion

Results from these runs can be analyzed using severity. The sample mean of the
differences is ȳ = 0.24, so method NM might be superior. However, the median is
negative. It is not obvious, which method is superior. The corresponding severity
plot is shown in Fig. 5.19.

5.9 Summary and Discussion

Simply proving that there is a difference between the performance of the methods,
e.g., by performing a one-sided test, is in many situations not sufficient: one needs
to show that this difference is relevant. Severity was introduced as one way to tackle
this problem.
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A research question is necessary, e.g., if we are facing a real-world problem that
has similar structural properties (discovered by landscape analysis; see Mersmann
et al. 2011) as the artificial test function. Then, it might be interesting to see whether a
gradient-based method (CG) is superior compared to a gradient-free method (NM).
Even when theoretical results are available, they should be validated (numerical
instabilities, dependencies on starting points, etc.).

Finally, at the end of this chapter, we may ask: Why severity? An optimization
algorithm, e.g.,A+, has achieved a high success ratewith a test problem: the optimum
can be determined in 96.3% of the cases. Consider the following situations:

• Let us first assume that an algorithm, say A−, which has no domain knowledge,
only achieves such a high success rate asA+ in very rare exceptional cases. Is this
score a good indication thatA+ is well suited to solve this problem? In this case,
based on the test results of A+ and A−, the conclusion would be justified.

• Next, suppose that AlgorithmA−, which does not use domain knowledge, would
have no problem having a score of up to 96%.Again, we can ask the same question:
is this 96.3% score good evidence that A+ is well suited for this test problem?
Based on information about the results ofA+ andA−, in this case the conclusion
would rather not be justified.

The severity provides a meta-statistical concept to identify these effects, which are
also known in the literature as floor and ceiling effects (Cohen 1995).
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Chapter 6
Hyperparameter Tuning and
Optimization Applications

Thomas Bartz-Beielstein

Abstract This chapter reflects on advantages and sense of use of Hyperparameter
Tuning (HPT) and its disadvantages. In particular it shows how important it is, to
keep the human in the loop, even if HPT works perfectly. The chapter presents
a collection of HPT studies. First, HPT applications in Machine Learning (ML)
and Deep Learning (DL) are described. A special focus lies on automated ML,
neural architecture search, and combined approaches. HPT software is presented.
Finally, model based approaches, especially applications with Sequential Parameter
Optimization Toolbox (SPOT) are discussed.

6.1 Surrogate Optimization

Starting in the 1960s, Response Surface Methodology (RSM) and related Design of
Experiments (DOE) methods were transferred from the engineering domain (e.g.,
from physics, agriculture, chemistry, and aerospace) to computer science (Mont-
gomery 2017). With the increasing computational power, computer simulations,
scientific computing and computational statistics gained importance (Gentle et al.
2004; Strang 2007). Kleijnen (1987) summarizes these ideas and methods in a very
comprehensible manner for simulation practitioners. After computer simulations
replaced expensive lab experiments, these computer simulations themselves were
substituted by even cheaper computer models: surrogate models or in short, surro-
gates, that imitate complex numerical calculations, were developed. Kriging surro-
gates (or Gaussian Processs (GPs) aka Bayesian Optimization (BO)), that gleaned
ideas fromcomputer experiments in geostatistics, enjoywide applicability, especially
in domains where predictions are required. Today, GP models are used as powerful
predictors for all sorts of applications in engineering and ML. GP methods replaced
classical regression methods in many domains. Santner et al. (2003), Forrester et al.
(2008b), and Gramacy (2020) wrote groundbreaking works in this field. In global
optimization, Efficient Global Optimization (EGO) became a very popular approach

T. Bartz-Beielstein (B)
Institute for Data Science, Engineering and Analytics, TH Köln, Cologne, Germany
e-mail: thomas.bartz-beielstein@th-koeln.de

© The Author(s) 2023
E. Bartz et al. (eds.), Hyperparameter Tuning for Machine and Deep Learning with R,
https://doi.org/10.1007/978-981-19-5170-1_6

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-5170-1_6&domain=pdf
mailto:thomas.bartz-beielstein@th-koeln.de
https://doi.org/10.1007/978-981-19-5170-1_6


166 T. Bartz-Beielstein

(Schonlau 1997; Jones et al. 1998). Emmerich (2005) showed that surrogates can
significantly accelerate evolutionary multi-objective optimization algorithms in the
presence of time consuming evaluations.

SPOT was one of the first approaches that combined classical regression, surro-
gate optimization (Kriging), and, especially for non-continuous variables, decision
trees, for the optimization of algorithm (hyper-)parameters (Bartz-Beielstein et al.
2004, 2005). Applied in hyperparameter optimization in Evolutionary Computation
(EC), see, e.g., Lobo et al. (2007), the collection Experimental Methods for the Anal-
ysis of Optimization Algorithms includes important publications in this field (Bartz-
Beielstein et al., 2010). For example, the following contributions paved the way for
important developments in HPT:

• Ridge and Kudenko (2010) describe the classical DOE approach, e.g., how to set
up experimental designs, for algorithm benchmarking.

• The contribution Sequential Model-Based Optimization by Hutter et al. (2010b)
laid the foundation for surrogate optimization inML and resulted in software tools
such as Sequential Model-Based Optimization for General Algorithm Configura-
tion (SMAC) (Hutter et al. 2010a).

• Iterative Racing (IRACE), which is a generalization of the Iterated F-race method,
is another popular tool for the automatic configuration of optimization algorithms
(Birattari et al. 2009).

Surrogate optimization is the de facto standard for complex optimization problems,
especially for continuous variables. Bartz-Beielstein and Zaefferer (2017) presented
methods for continuous and discrete optimization based on Kriging.While surrogate
models are well-established in the continuous optimization domain, they are less
frequently applied to more complex search spaces with discrete or combinatorial
solution representations (Zaefferer et al. 2014). Zaefferer (2018) Ph.D. thesis fills
this gap, showing how surrogate models like Kriging can be extended to arbitrary
problem types, if measures of similarity between candidate solutions are available.
Today, surrogate optimization is applied in the engineering domain as well as in
computer science, e.g., for HPT.

Example: Mixed-Discrete Problems

Many real-world optimization problems consider the optimization of ordinal inte-
gers, categorical integers, binary variables, permutations, strings, trees, or graphs
structures in general. These real-world problems pose complex search spaces which
require a deep understanding of the underlying solution representations.

Some of them, for example integers, are more suitable to be treated by classic
optimization algorithms. Others, such as trees, have to be handled by specifically
developed optimization algorithms. In general, solving these kinds of problems usu-
ally necessitates a significant number of objective function evaluations. However, in
many engineering problems, a single evaluation is based on either on experimental
or numerical analysis. This causes significant costs with respect to time or resources.



6 Hyperparameter Tuning and Optimization Applications 167

Surrogate Model Based Optimization (SMBO) aims to handle the complex vari-
able structures and the limited budget simultaneously. Sequential Parameter Opti-
mization (SPO) pursues the identification of global optima taking advantage of a
budget allocation process that maximizes the information gain in promising regions.
Gentile et al. (2021) presented an efficient method to face mixed-discrete optimiza-
tion problems using surrogates.

Example: Alzheimer’s Disease

Bloch and Friedrich (2021) usedML for early detection of Alzheimer’s disease espe-
cially based on magnetic resonance imaging. The authors use BO to time-efficiently
find good hyperparameters for Random Forest (RF) and Extreme Gradient Boosting
(XGBoost) models, which are based on four and seven hyperparameters and promise
good classification results. Those models are applied to distinguish if mild cognitive
impaired subjects from the Alzheimer’s disease neuroimaging initiative data set will
prospectively convert to Alzheimer’s disease.

The results showed comparable Cross Validation (CV) classification accuracies
for models trained using BO and grid-search, whereas BO has been less time-
consuming. Similar to the approaches presented in this book (and in many other
BO studies), the initial combinations for BO were set using Latin Hypercube Design
(LHD) and via random initialization. Furthermore, many models trained using BO
achieved better classification results for the independent test data set than the model
based on the grid-search. The best model was an XGBoost model trained with BO.

Example: Elevator Simulation and Optimization

Modern elevator systems are controlled by the elevator group controllers that assign
moving and stopping policies to the elevator cars. Designing an adequate Elevator
Group Control (EGC) policy is challenging for a number of reasons, one of them
being conflicting optimization objectives. Vodopija et al. (2022) address this task by
formulating a corresponding constrained multiobjective optimization problem, and,
in contrast to most studies in this domain, approach it using true multiobjective opti-
mization methods capable of finding approximations for Pareto-optimal solutions.

Specifically, they apply five multiobjective optimization algorithms with default
constraint handling techniques and demonstrate their performance in optimizing
EGC for nine elevator systems of various complexity. SPOwas used to tune the algo-
rithm parameters. The experimental results confirm the scalability of the proposed
methodology and suggest that NSGA-II equipped with the constrained-domination
principle is the best performing algorithm on the test EGC systems. The proposed
problem formulation and methodology allow for better understanding of the EGC
design problem and provide insightful information to the stakeholders involved in
deciding on elevator system configurations and control policies.
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Example: Cyber-physical Production Systems

Bunte et al. (2019) developed a cognitive architecture for Artificial Intelligence (AI)
in Cyber-physical Production Systemss (CPPSs). The goal of this architecture is to
reduce the implementation effort of AI algorithms in CPPSs. Declarative user goals
and the provided algorithm-knowledge base allow the dynamic pipeline orchestration
and configuration. A big data platform instantiates the pipelines and monitors the
CPPSs performance for further evaluation through the cognitive module. Thus, the
cognitive module is able to select feasible and robust configurations for process
pipelines in varying use cases. Furthermore, it automatically adapts the models and
algorithms based on model quality and resource consumption. The cognitive module
also instantiates additional pipelines to evaluate algorithms from different classes on
test functions.

Example: Resource Planning in Hospitals

Pandemics pose a serious challenge to health-care institutions. To support the
resource planning of health authorities from the Cologne region, BaBSim.Hospital,
a tool for capacity planning based on discrete event simulation, was created Bartz-
Beielstein et al. (2021a). The predictive quality of the simulation is determined by 29
parameters with reasonable default values obtained in discussions with medical pro-
fessionals. Bartz-Beielstein et al. (2021b) aimed to investigate and optimize these
parameters to improve BaBSim.Hospital using a surrogate optimization approach
and an in-depth sensitivity analysis.

Because SMBO is the default method in optimization via simulation, there are
many more examples from the application domain, e.g., Waibel et al. (2019) present
methods for selecting tuned hyper-parameters of search heuristics for computation-
ally expensive simulation-based optimization problems.

6.2 Hyperparameter Tuning in Machine and Deep
Learning

In contrast to HPT in optimization, where the objective function with related input
parameters is clearly specified for the tuner, the situation in ML is more complex.
As illustrated in Fig. 2.2, the tuner is confronted with several loss functions, metrics,
and data sets. As discussed in Sect. 2.3, there is no clear answer to this problem.

Furthermore, the situation in ML is more challenging than in optimization,
because ML methods develop an increasing complexity. Although for specific prob-
lems, especially when domain knowledge is available, methods such as Support
Vector Machine (SVM) or Elastic Net (EN) cannot be beaten by more complex
methods—especially under tight time and computational constraints. In these well
specified settings, hand-crafted SVM kernel methods cannot be beaten by complex

http://dx.doi.org/10.1007/978-981-19-5170-1_2
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methods. Therefore, in somewell-defined domains, SVMs and related shallowmeth-
ods can still be considered as efficient methods.

With increasing computational power andmemory,more andmore complexmeth-
ods gain popularity. SomeML standard methods are cheap to evaluate, e.g., Decision
Tree (DT), model complexity and performance increase: RF replaced simple trees
and even more sophisticated methods such as XGBoost are considered state of the
art.

The situation is getting worse when Deep Neural Networks (DNNs) are included:
there is no limit for model complexity. As a consequence, HPT is developing very
quickly to catch up with this exploding model complexity. New branches and exten-
sions of existing HPT branches were proposed, e.g., Combined Algorithm Selec-
tion and Hyperparameter optimization (CASH), Neural Architecture Search (NAS),
AutomatedHyperparameter andArchitecture Search (AutoHAS), and further “Auto-
*” approaches (Thornton et al. 2013;Dong et al. 2020). The jungle of newMLandDL
is accompanied by a plethora of HPT approaches and related software tools. Hutter
et al. (2019) presents an overview of Automated Machine Learning (AutoML).

Although DL has been part of AI for a long time—first ideas go back to the
1940s—its break through happened in the early 2010s (McCulloch and Pitts 1943;
Krizhevsky et al. 2012). Since 2012, Convolutional Neural Networks (CNNs) are
the dominating approach in computer vision and image classification. In parallel,
DL was adopted in several other domains, e.g., Natural Language Processing (NLP).
DL methods outperformed standard ML methods such as SVMs in a wide range of
applications (Chollet and Allaire 2018). Although finding good hyperparameters for
shallow methods like SVM can be a challenging task, DL methods increased the dif-
ficulty significantly, because they explode the dimensionality of the hyperparameter
space, �.

Therefore, it is worth looking at HPT strategies that were developed for DL. For
example, Snoek et al. (2012) used the Canadian Institute for Advanced Research,
10 classes (CIFAR-10) data set, which consists of 60,000 32× 32 color images in
ten classes, for optimizing the hyperparameters of a CNNs. Bergstra et al. (2013)
proposed a meta-modeling approach to support automated Hyperparameter Opti-
mization (HPO), with the goal of providing practical tools that replace hand-tuning.
They optimized a three-layer CNN. Eggensperger et al. (2013) collected a library of
HPO benchmarks and evaluated three BO methods. Zoph et al. (2017) studied a new
paradigm of designingCNNarchitectures and describe a scalablemethod to optimize
these architectures on a data set of interest, for instance, the ImageNet classification
data set.

The following example describes a typical approach of HPT in DL.

Example: Robust and Efficient Hyperparameter Optimization in DL

Falkner et al. (2018) optimized six hyperparameters that control the training proce-
dure of a fully connected DNN (initial learning rate, batch size, dropout, exponential
decay factor for learning rate) and the architecture (number of layers, units per layer)
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Table 6.1 Elements of a typical HPT study: The hyperparameters and architecture choices for the
fully connected networks as defined in Falkner et al. (2018)

Hyperparameter Lower bound Upper bound Log-transform

Batch size 23 28 Yes

Dropout rate 0 0.5 No

Initial learning rate 1e − 6 1e − 2 Yes

Exponential decay
factor

−0.185 0 No

# hidden layers 1 5 No

# units per layer 24 28 Yes

for six different data sets gathered fromOpenML (Vanschoren et al. 2014), see Table
6.1.

The authors used a surrogateDNNas a substitute for training the networks directly.
To build this surrogate, they sampled 10 000 random configurations for each data set,
trained them for 50 epochs, and recorded the classification error after each epoch,
and total training time. Two independent RF models were fitted to predict these
two quantities as a function of the hyperparameter configuration used. Falkner et al.
(2018) noted that Hyperband (HB) initially performed much better than the vanilla
BO methods and achieved a roughly three-fold speedup over Random Search (RS).

Artificial toy functions were used in this study, and because BO does not work
well on high-dimensional mixed continuous and categorical configuration spaces,
they used a simple counting-ones problem to analyze this issue.

Tip: Handling mixed continuous, categorical, and combinatorial configuration
spaces

Zaefferer et al. (2014) discussed these topics in great detail.How to implementBO for
discrete (and continuous) optimization problems was analyzed in the seminal paper
by Bartz-Beielstein and Zaefferer (2017). Furthermore, Zaefferer (2018) provides an
in-depth treatment of this topic. In practice, SPOT can handle categorical and mixed
variables as discussed in Sect. 4.5. Combinatorial problems, such as the optimization
of permutations, strings, or graphs, can be treated by the R package CEGO (Zaefferer
2021).

Kedziora et al. (2020) analyzed what constitutes these systems and survey devel-
opments in HPO, e.g., multi-component models, Neural Network (NN) architecture
search, automated feature engineering, meta-learning, multi-level ensembling, mul-
tiobjective evaluation, flexible user involvement, and principles of generalization, to
name only a few.

http://dx.doi.org/10.1007/978-981-19-5170-1_4
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Wistuba et al. (2019) described howcomplexDLarchitectures can be seen as com-
binations of a few elements, so-called cells, that are repeated to build the complete
network. Zoph and Le (2016) were the first who proposed a cell-based approach, i.e.,
choicesmade about aNNarchitecture are the set ofmeta-operations and their arrange-
ment within the cell. Another interesting example is function-preserving morphisms
implemented by theAuto-Keras package to effectively traverse potential networks Jin
et al. (2019).

NAS is discussed in (NAS Elsken et al. (2019)). Mazzawi et al. (2019) introduced
a NAS framework to improve keyword spotting and spoken language identification
models. Lindauer and Hutter (2020) describe AutoML for NAS.

Because optimizers can affect the DNN performance significantly, several tun-
ing studies devoted to optimizers were published during the last years: Schneider
et al. (2019) introduced a benchmarking framework called Deep Learning Opti-
mizer Benchmark Suite (DeepOBS), which includes a wide range of realistic DL
problems together with standardized procedures for evaluating optimizers. Schmidt
et al. (2020) performed an extensive, standardized benchmark of fifteen particularly
popular DL optimizers.

Menghani (2021) presented a survey of the core areas of efficiency in DL, e.g.,
spanning modeling techniques, infrastructure, and hardware accompanied by an
experiment-based guide along with code for practitioners to optimize their model
training and deployment.

Tunability, (seeDefinition 2.26) is an interesting concept that should bementioned
in the context of HPT (Probst et al. 2019a). The hope is that identifying tunable
hyperparameters, i.e., ones that model performance is particularly sensitive to, will
allow other settings to be ignored and results in a reduced hyperparameter search
space, �. Unfortunately, tunability strongly depends on the choice of the data set,
(X,Y), which makes a generalization of results very difficult.

Bischl et al. (2021a) provide an overview about HPO.

6.3 HPT Software Tools

The field of HPT software tools is under rapid development. Besides SPOT, which
is discussed in this book, several other hyperparameter optimization software pack-
ages were developed. We will list packages that show a certain continuity and that
hopefully will still be available in the near future.

The irace package implements the Iterated Race method, which is a general-
ization of the Iterated F-race method for the automatic configuration of optimization
algorithms. Hyperparameters are tuned by finding the most appropriate settings for
a given set of instances of an optimization problem. It builds upon the race package
by Birattari et al. (2009) and it is implemented in R (López-Ibáñez et al. 2016).

The IterativeOptimizationHeuristics profiler (IOHprofiler) is a benchmarking and
profiling tool for optimization heuristics, composed of two main components (Doerr
et al. 2018): The Iterative Optimization Heuristics analyzer (IOHanalyzer) provides

http://dx.doi.org/10.1007/978-981-19-5170-1_2
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an interactive environment to evaluate algorithms’ performance by various criteria,
e.g., bymeans of the distribution on the fixed-target running time and the fixed-budget
function values (Wang et al. 2022). The experimental platform, IterativeOptimization
Heuristics experimenter (IOHexperimenter), is designed to ease the generation of
performance data. Its logging functionalities allow to track the evolution of algorithm
parameters, making the tool particularly useful for the analysis, comparison, and
design of algorithms with (self-)adaptive hyperparameters. Balaprakash et al. (2018)
presented DeepHyper, a Python package that provides a common interface for the
implementation and study of scalable hyperparameter search methods. Karmanov
et al. (2018) created a “Rosetta Stone” of DL frameworks to allow data scientists
to easily leverage their expertise from one framework to another. They provided
a common setup for comparisons across GPUs (potentially CUDA versions and
precision) and for comparisons across languages (Python, Julia, R). O’Malley et al.
(2019) presented Keras tuner, a hyperparameter tuner for Keras with TensorFlow
(TF) 2.0. Available tuners are RS and Hyperband. Mendoza et al. (2019) introduced
Auto-Net, a system that automatically configures NN with SMAC by following the
same AutoML approach as Auto-WEKA and Auto-sklearn. Zimmer et al. (2020)
developed Auto-PyTorch, a framework for Automated Deep Learning (AutoDL)
that uses Bayesian Optimization HyperBand (BOHB) as a back-end to optimize the
full DL pipeline, including data pre-processing, network training techniques, and
regularization methods. Mazzawi and Gonzalvo (2021) presented Google’s Model
Search, which is an open-source platform for finding optimal ML models based on
TF. It does not focus on a specific domain.

Unfortunately, many of these software tools are results from research projects
that are funded for a limited time span. When the project ends (and the developers
successfully completed their Ph.D.s) the software package will not be maintained
anymore. Despite the dynamics and volatility in this area, we do not want to shy
away from giving an overview of the available software tools. Table 6.2 presents this
overview, which should be regarded as an incomplete snapshot, but not as the whole
picture of this field.

6.4 Summary and Discussion

Due to increased computational power, algorithm and model complexity grow into
new regions. It is more and more important to understand the working mechanisms
of complex neural networks. Putting the pieces together, it becomes clear that

1. there is a need for hyperparameter tuning,
2. surrogate optimization is an efficient approach, it can accelerate the search, and
3. mixed variable types (continuous, discrete)make hyperparameter tuningmore dif-

ficult. Especially dependencies between different hyperparameters produce new
challenges.
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Table 6.2 Overview: HPT and HPO approaches

Software Application Method Publication

AutoPyTorch Fully automated DL (AutoDL) BOHB Zimmer et al.
(2020)

Auto-Sklearn Automated ML toolkit BO, meta-learning and
ensemble construction

Feurer et al.
(2020)

Auto-WEKA Search for the right WEKA ML
algorithm and optimizes its
hyperparameters

BO Kotthoff et al.
(2017)

BOHB Distributed HB BO and bandit-based methods Falkner et al.
(2018)

CAVE Report generation EDA, parameter importance
analysis

Biedenkapp
et al. (2018)

DEHB Black-box optimization HB, DE Awad et al.
(2021)

Google’s model
search

Build on TF, architecture search multiple trainers, a search
algorithm, a transfer learning
algorithm. Database to store
ML and DL models

Mazzawi and
Gonzalvo (2021)

Hyperopt Python library for serial and
parallel optimization, can handle
real-valued, discrete, and
conditional dimensions

RS and TPEs Bergstra et al.
(2013),
Koehrsen (2018)

IOHprofiler,
IOHanalyzer,
IOHexperi-
menter

analyze and visualize the
empirical performance of IOHs,
interactive plotting, statistical
evaluation, report generation

R packages Shiny,
Plotly, Rcpp

Doerr et al.
(2018), Wang
et al. (2022)

irace Heuristics, automatic
configuration of optimization
and decision algorithms,
appropriate settings of an
algorithm given a set of
instances of a problem

iterated racing López-Ibáñez
et al. (2016)

keras tuner Hyperparameter tuner for
keras/TF

RS, HB O’Malley et al.
(2019)

mlmachine Uses Hyperopt as a foundation
for performing experiments

BO Koehrsen (2018)

Optuna Software framework for ML TPE, RS, grid search,
CMA-ES

Akiba et al.
(2019)

Ray-Tune PyTorch, XGBoost, MXNet, and
Keras and other frameworks

Wrapper around open-source
optimization libraries such as
HyperOpt, SigOpt,
Dragonfly, and Facebook Ax

Liaw et al.
(2018)

SMAC Tool for algorithm configuration BO, racing mechanism Lindauer et al.
(2022)

SPOT Surrogate optimization Various surrogates and
optimizers, BO, RSM

Bartz-Beielstein
et al. (2017)
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To conclude this chapter, we would like to mention relevant criticism of HPT.
Some authors even claimed that extensive HPT is not necessary at all. For example,
Erickson et al. (2020) introduced a framework (AutoGluon-Tabular) that “requires
only a single line of Python to train highly accurate machine learning models on
an unprocessed tabular data set such as a CSV file”. AutoGluon-Tabular ensembles
severalmodels and stacks them inmultiple layers. The authors claim thatAutoGluon-
Tabular outperforms AutoML platforms such as TPOT, H2O, AutoWEKA, auto-
sklearn, AutoGluon, and Google AutoML Tables.

A highly recommendable study was performed by Choi et al. (2019), who pre-
sented a taxonomy of first-order optimization methods. Furthermore, Choi et al.
(2019) demonstrated the sensitivity of optimizer comparisons to the hyperparameter
tuning protocol: “optimizer rankings can be changed easily by modifying the hyper-
parameter tuning protocol.” These results raise serious questions about the practical
relevance of conclusions drawn from certain ways of empirical comparisons. They
also claimed that tuning protocols often differ between works studying NN optimiz-
ers and works concerned with training NNs to solve specific problems.

Yu, Sciuto, Jaggi, Musat, and Salzmann (Yang and Shami) claimed that the eval-
uated state-of-the-art NAS algorithms do not surpass RS by a significant margin, and
even perform worse in the Recurrent Neural Network (RNN) search space.

Balaji and Allen (2018) reported a multitude of issues when attempting to execute
automatic ML frameworks. For example, regarding the random process, the authors
state that “one common failure is in large multi-class classification tasks in which
one of the classes lies entirely on one side of the train test split”.

Li and Talwalkar (2019) stated that (i) better baselines that accurately quantify
the performance gains of NAS methods, (ii) ablation studies (to learn about the NN
by removing parts of it) that isolate the impact of individual NAS components, and
(iii) reproducible results that engender confidence and foster scientific progress are
necessary.

Liu (2018) remarks that “for most existent AutoMLworks, regardless of the num-
ber of layers of the outer-loop algorithms, the configuration of the outermost layer is
definitely done by human experts”. Human experts are shifted to a higher level, and
are still in the loop. The lack of insights in current AutoML systems (Drozdal et al.
2020) goes so far that some users even prefer manual tuning as they believe they can
learn more from this process (Hasebrook et al. 2022).

Taking this criticism seriously, we can conclude that transparency and inter-
pretability of both theML /DLmethod and theHPTprocess aremandatory. This con-
clusion becomes very important in safety-critical applications, e.g., security-critical
infrastructures (drinking water), in medicine, or automated driving.

But in general, we can conclude, that HPT is a valuable, in some situations an
even mandatory tool for understanding ML and DL methods. And, last but not least:
HPT tools can help to gain trust in AI systems.
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Chapter 7
Hyperparameter Tuning in German
Official Statistics

Florian Dumpert and Elena Schmidt

Abstract This chapter describes the special quality requirements placed on official
statistics and builds a bridge to the tuning of hyperparameters in Machine Learning
(ML). To carry out the latter optimally under consideration of constraints and to
assess its quality is part of the tasks of the employees entrusted with this work. The
chapter sheds special light on open questions and the need for further research.

7.1 Official Statistics

Official (federal) statistics in Germany (as in many other countries) have a special
mandate: to provide government, parliament, interest groups, science, and the public
with information on the most diverse areas of economic, social, and cultural life,
the state, and the environment. More precisely, § 1 of the Gesetz über die Statistik
für Bundeszwecke (Law on Statistics for Federal Purposes; abbreviated to BStatG)
states:

Statistics for federal purposes (federal statistics) have the task, within the federally struc-
tured overall system of official statistics, of continuously collecting, compiling, processing,
presenting, and analyzing data on mass phenomena.1

In this context, basic principles for the production of statistics (also referred to as
statistical production) apply by law or on the basis of voluntary international com-
mitments: § 1 BStatG, for example, requires neutrality, objectivity, and professional
independence. Further principles can be found in the “Quality Manual of the Statis-

1This is an unauthorized translation of “Die Statistik für Bundeszwecke (Bundesstatistik) hat im
föderativ gegliederten Gesamtsystem der amtlichen Statistik die Aufgabe, laufend Daten über
Massenerscheinungen zu erheben, zu sammeln, aufzubereiten, darzustellen und zu analysieren.”
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tical Offices of the Federation and the Länder”,2 which in turn takes up principles
from the European Statistics Code of Practice.3 Principles 7 and 8 from the latter
call for a sound methodology and appropriate statistical procedures. In particular,
Principle 7.7 explicitly mentions cooperation with the scientific community:

Statistical authorities maintain and develop cooperation with the scientific community to
improve methodology, the effectiveness of the methods implemented and to promote better
tools when feasible.

These and other principles are the pledge of and ensure trust in official statistics.
This trust of citizens and enterprises is of essential importance. On the one hand, it
facilitates or even makes possible truthful statements to the Federal Statistical Office
and the Statistical Offices of the Länder, which would be ordinary state authorities
if the above-mentioned principles and precepts did not apply. On the other hand, the
many quality assurance steps in the statistical production process ensure that great
trust is also placed in the published data.

This trust is therefore a valuable asset, and it is not for nothing that the official goal
of the Federal Statistical Office has been “We uphold the trustworthiness and enhance
the usefulness of our results” for several years now. Confidence in the products and
high quality go hand in hand. Official statistical products are undoubtedly useful,
at least as long as they are available close to the time of the survey. The larger the
distance between publication and survey, the less useful such elaborately produced
figures are. Official statistics must therefore be interested in the rapid production
of statistics. Here, a conflict of goals between high accuracy and rapid publication
appears. The conflict of goals is not new, of course, and it is common practice in
national accounting, for example, to revise quickly published results at fixed points
in time (on the basis of additional or better-checked information).

Statistical offices see a further starting point for enabling faster statistical pro-
duction by increasing automation of statistical production. This statement can easily
be misunderstood: The goal is not to eliminate the “human in the loop.” Rather, the
goal is to have the computer—for the case at hand, based on (data-driven) models—
perform steps in the production process that are currently performed either by no
one or at least not to the extent required. Many of these steps are part of Phase 54

of the Generic Statistical Business Process Model. To give an example, we have the
following.

Example: Plausibility

When data are received in a statistical office, they are first checked for plausibility,
i.e., whether the reported values are within expected parameters (ages, for example,

2 https://www.destatis.de/DE/Methoden/Qualitaet/qualitaetshandbuch.html.
3 https://ec.europa.eu/eurostat/web/products-catalogues/-/KS-02-18-142.
4 This phase contains the subsections integrate data, classify, and code, review, and vali-
date, edit, and impute, derive new variables and units, calculate weights, calculate aggregates,
and finalise data files. Details can be found on https://statswiki.unece.org/display/GSBPM/
Generic+Statistical+Business+Process+Model.

https://www.destatis.de/DE/Methoden/Qualitaet/qualitaetshandbuch.html
https://ec.europa.eu/eurostat/web/products-catalogues/-/KS-02-18-142
https://statswiki.unece.org/display/GSBPM/Generic+Statistical+Business+Process+Model.
https://statswiki.unece.org/display/GSBPM/Generic+Statistical+Business+Process+Model.
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must be non-negative). If this is not the case, it is the task of a clerk to check what
the true entry must be. This can be done by asking the declarant or by researching
registers or the internet. In many cases, however, it is currently not possible—if only
for reasons of time—to carry out these searches in such away that a data set ultimately
consists only of true values. (Whether this is even necessary for statistical production
is the subject of current research and is therefore not taken up in this chapter.) In this
case, it would be helpful if clerks could restrict themselves to carefully checking and
plausibilizing the essential cases (for example, thosewith particularly large turnovers
in the case of business statistics); the remaining cases would then be automatically
plausibilized by the computer.

Further possible applications for automated estimations are in data preparation,
e.g., by automated signatures, i.e., classifications in the technical sense.

Example: Data Preparation

An example of this is the assignment of textual data to Nomenclature statistique
des Activités économiques dans la Communauté Européenne (NACE) codes, i.e.
the assignment of a verbal description of an economic activity to a code classifying
economic activities.

The use of models for so-called nowcasts is also conceivable. The examples
mentioned could also occur in a similar way in industrial or service companies; the
aspect of automation also appears relevant there. Official statistics and the economy
hardly differ on this point. However, while in the economy, according to common
doctrine, the market regulates whether a company will survive, official statistics exist
by law and, precisely because there are no regulating market forces, are subject to
their special quality requirements expressed by the principles and preceptsmentioned
above.

One outgrowth of the principles lies in the freedom of choice of methods and in
the fact that the offices are obliged to work in a methodologically and procedurally
state-of-the-art manner (Quality Manual, p. 19):

The statistical processes for the collection, processing, and dissemination of statistics (Prin-
ciples 7–10) should fully comply with international standards and guidelines and at the
same time correspond to the current state of scientific research. This applies to both the
methodology used and the statistical procedures applied.

Thus, the above-mentioned improvement of statistical production may (and possibly
even must) be based on the use of models, or more precisely on the use of statisti-
cal (machine learning) procedures. Their quality, in turn, must be ensured and—if
possible—measured against the quality of human work in the respective task fields.
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7.2 Machine Learning in Official Statistics

Nowadays, a growing number of modern ML techniques are commonly used to
cluster, classify, predict, and even generate tabular data, textual data, or image data.
The Federal StatisticalOffice ofGermany collects and processes various kinds of data
andusesML techniques for several tasks.Manyof the tasks involved in the processing
of statistics can be abstractly described as classification or regression problems, i.e.,
as problems from the area of supervised learning. It is therefore obvious to test
machine learning methods in this field and—if the evaluation is positive—to use
them in the production of statistics. The Federal Statistical Office has already made
first experiences with this in the past years (see, for example, Feuerhake andDumpert
2016, Dumpert et al. 2016, Dumpert and Beck 2017, Beck et al. 2020, Schmidt 2020,
Feuerhake et al. 2020, and Dumpert and Beck 2021). At the moment, the main focus
is on analyzing tabular data and textual data with ML techniques. Different ML
approaches work best for different kinds of data and even in the case of data that
seem to have a similar structure; not always the same ML approach as before may
be superior for the specific task.

However, the use of statistical ML techniques raises another difficulty in addition
to the question of which technique is best suited for a specific task:

• How to deal with the sometimes larger, sometimes smaller amount of implicit or
explicit hyperparameters, which sometimes have a large, sometimes only a small
influence on the performance of a method?

• Which hyperparameters should be included in the tuning that is common in this
case and which should not?

• And how should tuning ideally be performed?

The quality standards of official statistics require thinking about this, also because
official statistics might be obliged to be able to explain, for example, how a clas-
sification was carried out. Furthermore, results must be reproducible to a certain
extent. Hence, a common optimization problem every data scientist has to face is to
find the ML approach which fits the data generating process best. Usually, several
approaches are tested for each data set. Common ML techniques that are used in the
German Federal Statistical Office include Naïve Bayes, Elastic Net (EN), Support
Vector Machine (SVM), and Decision Tree (DT) methods like Random Forest (RF)
and Extreme Gradient Boosting (XGBoost). Each of these ML techniques allow
for adjustment of the respective method to the specific data set with several hyper-
parameters. Finding the optimal hyperparameter set for a given ML method, the
hyperparameter tuning, increases the search space for the best model even further.

7.3 Challenges in Tuning for the Federal Statistical Office

What to tune and how to tune it correctly? Every data scientist is faced with this
question. And although literature and community propagate all kinds of standard
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approaches and implement them in R and Python packages, there always remains
the uncertainty of not having done it well, not efficiently, or not “advanced” enough.
Some examples:

• Not taking the required calculation time and memory into account, the safest way
to find the optimal model for the data would be to calculate ML models for all
possible (combinations of) parameter settings of all available ML techniques, test
all (theoretically even uncountably infinite) models, and select the best model (i.e.,
a “very closedmeshed” grid search). Depending on theMLmethod and data, this is
too time-consuming inmost of the cases.XGBoost for example provides numerous
parameters to adjust the model to the data. Tuning eight parameters of an XGBoost
model with a grid search testing only six different values for each parameter results
in around 1.7 million calculations (i.e., models to learn and to evaluate), which is
impractical.5 See also the discussion of model-free search methods in Sect. 4.3.

• Furthermore, even with enough time and memory, hyperparameter tuning is not
straightforward and often requires expert knowledge. One reason is that there are
very different types of hyperparameters. Some only refer to specific kinds of data
or can only be used depending on the values of other hyperparameters. Some
hyperparameters take values from a fixed set (e.g., “sampling with or without
replacement” for RF6), for others there is a fixed range of values (e.g., “percentage
of sampled data” for RF), and for others there are no restrictions at all. In the
latter case, the range of values as well as the step size between the tested values
have to be chosen by the user. The question arises: What is the sensitive range
of values in which the impact of a hyperparameter on the model is high? In the
case of other hyperparameters like the number of trees of RF, there is no optimal
hyperparameter value in the sense of model quality. The model improves if the
hyperparameter value is increased (or decreased) until some kind of saturation is
reached (Fig. 7.1) where the model only slightly improves or does not improve
anymore. Usually, in these cases, there is a trade-off between model quality and
computation time. Therefore, an optimal hyperparameter value would mean that
it is sufficiently high (or low) that the model cannot be improved significantly
without wasting computation time. This issue is also discussed in Sect. 4.2.

• Considering the computational effort the question arises: how much does a model
actually improve by hyperparameter tuning? Which ML techniques have to be
tuned to lead to reasonable results? In our experience, SVMs for example seem
to be very sensitive to their hyperparameters (Fig. 7.2), whereas XGBoost or RF
models for example seem to provide more or less satisfactory results when default
values of hyperparameters are used (Fig. 7.37). In the case of a standard application,

5 Assume that a model is trained and evaluated within only one second (which is not realistic for
large data sets), then finding the best hyperparameter constellation out of the around 1.7 million
options would take around 19 days.
6 The authors are well aware that if theoretical results like those of Athey et al. (2019) are to be
used, the type of sampling must be chosen accordingly, regardless of the tuning results.
7 This and all the other figures in this chapter show the results for a RF or a Support Vector Machine
for a function that depends on ten features.

http://dx.doi.org/10.1007/978-981-19-5170-1_4
http://dx.doi.org/10.1007/978-981-19-5170-1_4
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Fig. 7.1 Hyperparameter with saturation behavior
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Fig. 7.2 Hyperparameters where it seems to be important to tune them (no saturation)

it might be an unnecessary overhead to spend days or weeks of computation time
to improve the accuracy of a RF model in the second or third decimal place
compared to the results with default values (e.g., a RMSE score without tuning
(default): 0.487; tuned: 0.487; worst case: 0.494). This topic is also discussed
in Chaps. 8–10, where the hyperparameter tuning processes are analyzed in the
sections entitled “Analyzing the Tuning Process”.

• There are several strategies to reduce the computational costs of hyperparameter
tuning. One possibility is to perform a coarse-grained grid search and do a refined
search in the best region of the hyperparameter space. An alternative are different
search strategies that save time by only testing specific hyperparameter combi-
nations in the high-dimensional hyperparameter space. Another possibility is to
reduce the dimension of the search space. This can be done by only tuning the
most promising hyperparameters or by tuning hyperparameters sequentially start-
ing with the most promising ones and tuning only one or two hyperparameters at

http://dx.doi.org/https://doi.org/10.1007/978-981-19-5170-1_8
http://dx.doi.org/https://doi.org/10.1007/978-981-19-5170-1_10
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Fig. 7.3 A situation where it
seems to be more or less
irrelevant if the
hyperparameter is tuned or
not
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a time. State-of-the-art hyperparameter tuners such as Sequential Parameter Opti-
mizationToolbox (SPOT) implement the concept of “active hyperparameters”, i.e.,
the set of tuned hyperparameters can be modified. Following the latter strategies
requires knowledge about the sensitivity and the interactions of hyperparameters.
This book presents further approaches.

• Even hyperparameters for which a method is not very sensitive can be relevant for
tuning under certain circumstances, namely if for other reasons, e.g., disclosure
avoidance, a certain value may not be undercut there. In the case of tree-based
methods, this applies, for example, to the minimum number of data points in the
leaves. This value is analyzed in this book as theDThyperparameterminbucket.

• Unfortunately, there is only limited information available (in the literature) about
how hyperparameters should be tuned. ML algorithm developers usually just pro-
vide short descriptions about what a hyperparameter does. Additional information
can be retrieved from a few scientific papers and online tutorials. Larger studies
that address the following questions do not exist to a larger extent:

– How much can a model be improved by tuning?
– Which tuning strategy works best? What is the impact of tuning a specific
hyperparameter of the model?

– Does this impact vary among data sets?

The investigations Probst et al. (2019b), Probst and Boulesteix (2018), and Bischl
et al. (2021b) stand out here. For own comparative investigations in the context of
concrete applications, see, for example, Schmidt (2020).

Finding an optimal combination of values of the hyperparameters in a suitable
sense is one goal. To show that other combinations are worse and how the different
hyperparameters depend on each other is another, which may require a completely
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different approach.Toour knowledge, the dependenceof thevarious hyperparameters
is currently limited to visual analyses, such as those presented in this book.Analytical
or further empirical work on this question is, in our view, still pending.

7.4 Dealing with the Challenges

Radermacher (2020) devotes a separate section (Sect. 2.3) to quality requirements
in official statistics and writes:

200 years of experience and a good reputation are assets as important as the profession’s
stock of methods, international standards and well-established routines and partnerships.

Indeed, official statistics can only provide added value because they are trusted to
work in a methodologically sound manner. The same is true in the relationship
between the Federal Statistical Office and its machine learning section. For this rea-
son, the unit responsible for machine learning in the Federal Statistical Office also
endeavors to carry out the hyperparameter tuning of the methods used to the best of
its knowledge and—if necessary—to create transparency about it. In addition, the
above-mentioned economic considerations are always involved: How long should
the tuning be continued in order to perhaps still achieve a significant improvement
of the models? The approaches presented in this book and further tools (cf. Bischl
et al. 2021b) will support statisticians and data scientists to investigate these ques-
tions in the future, although further research is needed: The estimation of the above
question (i.e., how long to tune), possibly even a statement how far away from the
true optimum one is at all (at least in probability, for example, in the form of an
oracle inequality), cannot be answered satisfactorily at present. Also, the effects and
interactions of certain hyperparameters—see Gijsbers et al. (2021) and Moosbauer
et al. (2021) for some recent considerations—have not yet been sufficiently investi-
gated, e.g., those of the hyperparameter respect.unordered.factors in RF
R package ranger. However, investigations into such issues are needed to better
understand hyperparameters in the future. This can improve the basis for responsible
and trustworthy use of machine learning, not only but also in official statistics.
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Chapter 8
Case Study I: Tuning Random Forest
(Ranger)

Thomas Bartz-Beielstein, Sowmya Chandrasekaran, Frederik Rehbach,
and Martin Zaefferer

Abstract This case study gives a hands-on description of Hyperparameter Tuning
(HPT) methods discussed in this book. The Random Forest (RF) method and its
implementation ranger was chosen because it is the method of the first choice
in many Machine Learning (ML) tasks. RF is easy to implement and robust. It can
handle continuous as well as discrete input variables. This and the following two case
studies follow the sameHPTpipeline: after the data set is provided and pre-processed,
the experimental design is set up. Next, the HPT experiments are performed. The R
package SPOT is used as a “datascope” to analyze the results from theHPT runs from
several perspectives: in addition to Classification and Regression Trees (CART), the
analysis combines results from surface, sensitivity and parallel plots with a classical
regression analysis. Severity is used to discuss the practical relevance of the results
from an error-statistical point-of-view. The well proven R package mlr is used as
a uniform interface from the methods of the packages SPOT and SPOTMisc to
the ML methods. The corresponding source code is explained in a comprehensible
manner.
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8.1 Introduction

In this case study, the hyperparameters of the RF algorithm are tuned for a classi-
fication task. The implementation from the R package ranger will be used. The
data set used is the Census-Income (KDD) Data Set (CID).1

The R package SPOTMisc provides a unifying interface for starting the
hyperparameter-tuning runs performed in this book. The R package mlr is used
as a uniform interface to the machine learning models. All additional code is pro-
vided together with this book. Examples for creating visualizations of the tuning
results are also presented.

The hyperparameter tuning can be started as follows:

startCensusRun(model = "ranger")

This case study deals with RF. However, anyMLmethod from the set of available
methods that were discussed in Chap. 3, i.e., glmnet, kknn, ranger, rpart,
svm, and xgb, can be chosen. xgb will be analyzed in Chap. 9.

The function startCensusRun performs the following steps from Table8.1:

Table 8.1 Machine-learning hyperparameter-tuning pipeline

Step Description, Function Result Details

1 getDataCensus: Data
acquisition

dfCensus Downloading the data.
Compilation of a R data
frame

2.1 getMlConfig: ML
model and task
configuration

2.1.1 getMlrTask: Get ML
Task

task ml task

2.1.2 getModelConf: Model
configuration

cfg Model

2.1.3 getMlrResample:
Split Data into Training
and Test Data

data Partitioned data

2.2 getObjf: Objective
function

objf Objective function

3 spot: Hyperparameter
tuning

result Result list

4 evalParamCensus:
Evaluate on test data

Score Metrics

1 The data from CID is historical. It includes wording or categories regarding people which do not
represent or reflect any views of the authors and editors.

http://dx.doi.org/10.1007/978-981-19-5170-1_3
http://dx.doi.org/https://doi.org/10.1007/978-981-19-5170-1_9
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start

end

1 Data Acquisition

getDataCensus

2.1.1 Task

getMlrTask

2.1.2 Model

getModelConf

2.1.3 Train, Val, Test

getMlrResample

2.2 Objective Function

getObjf

3 Hyperparameter Tuning

spot

4 Evaluation

evalParamCensus

dfCensus (data.frame)

cfg (list)

cfg (list), objf (function)

result (list)

Fig. 8.1 Overview. The hyperparameter-tuning pipeline introduced in this chapter comprehends
four main steps. After the data acquisition (getDataCensus), the ML model is configured
(getMlConfig) and the objective function (getObjf) is specified. The hyperparameter tuner
SPOT is called (spot) and finally, results are evaluated (evalParamCensus). The ML con-
figuration via getMlConfig combines the results from three subroutines, i.e., getMlrTask,
getModelConf, and getMlrResample
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1 Data: Acquisition and preparation of the CID data set. The function
getDataCensus is called to perform these steps; see Sect. 8.2.1.

2.1 Design: The experimental design is set up. This step includes the spec-
ification of measures, the configuration of the hyperparameter
tuner, and the configuration of the ML model. Calling the func-
tion getMlConfig executes the subroutines 2.1.1 until 2.1.3:

2.1.1 Task: Definition of a ML task. The function getMlrTask performs this
step. It results in an mlr task object; see Sect. 8.3.2.1.

2.1.2 Config: Hyperparameter configuration. The functiongetModelConf sets
up the hyperparameters of the model; see Sect. 8.3.2.2.

2.1.3 Split: Generating training and test data.The functiongetMlrResample
is used here. It returns a list with the corresponding data sets;
see Sect. 8.3.2.3.

2.2 Objective: The objective function is defined via getObjf; see Sect. 8.4.4.
3 Tuning: The hyperparameter tuner, i.e., the function spot, is called. See

Sect. 8.5.
4 Evaluation: Evaluation on test data. To evaluate the results, the function

evalParamCensus can be used; see Sect. 8.6.2. These steps are
illustrated in Fig. 8.1.

8.2 Data Description

8.2.1 The Census Data Set

For the investigation, we choose the CID, which is made available, for example,
via the UCI ML Repository.2 For our investigation, we will access the version of
the data set that is available via the platform openml.org under the data record ID
45353 (Vanschoren et al. 2013). This data set is an excerpt from the current population
surveys of 1994 and 1995, compiled by the U.S. Census Bureau. It contains n =
299, 285 observations with 41 features on demography and employment. The data
set is comparatively large, has many categorical features with many levels, and fits
well with the field of application of official statistics.

The CID data set suits our research questions well since it is comparatively large
and has many categorical features. Several of the categorical features have a broad
variety of levels. The data set can be easily used to generate different classification
and regression problems.

The data preprocessing consists of the following steps:

• Feature 24 (instance weight MARSUPWT) is removed. This feature describes the
number of persons in the population who are represented by the respective obser-

2 https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD).

https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)
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vation. This is relevant for data understanding, but should not be an input to the
ML models.

• Several features are encoded as numerical (integer) variables, but are in fact cate-
gorical. For example, feature 3 (industry code ADTIND) is encoded as an integer.
Since the respective integers represent discrete codes for different sectors of indus-
try, they have no inherent order and should be encoded as categorical features.

• The data set sometimes contains NA values (missing data). These NA values are
replaced before modeling. For categorical features, the most frequently observed
category is imputed (mode). For integer features, the median is imputed, and for
real-valued features the mean.

• As the only model investigated in this book, xgboost is not able to work directly
with categorical features. This becomes relevant for the experiments in Chap. 12.
In that case (only for xgboost), the categorical data features are transferred into
a dummy coding. For each category of the categorical feature, a new binary feature
is created, which specifies whether an observation is of the respective category or
not.

• Finally, we split the data randomly into test data (40% of the observations) and
training data (60%).

In addition to these general preprocessing steps, we change the properties of the
data set for individual experiments to cover our various hypotheses (esp. in Chap.
12). Arguably, we could have done this by using completely different data sets where
each set covers different objects of investigation (i.e., different numbers of features or
differentm). We decided to stick to a single data set and vary it instead of generating
new, comparable data sets with different properties. This allows us to reasonably
compare results between the individual variations. This way, we generate multiple
data sets that cover different aspects and problems in detail.While they all derive from
the same data set (CID), they all have different characteristics: Number of categorical
features, number of numerical features, cardinality, number of observations, and
target variable. These characteristics can be quantified with respect to difficulty as
discussed in Sect. 12.5.4.

In detail, we vary:

Target: The original target variable of the data set is the income class
(below/above 50000 USD). We choose age as the target vari-
able instead. For classification experiments, age will be dis-
cretized, into two classes: age < 40 and age >= 40. For
regression, age remains unchanged. This choice intends to
establish comparability between both experiment groups (clas-
sification, regression).

cardinality: The number of categories (cardinality). To create variants
of the data set with different cardinality of categorical features,
we merge categories into new, larger categories. For instance,
for feature 35 (country of birth self PENATVTY) the country of
origin is first merged by combining all countries from a specific
continent. This reduces the cardinality, with 6 remaining cate-

http://dx.doi.org/10.1007/978-981-19-5170-1_12
http://dx.doi.org/10.1007/978-981-19-5170-1_12
http://dx.doi.org/10.1007/978-981-19-5170-1_12
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gories (medium cardinality). For a further reduction (low cardi-
nality) to three categories, the data is merged into the categories
unknown, US, and abroad. Similar changes to other features are
documented in the source code. For our experiments, this pre-
processing step results in data sets with the levels of cardinality:
low (up to 15 categories), medium (up to 24 categories), and
high (up to 52 categories).

nnumericals: Number of numerical features (nnumericals). To change the
number of features, individual features are included or removed
from the data set. This is done separately for categorical and
numerical features and results in four levels for nnumericals
(low: 0, medium: 4, high: 6, complete: 7).

nfactors: Number of categorical features (nfactors). Correspondingly,
we receive four levels for nfactors (low: 0, medium: 8, high:
16, complete: 33). Note, that these numbers become somewhat
reduced, if cardinality is low (low: 0, medium: 7, high: 13, com-
plete: 27). The reason is that some featuresmight become redun-
dant when merging categories.

n: Number of observations (n). To vary n, observations are ran-
domly sampled from the data set. We test five levels on a log-
arithmic scale from 104 to 105: 10000, 17783, 31623, 56234,
and 100000. In addition, we conduct a separate test with the
complete data set, i.e., 299285 observations.

To keep results comparable, most case studies in this book (Chaps. 9, 10, and 12)
use the same data preprocessing of the CID data set. Only Chap. 12 considers several
variations of the CID data set simultaneously.

Background: Implementation Details

The function getDataCensus from the package SPOTMisc uses the functions
setOMLConfig and getOMLDataSet from the R package OpenML, i.e., the
CID can also be downloaded as follows:

OpenML::setOMLConfig(cachedir = "oml.cache")
dataOML <- OpenML::getOMLDataSet(4535)$data

While not strictly necessary, it is a good idea to set a permanent cache directory
for Open Machine Learning (OpenML) data set. Otherwise, every new experiment
will redownload the data set, taxing the OpenML servers unnecessarily.

Information about the 42 columns of the CID data set is shown in Table8.2.

http://dx.doi.org/10.1007/978-981-19-5170-1_9
http://dx.doi.org/10.1007/978-981-19-5170-1_10
http://dx.doi.org/10.1007/978-981-19-5170-1_12
http://dx.doi.org/10.1007/978-981-19-5170-1_12
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Table 8.2 CID data set
Var Type, factor levels Example data

V1: num: 73 58 18 9 10 48 42 28 47 34 ...

V2: Factor w/ 9 levels “Federal government”, ...: 4 7 4 4 4 5 5 5 2 5 ...

V3: num: 0 4 0 0 0 40 34 4 43 4 ...

V4: num: 0 34 0 0 0 10 3 40 26 37 ...

V5: Factor w/ 17 levels “10th grade”, ...: 13 17 1 11 11 17 10 13 17 17 ...

V6: num: 0 0 0 0 0 1200 0 0 876 0 ...

V7: Factor w/ 3 levels “College or university”, ...: 3 3 2 3 3 3 3 3 3 3 ...

V8: Factor w/ 7 levels “Divorced”, “Married-A F spouse
present”, ...:

7 1 5 5 5 3 3 5 3 3 ...

V9: Factor w/ 24 levels “Agriculture”, ...: 15 5 15 15 15 7 8 5 6 5 ...

V10: Factor w/ 15 levels “Adm support including clerical”, ...: 7 9 7 7 7 11 3 5 1 6 ...

V11: Factor w/ 5 levels “Amer Indian Aleut or Eskimo”, ...: 5 5 2 5 5 1 5 5 5 5 ...

V12: Factor w/ 10 levels “All other”, “Central or South
American”, ...:

1 1 1 1 1 1 1 1 1 1 ...

V13: Factor w/ 2 levels “Female”, “Male”: 1 2 1 1 1 1 2 1 1 2 ...

V14: Factor w/ 3 levels “No”, “Not in universe”, ...: 2 2 2 2 2 1 2 2 1 2 ...

V15: Factor w/ 6 levels “Job leaver”, ...: 4 4 4 4 4 4 4 2 4 4 ...

V16: Factor w/ 8 levels “Children or Armed Forces”, ...: 3 1 3 1 1 2 1 7 2 1 ...

V17: num : 0 0 0 0 0 ...

V18: num : 0 0 0 0 0 0 0 0 0 0 ...

V19: num : 0 0 0 0 0 0 0 0 0 0 ...

V20: Factor w/ 6 levels “Head of household”, ...: 5 1 5 5 5 3 3 6 3 3 ...

V21: Factor w/ 6 levels “Abroad”, “Midwest”, ...: 4 5 4 4 4 4 4 4 4 4 ...

V22: Factor w/ 51 levels “?”, “Abroad”, ...: 37 6 37 37 37 37 37 37 37 37 ...

V23: Factor w/ 38 levels “Child <18 ever marr not in subfamily”,
...:

30 21 8 3 3 37 21 36 37 21 ...

V24: Factor w/ 8 levels “Child 18 or older”, ...: 7 5 1 3 3 8 5 6 8 5 ...

V25: num: 1700 1054 992 1758 1069 ...

V26: Factor w/ 10 levels “?”, “Abroad to MSA”, ...: 1 4 1 6 6 1 6 1 1 6 ...

V27: Factor w/ 9 levels “?”, “Abroad”, ...: 1 9 1 7 7 1 7 1 1 7 ...

V28: Factor w/ 10 levels “?”, “Abroad”, ...: 1 10 1 8 8 1 8 1 1 8 ...

V29: Factor w/ 3 levels “No”, “Not in universe under 1year old”,
...:

2 1 2 3 3 2 3 2 2 3 ...

V30: Factor w/ 4 levels “?”, “No”, “Not in universe”, ...: 1 4 1 3 3 1 3 1 1 3 ...

V31: num: 0 1 0 0 0 1 6 4 5 6 ...

V32: Factor w/ 5 levels “Both parents present”, ...: 5 5 5 1 1 5 5 5 5 5 ...

V33: Factor w/ 43 levels “?”, “Cambodia”, ...: 41 41 42 41 41 32 41 41 41 41 ...

V34: Factor w/ 43 levels “?”, “Cambodia”, ...: 41 41 42 41 41 41 41 41 41 41 ...

V35: Factor w/ 43 levels “?”, “Cambodia”, ...: 41 41 42 41 41 41 41 41 41 41 ...

V36: Factor w/ 5 levels “Foreign born- Not a citizen of U S”, ...: 5 5 1 5 5 5 5 5 5 5 ...

V37: num: 0 0 0 0 0 2 0 0 0 0 ...

V38: Factor w/ 3 levels “No”, “Not in universe”, ...: 2 2 2 2 2 2 2 2 2 2 ...

V39: num: 2 2 2 0 0 2 2 2 2 2 ...

V40: num: 0 52 0 0 0 52 52 30 52 52 ...

V41: num: 95 94 95 94 94 95 94 95 95 94 ...

V42: Factor w/ 2 levels “–50000.”, “50000+.”: 1 1 1 1 1 1 1 1 1 1 ...
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8.2.2 getDataCensus: Getting the Data from OML

The CID data set can be configured with respect to the target variable, the task,
and the complexity of the data (e.g., number of samples, cardinality). The following
variables are defined:

target <- "age"
task.type <- "classif"
nobs <- 1e4
nfactors <- "high"
nnumericals <- "high"
cardinality <- "high"
data.seed <- 1
cachedir <- "oml.cache"

These variables will be passed to the function getDataCensus to obtain the
data frame dfCensus (Fig. 8.2). The function getDataCensus is used to get
the OML data (from cache or from server). The arguments target, task.type,
nobs, nfactors, nnumericals, cardinality and cachedir can be used,
see Table8.3.

dfCensus <- getDataCensus(
task.type = task.type,
nobs = nobs,
nfactors = nfactors,
nnumericals = nnumericals,
cardinality = cardinality,
data.seed = data.seed,
cachedir = cachedir,
target = target

)

The dfCensus data set used in the case studies has 10000 observations of 23
variables, which are shown in Table8.4.

Table 8.3 Parameters used to get the CID data set. A detailed description can be found in Sect. 8.2.1

Parameter Value used in the
case studies

Description

Target “age” Target variable. Age smaller or larger 40years

Cachedir “oml.cache” Location of the cached data

task.type “classif” Classification task. The target is used for defining the classes

Nobs 1e4 The complete data set has 299, 285 observations. nobs
observations are randomly sampled

nfactors “high” Number of categorical features

nnumericals “high” Number of numerical features

Cardinality “high” Number of categories

data.seed 1 Seed used for sampling nobs observations
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Table 8.4 The dfCensus data set

Parameter Type Storage
levels

Mode, Example Description

Capital_gains Num Double 0 min: 0. max:
9.9999 × 104. 3.56 %
have capital gains

Capital_losses Num Double 0 min: 0. max: 3900.
1.66 % have capital
losses

Sivdends_from_stocks Num Double 0 min: 0. max:
9.9999 × 104. 9.96 %
have dividends from
stock

Num_persons_-
worked_for_employer

Num Integer 0 min: 0. max: 6.

Wage_per_hour Num Double 0 min: 0. max: 6800.

Weeks_worked_in_year Num Integer 0 min: 0. max: 52.

Class_of_worker Factor 9 “Federal government”

Industry_code Factor 51 “0”

Occupation_code Factor 47 “0”

Education Factor 17 “10th grade”

Marital_status Factor 7 “Divorced”

Major_industry_code Factor 24 “Agriculture”

Major_occupation_code Factor 15 “Adm support
including clerical”

Race Factor 5 “Amer Indian Aleut
or Eskimo”

Hispanic_origin Factor 10 “All other”

Sex factor 2 “Female”, “Male”

Tax_filer_status Factor 6 “Head of household”

Detailed_household_and-
_family_stat

Factor 29 “Child < 18 ever
marr not in
subfamily”

Detailed_household_
summary_in_household

Factor 8 “Child 18 or older”

Country_of_birth_self factor 42 “?”, “Cambodia”

Citizenship Factor 5 “Foreign born- Not a
citizen of U S”

Income_class Factor 2 “–50000.”, “50000+.”

Target Factor 2 “FALSE”, “TRUE”
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•! Attention: Outliers and Inconsistent Data

• Target: The values of the target variable are not equally balanced, because 61.27%
of the values are TRUE, i.e., older than 40years.

• The numerical variables num_persons_worked_for_employer and
weeks_worked_in_year can be treated as an integers.

• The factor income_class can be treated as a logical value.
• Summaries of the numerical variables:

summary(dfCensus[,sapply(dfCensus, is.numeric)])

## wage_per_hour capital_gains capital_losses divdends_from_stocks
## Min. : 0.00 Min. : 0.0 Min. : 0.00 Min. : 0.0
## 1st Qu.: 0.00 1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.: 0.0
## Median : 0.00 Median : 0.0 Median : 0.00 Median : 0.0
## Mean : 51.46 Mean : 452.1 Mean : 31.22 Mean : 202.2
## 3rd Qu.: 0.00 3rd Qu.: 0.0 3rd Qu.: 0.00 3rd Qu.: 0.0
## Max. :6800.00 Max. :99999.0 Max. :3900.00 Max. :99999.0
## num_persons_worked_for_employer weeks_worked_in_year
## Min. :0.000 Min. : 0.00
## 1st Qu.:0.000 1st Qu.: 0.00
## Median :1.000 Median : 6.00
## Mean :1.922 Mean :22.75
## 3rd Qu.:4.000 3rd Qu.:52.00
## Max. :6.000 Max. :52.00

• capital_gains and divdends_from_stocks share the same upper limit:
9.9999 × 104, which appears to be an artificial upper limit.

• Wage per Hour: There is one entry with 6800, but income class –50000.

start

1 Data Acquisition

getDataCensus

dfCensus:
'data.frame': 1e4 obs. of  23 variables:

$ class_of_worker: Factor w/ 7 levels " Federal government",..: 4 4 5 4 5 4 4 4 1 5 ...
$ industry_code: Factor w/ 24 levels "0","4","5","7",..: 1 1 3 1 11 1 1 1 16 19 ...
$ occupation_code: Factor w/ 26 levels "0","1","2","3",..: 1 1 7 1 3 1 1 1 9 16 ...

Fig. 8.2 Step 1 of the hyperparameter-tuning pipeline introduced in this chapter: the data acqui-
sition (getDataCensus) generates the data set dfCensus, which is a subset of the full CID
data set presented in Table8.2, because the parameter setting nobs = 1e4, nfactors = “high”,
nnumericals = “high”, and cardinality = “high” was chosen
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8.3 Experimental Setup and Configuration of the Random
Forest Model

8.3.1 getMlConfig: Configuration of the ML Models

Since we are considering a binary classification problem (age, i.e., young versus
old), the mlr task.type is set to classif. Random forests (“ranger”) will
be used for classification.

model <- "ranger"
cfg <- getMlConfig(
target = target,
model = model,
data = dfCensus,
task.type = task.type,
nobs = nobs,
nfactors = nfactors,
nnumericals = nnumericals,
cardinality = cardinality,
data.seed = data.seed,
prop = 2 / 3

)

As a result from calling getMlConfig, the list cfg is available. This list has
13 entries, that are summarized in Table8.5.

Table 8.5 Configuration list with 13 entries as a result from calling getMlConfig

Parameter Value Description

Learner “classif.ranger” Learner

Tunepars “num.trees”, “mtry”,
“sample.fraction”, “replace”, and
“respect.unordered.factors”

The hyperparameters of the model

Defaults Default hyperparameter settings of
the tunepars

Lower Lower bounds of the hyperparameters

Upper Upper bounds of the hyperparameters

Type “numeric”, “integer”, or “factor” Hyperparameter variable types

Fixpars – Fixed hyperparameters

Factorlevels Levels of each factor variable

Transformations Applied transformations

Dummy Dummy encoding Used by xgboost

Relpars – Parameters relative to others

Task mlr task object

Resample Resampling strategy from mlr
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8.3.2 Implementation Details: getMlConfig

The function getMlConfig combines results from the following functions

• getMlrTask
• getModelConf
• getMlrResample

The functions will be explained in the following (Fig. 8.3).

8.3.2.1 getMlrTask: Problem Design and Definition of the Machine
Learning Task

The target variable of the data set is age (age below or above 40years). The problem
design describes target and task type, the number of observations, as well as the
number of factorial, numerical, and cardinal variables. The data seed can also be
specified here.

task <- getMlrTask(dataset = dfCensus,
task.type = "classif",

2.1.1 Task

getMlrTask

2.1.2 Model

getModelConf

2.1.3 Train, Val, Test

getMlrResample

dfCensus (data.frame)

cfg: List of 13
 $ learner: chr "classif.ranger"
 $ tunepars: chr [1:5] "num.trees" "mtry" "sample.fraction" "replace" ...
 $ defaults: num [1:5] 8.97 4 1 2 1
 $ lower: num [1:5] 0 1 0.1 1 1
 $ upper: num [1:5] 11 22 1 2 2
 $ type: chr [1:5] "numeric" "integer" "numeric" "factor" ...

 $ factorlevels: List of 2
 $ transformations: List of 5
 $ dummy: logi FALSE
 $ relpars: list()
 $ task: List of 6
 $ resample: List of 5 

Fig. 8.3 Step 2of the hyperparameter-tuning pipeline introduced in this chapter: the data acquisition
(getMlConfig) generates the list cfg



8 Case Study I: Tuning Random Forest (Ranger) 199

data.seed = 1)

The function getMlrTask is an interface to the function makeClassifTask
from the mlr package. The resulting task “encapsulates the data and specifies—
through its subclasses—the type of the task. It also contains a description object
detailing further aspects of the data.” (Bischl et al. 2016).

Background: getMlrTask Implementation

The data set dfCensus is passed to the function getMlrTask, which computes
an mlr task as shown below:

getMlrTask <- function(dataset,
task.type = "classif",
data.seed = 1) {

target <- "target"
task.nobservations <- nrow(dataset)
task.nfeatures <- ncol(dataset)
task.numericals <- lapply(dataset, class) != "factor"
task.numericals[target] <- FALSE
task.factors <- lapply(dataset, class) == "factor"
task.factors[target] <- FALSE
task.nnumericals <- sum(task.numericals)
task.nfactors <- sum(task.factors)
task.nlevels <-
as.numeric(lapply(dataset, function(x) {
length(unique(x))

}))
task.nlevels[!task.factors] <- 0
task.nlevels.max <- max(task.nlevels)
task <- makeClassifTask(data = dataset, target = target)
task <- impute(task,
classes = list(
factor = imputeMode(),
integer = imputeMedian(),
numeric = imputeMean()

)
)$task
return(task)

}

Because the functiongetMlrTask generates an mlrTask instance, its elements
can be accessed with mlr methods, i.e., functions from mlr can be applied to the
Tasktask. For example, the feature names that are based on the data can be obtained
with the mlr function getTaskFeatureNames as follows:
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head(getTaskFeatureNames(task))

## [1] "class_of_worker" "industry_code" "occupation_code" "education"
## [5] "wage_per_hour" "marital_status"

TheTasktask provides the basis for the the information that is needed to perform
the hyperparameter tuning. Additional information is generated by the functions
getModelConf, that is presented next.

8.3.2.2 getModelConf: Algorithm Design—Hyperparameters
of the Models

The function getModelConf generates a list with the entries learner,
tunepars, defaults, lower, upper, type, fixpars, factorlevels,
transformations, dummy, relpars, task, and resample that are sum-
marized in Table8.5.

The ML configuration list modelCfg contains information about the hyperpa-
rameters of the ranger model; see Table8.6.

nFeatures <- sum(task$task.desc$n.feat)
modelCfg <- getModelConf(
task.type = task.type,
model = model,
nFeatures = nFeatures

)

Background: Model Information from getModelConf

The information about the ranger hyperparameters, their ranges and types, is com-
piled as a list. It is accessible via the function getModelConf. This function man-
ages the information about the ranger model as follows:

Table 8.6 Ranger hyperparameter. NFeats denotes the output from getTaskNFeats(task)

Variable Name Type Default Upper Lower Trans

x1 num.trees Numeric 8.965784 0 11 2pow_round

x2 mtry Integer 4 1 22 id

x3 sample.fraction Numeric 1 0.1 1 id

x4 Replace Factor 2 1 2 id

x5 respect.unordered.factors Factor 1 1 2 id
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learner <- paste(task.type, "ranger", sep = ".")
tunepars <- c(
"num.trees",
"mtry",
"sample.fraction",
"replace",
"respect.unordered.factors"

)
defaults <- c(
log(500, 2), floor(sqrt(nFeatures)), 1,
2, 1

)
lower <- c(0, 1, 0.1, 1, 1)
upper <- c(11, nFeatures, 1, 2, 2)
type <- c(
"numeric", "integer", "numeric", "factor",
"factor"

)
fixpars <- list(num.threads = 1)
factorlevels <-
list(
respect.unordered.factors = c(
"ignore",
"order", "partition"

),
replace = c(FALSE, TRUE)

)
transformations <- c(
trans_2pow_round, trans_id, trans_id,
trans_id, trans_id

)
dummy <- FALSE
relpars <- list()

Similar information is provided for everyMLmodel.Note: This list is independent
from mlr, i.e., it does not use any mlr classes.

8.3.2.3 getMlrResample: Training and Test Data

The functiongetMlrResample is the third and last subroutine used by the function
getMlConfig. It takes care of the partitioning of the data into training data, X (train),
and test data, X (test), based on prop. The function getMlrResample from the
package SPOTMisc is an interface to the mlr function makeFixedHoldout
Instance, which generates a fixed holdout instance for resampling.
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rsmpl <- getMlrResample(task=task,
dataset = dfCensus,
data.seed = 1,
prop = 2/3)

rsmpl specifies the training data set, X (train), which contains prop= 2/3 of the
data and the testing data set, X (test) with the remaining 1 − prop = 1/3 of the data.
It is implemented as a list, the central components are lists of indices to select the
members of the corresponding train or test data sets.

Background: getMlrResample

Information about the data split are stored in the cfg list as cfg$resample. They
can also be computed directly using the function getMlrResample. This function
computes an mlr resample instance generated with the function
makeFixedHoldoutInstance.

getMlrResample <- function(task,
dataset,
data.seed = 1,
prop = NULL) {

set.seed(data.seed)
train.id <- sample(1:getTaskSize(task),

size = getTaskSize(task) * prop,
replace = FALSE)

test.id <- (1:getTaskSize(task))[-train.id]
rsmpl = makeFixedHoldoutInstance(train.id,

test.id,
getTaskSize(task))

return(rsmpl)

The functiongetMlrResample instantiated an mlr resampling strategy object
from the class makeResampleInstance. This mlr class encapsulates training
and test data sets generated from the data set for multiple iterations. It essentially
stores a set of integer vectors that provide the training and testing examples for each
iteration. (Bischl et al. 2016). The first entry, desc, describes the split between
training and test data and its properties, e.g., what to predict during resampling:
“train”, “test” or “both” sets. The second entry, size, stores the size of
the data set to resample. The third and fourth elements are lists with the training
and test indices, i.e., for 6666 indices for the X (train)data set and 3334 indices for
the X (test)data set. These indices will be used for all iterations. The last element
is optional and encodes whether specific iterations “belong together” (Bischl et al.
2016).
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str(rsmpl)

## List of 5 ## $
desc :List of 7 ## ..$ split : num 0.667 ## ..$ id : chr
"holdout" ## ..$ iters : int 1 ## ..$ predict : chr "test"
## ..$ stratify : logi FALSE ## ..$ fixed : logi FALSE ##
..$ blocking.cv: logi FALSE ## ..- attr(*, "class")= chr [1:2]
"HoldoutDesc" "ResampleDesc" ## $ size : int 10000 ## $
train.inds:List of 1 ## ..$ : int [1:6666] 1017 8004 4775 9725
8462 4050 8789 1301 8522 1799 ... ## $ test.inds :List of 1 ## ..$
: int [1:3334] 1 10 11 12 13 17 20 23 25 28 ... ## $ group : Factor
w/ 0 levels: ## - attr(*, "class")= chr "ResampleInstance"

•> Important: Training and Test Data

mlr’s function resample requires information about the test data, because it
manages the train and test data partition internally. Usually, it is considered “best
practice” inMLnot to pass the test set to theMLmodel. To the best of our knowledge,
this is not possible in mlr.

Therefore, the full data set (training and test data) with nobs= 104 observations
is passed to the resample function. Because mlr is an established R package, we
trust the authors that mlr keeps training and test data separately.

An additional problem occurs if the test data set, X (test), contains data with
unknown labels, i.e., factors with unknown levels. If these unknown levels are passed
to the trained model, predictions cannot be computed.

8.4 Objective Function (Model Performance)

8.4.1 Performance Measures

The evaluation of hyperparameter values requires a measure of quality, which deter-
mines how well the resulting models perform. For the classification experiments, we
useMeanMis-Classification Error (MMCE) as defined in Eq. (2.2). The hyperparam-
eter tuner Sequential Parameter Optimization Toolbox (SPOT) uses these MMCE on
the test data set to determine better hyperparameter values.

In addition to MMCE, we also record run time (overall run time of a model
evaluation, run time for prediction, run time for training). To mirror a realistic use
case, we specify a fixed run time budget for the tuner. This limits how long the tuner
may take to find potentially optimal hyperparameter values.

For a majority of the models, the run time of a single evaluation (training +
prediction) is hard to predict and may easily become excessive if parameters are

http://dx.doi.org/https://doi.org/10.1007/978-981-19-5170-1_2
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chosen poorly. In extreme cases, the run time of a single evaluation may exceed
drastically the planned run time. In such a case, there would be insufficient time
to test different hyperparameter values. To prevent this, we specify a limit for the
run time of a single evaluation, which we call timeout. When the timeout is
exceeded by the model, the evaluation will be aborted. During the experiments, we
set the timeout to a twentieth of the tuner’s overall run time budget.

timebudget <- 60 ## secs
timeout <- timebudget / 20

Exceptions are the experiments with Decision Tree (DT) (rpart): Since rpart
evaluates extremely quickly, (in our experiments: usually much less than a second)
the timeout is not required. In fact, using the timeout would add considerable
overhead to the evaluation time in this case.

The HPT task can be parallelized by specifying nthread values larger than
one. Only one thread was used in the experiment. In addition to Root Mean Squared
Error (RMSE) and MMCE, we also record run time (overall run time of a model
evaluation, run time for prediction, run time for training). Several alternative metrics
can be specified.

Example: Changing the loss function

For example, logloss can be selected as follows:

if (task.type == "classif") {
fixpars <- list(
eval_metric = "logloss",
nthread = 1

)
} else {
fixpars <- list(
eval_metric = "rmse",
nthread = 1

)
}

8.4.2 Handling Errors

If the evaluation is aborted (e.g., due to timeout or in case of some numerical
instability), we still require a quality value to be returned to the tuner, so that the
search can continue. This return value should be chosen, so that, e.g., additional
evaluations with high run times are avoided. At the same time, the value should
be on a similar scale as the actual quality measure, to avoid a deterioration of the
underlying surrogate model. To achieve this, we return the following values when
an evaluation aborts.
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• Classification: Model quality for simply predicting the mode of the training data.
• Regression: Model quality for simply predicting the mean of the training data.

8.4.3 Imputation of Missing Data

The imputation of missing values can be implemented using built-in methods from
mlr. These imputations are based on the hyperparameter types: factor variables
will use imputeMode, integers use imputeMedian, and numerical values use
imputeMean.

•! Important: Imputation

There are two situations when imputation can be applied:

1. Missing data, i.e., CID data are incomplete. This imputation can be handled by
the mlr methods described in this section.

2. Missing results, i.e., performance values of the ML method such as loss or accu-
racy. This imputation can be handled by spot.

8.4.4 getObjf: The Objective Function

After the ML configuration is compiled via getMlConfig, the objective function
has to be generated.

objf <- getObjf(
config = cfg,
timeout = timeout

)

The getObjf compiles information from the cfg and information about the
budget (timeout) (Fig. 8.4).

Background: getObjf as an Interface to mlr’s resample function

Note, in addition to hyperparameter information,cfg includes information about the
mlr task. getObjf calls the mlr function makeLearner. The information is
used to execute the resample function, which fits a model specified by learner
on a task. Predictions and performance measurements are computed for all training
and testing sets specified by the resampling method (Bischl et al. 2016).

A simplifiedversion that implements the basic elements of the functiongetObjf,
is shown below. After the parameter names are set, the parameter transformations are
performed and the complete set of parameters is compiled: this includes converting
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Fig. 8.4 Step 3 of the
hyperparameter-tuning
pipeline introduced in this
chapter: (getObjf)
generates the function objf 2.2 Objective Function

getObjf

cfg (list)

objf:
function (x, seed)  

integer levels to factor levels for categorical parameters, setting fixed parameters
(which are not tuned, but are also not set to default value), and setting parame-
ters in relation to other parameters (e.g., minbucket relative to minsplit). Next, the
learner lrn is generated via mlr’s function makeLearner, and the measures are
defined. Here, the fixed set mmce, timeboth, timetrain, and timepredict
are used. After setting the RandomNumber Generator (RNG) seed, the mlr function
resample is called. The function resample fits a model specified by the learner
on a task and calculates performance measures for all training sets, X (train), and all
test sets, X (test), specified by the resampling instance config$resample that was
generated with the function getMlrResample as described in Sect. 8.3.2.3.

getObjf <- function(config, timeout = 3600) {
objfun <- function(x, seed) {
params <- as.list(x)
names(params) <- config$tunepars
for (i in 1:length(params)) {
params[[i]] <- config$transformations[[i]](params[[i]])

}
params <- int2fact(params, config$factorlevels)
params <- c(params, config$fixpars)
nrel <- length(config$relpars)
for (i in 1:nrel) {
params[names(config$relpars)[i]] <-
with(params, eval(config$relpars[[i]]))

}
lrn <- makeLearner(config$learner, par.vals = params)
measures <- list(mmce, timeboth, timetrain, timepredict)
set.seed(seed)
res <- resample(lrn,
config$task,
config$resample,
measures = measures
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)
timestamp <- as.numeric(Sys.time())
return(matrix(c(res$aggr, timestamp), 1))

}
objvecf <- function(x, seed) {
res <- NULL
for (i in 1:nrow(x)) {
res <- rbind(res, objfun(x[i, , drop = FALSE], seed[i]))

}
return(res)

}
}

The return value, res, of the objective function generated with getObjf was
evaluated on the test set, X (test).

names(res$aggr)

## [1] "mmce.test.mean" "timeboth.test.mean" "timetrain.test.mean"
## [4] "timepredict.test.mean"

No explicit validation set, X (val), is defined during the HPT procedure.
Importantly, randomization is handled by spot by managing the seed via

spot’s seedFun argument. The seed management guarantees that two different
hyperparameter configurations, λi and λ j , are evaluated on the same test data X (test).
But if the same configuration is evaluated a second time, it will receive a new test
data set.

8.5 spot: Experimental Setup for the Hyperparameter
Tuner

The R package SPOT is used to perform the actual hyperparameter tuning (optimiza-
tion). The hyperparameter tuner itself has parameters such as kind and size of the
initial design, methods for handling non-numerical data (e.g., Inf, NA, NaN), the
surrogate model and the optimizer, search bounds, number of repeats, methods for
handling noise.

Because the generic SPOTsetupwas introduced inSect. 4.5, this section highlights
the modifications of the generic setup that were made for the ML runs.

http://dx.doi.org/10.1007/978-981-19-5170-1_4
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The third step of the hyperparameter-tuning pipeline as shown in Fig. 8.5 starts
the SPOT hyperparameter tuner.

result <- spot(
x = NULL,
fun = objf,
lower = cfg$lower,
upper = cfg$upper,
control = list(
types = cfg$type,
time = list(maxTime = timebudget / 60),
noise = TRUE,
OCBA = TRUE,
OCBABudget = 3,
seedFun = 123,
designControl = list(
replicates = Rinit,
size = initSizeFactor * length(cfg$lower)

),
replicates = 2,
funEvals = Inf,
modelControl = list(
target = "ei",
useLambda = TRUE,
reinterpolate = TRUE

),
optimizerControl = list(funEvals = 200 * length(cfg$lower)),
multiStart = 2,
parNames = cfg$tunepars,
yImputation = list(
handleNAsMethod = handleNAsMean,
imputeCriteriaFuns = list(is.infinite, is.na, is.nan),
penaltyImputation = 3

)
)

)

The result from the spot run is the result list, which can be written to a
file. The full R code for running this case study is shown Sect. 8.10 and the SPOT
parameters are listed in Table8.7.

Background: Implementation details of the function spot

The initial design is created by Latin Hypercube Sampling (LHS) (Leary et al. 2003).
The size of that design (number of sampled configurations of hyperparameters) cor-
responds to 2 × k. Here, k is the number of hyperparameters.
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3 Hyperparameter Tuning

spot

cfg (list), objf (function)

result (list)
List of 12

 $ xbest: num [1, 1:5] 6.566 19 0.116 2 2
 $ ybest: num [1, 1] 0.174
 $ x: num [1:35, 1:5] 2.16 7.31 4.62 5.89 10.46 ...
 $ xt: logi NA
 $ y: num [1:35, 1] 0.205 0.19 0.199 0.182 0.216 ...
 $ logInfo: num [1:35, 1:4] 0.085 0.282 0.162 0.208 3 ...
 $ count: int 35
 $ msg: chr "budget exhausted"
 $ modelFit:List of 33
 $ ybestVec: num [1:35] 0.182 0.182 0.182 0.182 0.182 ...
 $ ySurr: num [1:35] NA NA NA NA NA NA NA NA NA NA ...
 $ control: List of 35

Fig. 8.5 The hyperparameter-tuning pipeline: the hyperparameter tuner SPOT is called (spot)

Table 8.7 SPOT parameters used forML hyperparameter tuning. Parameters, that are implemented
as lists are described in Table8.8. This table shows only parameters that were modified for the ML
and DL hyperparameter-tuning tasks. The full list is shown in Table 4.2

Parameter Value Description

x x0 Starting point

fun objf Objective function as
described in Sect. 8.4.4

lower cfg$lower Lower bound

upper cfg$upper Upper bound

control list See description in Table8.8

http://dx.doi.org/10.1007/978-981-19-5170-1_4
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Table 8.8 SPOT control list parameters used for ML hyperparameter tuning. This table shows
only parameters that were modified for the ML and DL hyperparameter-tuning tasks. The full list
is shown in Table 4.2

Parameter Value Description

funEvals Inf

multiStart 2

noise Noise

parNames cfg$tunepars

seedFun 123

Time List (maxTime =
timebudget/60)

Convert to minutes

transformFun cfg$transformations

Types cfg$type

designControl Replicates Rinit

Size initSizeFactor *
length(cfg$lower)

yImputation List

modelControl funEvals multFun * length(cfg$lower)

optimizerControl funEvals multFun * length(cfg$lower)

8.6 Tunability

The following analysis is based on the results from the spot run, which are stored
in the data folder of this book. They can be loaded with the following command:

load("supplementary/ch08-CaseStudyI/ranger00001.RData")

Now the information generated with spot, which was stored in the result list
as described in Sect. 8.5, is available in the R environment.

8.6.1 Progress

The function prepareProgressPlot generates a data frame that can be used
to visualize the hyperparameter-tuning progress. The data frame can be passed to
ggplot. Figure8.6 visualizes the progress during the ranger hyperparameter-
tuning process described in this study.

After 60min, 582 rangermodels were evaluated. Comparing the worst config-
uration that was observed during the HPT with the best, a 25.8442 % reduction was
obtained. After the initial phase, which includes 20 evaluations, the smallest MMCE
reads 0.179964. The dotted red line in Fig. 8.6 illustrates this result. The final best
value reads 0.1712657, i.e., a reduction of the MMCE of 4.8333%. These values, in

http://dx.doi.org/10.1007/978-981-19-5170-1_4
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Fig. 8.6 Ranger: Hyperparameter-tuning progress. The red dashed line denotes the best value
found by the initial design. The blue dashed line represents the best value from the whole run

combination with results shown in the progress plot (Fig. 8.6) indicate that a quick
HPT run is able to improve the quality of the rangermethod. It also indicates, that
increased run times do not result in a significant improvement of the MMCE.

•! Attention

These results do not replace a sound statistical comparison, they are only indicators,
not final conclusions.

8.6.2 evalParamCensus: Comparing Default and Tuned
Parameters on Test Data

As a comparison basis, an additional experiment for the ranger model where
all hyperparameter values remain at the model’s default settings and an additional
experiment where the tuned hyperparameters are used, is performed. In these cases,
a timeout for evaluation was not set. Since no search takes place, the overall run
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time for default values is anyways considerably lower than the run time of spot.
The final comparison is based on the classification error as defined in Eq. (2.2).
The motivation for this comparison is a consequence of the tunability definition; see
Definition 2.26.

To understand the impact of tuning, the best solution obtained is evaluated for
n repeats and compared with the performance (MMCE) of the default settings. A
power analysis, as described in Sect. 5.6.5 is performed to estimate the number of
repeats, n.

The corresponding values are shown in Table8.9. The function
evalParamCensus was used to perform this comparison. Results from the eval-
uations on the test data for the default and the tuned hyperparameter configurations
are saved to the corresponding files.

Default and tuned results for the ranger model are available in the supplemen-
tary data folder as rangerDefaultEvaluation.RData and
ranger00001Evaluation.RData, respectively.

•> Important:

As explained in Sect. 8.4.4, no explicit validation set, X (val), is defined during the
HPT procedure. The response surface function ψ(test) is optimized. But, since we
can generate new data sets, (X,Y ) randomly, the comparison is based on several,
randomly generated samples.

Background: Additional Scores

The scores are stored as amatrix.Attributes are used to label themeasures. In addition
to mmce, the following measures are calculated for each repeat: accuracy, f1,
logLoss, mae, precision, recall, and rmse. These results are stored in the
corresponding RData files.

Hyperparameters of the default and the tuned configurations are shown in
Table8.9.

Table 8.9 Comparison of default and tuned hyperparameters of the “ranger” model. r.u.f.
denotes respect.unordered.factors and s.f sample.fraction
Hyperparam. num.trees mtry s.f Replace r.u.f Min. 1st

Qu.
Median Mean 3rd

Qu.
Max.

Default 8.966 4 1.0 2 1 0.1803 0.1879 0.1929 0.1913 0.1952 0.1998

Tuned 9.305 20.000 0.142 2.000 2.000 0.1737 0.1809 0.1872 0.1856 0.1889 0.1986

Tuned OCBA 9.305 20.000 0.142 2.000 2.000 0.1737 0.1809 0.1872 0.1856 0.1889 0.1986

http://dx.doi.org/https://doi.org/10.1007/978-981-19-5170-1_2
http://dx.doi.org/https://doi.org/10.1007/978-981-19-5170-1_2
http://dx.doi.org/10.1007/978-981-19-5170-1_5


8 Case Study I: Tuning Random Forest (Ranger) 213

Fig. 8.7 Comparison of
ranger algorithms with
default (D) and tuned (T)
hyperparameters.
Classification error
(MMCE). Vertical lines
mark quantiles (0.25, 0.5,
0.75) of the corresponding
distribution. Numerical
values are shown in Table8.9
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The corresponding R code for replicating the experiment is available in the code
folder. The result files can be loaded and the violin plot of the obtained MMCE can
be visualized as shown in Fig. 8.7. It can be seen that the tuned solutions provide a
better MMCE on the holdout test data set (X,Y )(test).

8.7 Analyzing the Random Forest Tuning Process

To analyze effects and interactions between hyperparameters of the rangermodel
as defined in Table8.6, a simple regression tree as shown in Fig. 8.8 can be used.

sample.fraction < 0.48

respect.unordered.factors >= 2

num.trees >= 7.7

num.trees >= 6.7

0.18
100%

0.18
96%

0.18
94%

0.18
89%

0.18
5%

0.19
2%

0.2
4%

0.19
2%

0.21
2%

yes no

Fig. 8.8 Regression tree. Case study I. Ranger
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The regression tree supports the observations, that hyperparameter values for
sample.fraction, num.trees, and respect.unordered.factors, have the largest effect on
the MMCE.

b!
sample.fraction num.trees respect.unordered.factors mtry replaRce

1 0.010297452 0.006007073 0.0015083938 0.0013354262 0.00015087878

Parallel plots visualize relations between hyperparameters. The SPOTMisc func-
tion ggparcoordPrepare provides an interface from the data frame result,
which is returned from the function spot, to the function ggparcoord from
the package GGally. The argument probs specifies the quantile probabilities
for categorizing the result values. In Fig. 8.9, quantile probabilities are set to
c(0.25, 0.5, 0.75). Specifying three values results in four categories with
increasing performance, i.e., the first category (0–25%) contains poor results, the sec-
ond and the third categories, 25–50 % and 50 to 75%, respectively, contain mediocre
values, whereas the last category (75–100%) contains the best values.

In addition to labeling the best configurations, the worst configurations can also
be labeled.

Results from the spot run can be passed to the function plotSenstivity,
which generates a sensitivity plot as shown in Fig. 8.10. There are basically two
types of sensitivity plots that can be generated with plotSenstivity: using
the argument type = “best”, the best hyperparameter configuration is used.
Alternatively, using type = “agg”, simulations are performed over the range of
all hyperparameter settings.Note, the second option requires additional computations
and depends on the simulation output, which is usually non-deterministic. Output
from the second option is shown in Fig. 8.11.

Fig. 8.9 Parallel plot of results from the ranger hyperparameter-tuning process. num.trees (x1),
mtry (x2), sample.fraction (x3), replace (x4), and respect.unordered.factors (x5) are shown. Best
configurations in green
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Fig. 8.10 Sensitivity plot (best). num.trees (x1), mtry (x2), sample.fraction (x3), replace (x4), and
respect.unordered.factors (x5) are shown
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Fig. 8.11 Ranger: Sensitivity plot (aggregated). num.trees (x1), mtry (x2), sample.fraction (x3),
replace (x4), and respect.unordered.factors (x5) are shown

If the results from using the argument type = “best” and type = “agg”
are qualitatively similar, only the plot based on type = “best” will be shown in
the remainder of this book. Parallel plots will be treated in a similar manner. Source
code for generating all plots is provided.

SPOT provides several tools for the analysis of interactions. Highly recommended
is the use of contour plots as shown in Fig. 8.12.

Finally, a simple linear regression model can be fitted to the data. Based on the
data from SPOT’s result list, the hyperparameters replace and respect.
unordered.factors are converted to factors and the R function lm is
applied. The summary table is shown below.
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Fig. 8.12 Surface plot: x3 (sample.fraction) plotted against x1 (numtrees)

##
## Call:
## lm(formula = y ˜ ., data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0122996 -0.0013971 -0.0000444 0.0014070 0.0162966
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.991e-01 1.198e-03 166.275 <2e-16 ***
## num.trees -2.220e-03 1.052e-04 -21.115 <2e-16 ***
## mtry 3.907e-05 3.647e-05 1.071 0.2845
## sample.fraction 1.716e-02 1.038e-03 16.533 <2e-16 ***
## replaceTRUE 1.431e-03 5.580e-04 2.564 0.0106 *
## respect.unordered.factorsTRUE -6.276e-03 6.378e-04 -9.840 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.0026 on 576 degrees of freedom
## Multiple R-squared: 0.7682, Adjusted R-squared: 0.7662
## F-statistic: 381.7 on 5 and 576 DF, p-value: < 2.2e-16

Although this linear model requires a detailed investigation (a mispecification
analysis is necessary), it also is in accordance with previous observations that hyper-
parameters sample.fraction, num.trees, and respect.unordered.factors have signifi-
cant effects on the loss function.

Results indicate that sample.fraction is the dominating hyperparameter. Its setting
has the largest impact on ranger’s performance. For example, the sensitivity plot
Fig. 8.10 shows that small sample.fraction values improve the performance. The
larger values clearly improve the performance. The regression tree analysis (see
Fig. 8.8) supports this hypothesis, because sample.fraction is the root node of the
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Table 8.10 Case study I: result analysis

p-value Decision Power Cohen’s d Hedge’s g Severity

0 H0 rejected 0.9999941 1.0329001 1.0194859 � ≤ 0.005 are
well supported

tree and values smaller than 0.48 are recommended. Furthermore, the regression tree
analysis indicates that additional improvements can be obtained if the num.trees is
greater equal 2. These observations are supported by the parallel plots and surface
plots, too. The linear model can be interpreted in a similar manner.

8.8 Severity: Validating the Results

Now, let us proceed to analyze the statistical significance of the achieved performance
improvement. The results from the pre-experimental runs indicate that the difference
is x̄ = 0.0057. As this value is positive, for the moment, let us assume that the tuned
solution is superior. The corresponding standard deviation is sd = 0.0045. Based on
Eq. 5.14, and with α = 0.05, β = 0.2, and � = 0.005 let us identify the required
number of runs for the the full experiment using the getSampleSize function.

For a relevant difference of 0.005, approximately 10 runs per algorithm are
required. Since, we evaluated for 30 repeats, we can now proceed to evaluate the
severity and analyse the performance improvement achieved through tuning the
parameters of the ranger.

The summary result statistics is presented in Table 8.10. The decision based on
p-value is to reject the null hypothesis, i.e., the claim that the tuned parameter setup
provides a significant performance improvement in terms of MMCE is supported.
The effect size suggests that the difference is of larger magnitude. For the chosen
� = 0.005, the severity value is at 0.8 and thus it strongly supports the decision
of rejecting the H0. The severity plot is shown in Fig. 8.13. Severity shows that
performance difference smaller than or equal to 0.005 are well supported.

8.9 Summary and Discussion

The analysis indicates that hyperparameter sample.fraction has the greatest effect on
the algorithm’s performance. The recommended value of sample.fraction is 0.1416,
which is much smaller than of 1.

This case study demonstrates how functions from the R packages mlr and SPOT
can be combined to perform a well-structured hyperparameter tuning and analysis.
By specifying the time budget via maxTime, the user can systematically improve
hyperparameter settings. Before applying ML algorithms such as RF to complex

http://dx.doi.org/10.1007/978-981-19-5170-1_5
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Fig. 8.13 Tuning Random Forest. Severity of rejecting H0 (red), power (blue), and error (gray).
Left: the observed mean x̄ = 0.0057 is larger than the cut-off point c1−α = 0.0014 Right: The claim
that the true difference is as large 0.005 are well supported by severity. However, any difference
larger than 0.005 is not supported by severity

classification or regression problems, HPT is recommended. Wrong hyperparameter
settings can be avoided. Insight into the behavior of ML algorithms can be obtained.

8.10 Program Code

Program Code

library("SPOT")
library("SPOTMisc")

target <- "age"
task.type <- "classif"
nobs <- 1e4
nfactors <- "high"
nnumericals <- "high"
cardinality <- "high"
data.seed <- 1
cachedir <- "oml.cache"

dfCensus <- getDataCensus(
task.type = task.type,
nobs = nobs,
nfactors = nfactors,
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nnumericals = nnumericals,
cardinality = cardinality,
data.seed = data.seed,
cachedir = cachedir,
target = target

)

model <- "ranger"
cfg <- getMlConfig(
target = target,
model = model,
data = dfCensus,
task.type = task.type,
nobs = nobs,
nfactors = nfactors,
nnumericals = nnumericals,
cardinality = cardinality,
data.seed = data.seed,
prop = 2 / 3

)

task <- getMlrTask(
dataset = dfCensus,
task.type = "classif",
data.seed = 1

)

nFeatures <- sum(task$task.desc$n.feat)
cfg <- getModelConf(
task.type = task.type,
model = model,
nFeatures = nFeatures

)

rsmpl <- getMlrResample(
task = task,
dataset = dfCensus,
data.seed = 1,
prop = 2 / 3

)

timebudget <- 60 ## secs
timeout <- timebudget / 20

cfg <- append(cfg, list(
task = task,
resample = rsmpl

))

objf <- getObjf(
config = cfg,
timeout = timeout

)
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result <- spot(
x = NULL,
fun = objf,
lower = cfg$lower,
upper = cfg$upper,
control = list(
types = cfg$type,
time = list(maxTime = timebudget / 60),
noise = TRUE,
seedFun = 123,
designControl = list(
replicates = 2,
size = length(cfg$lower)

),
replicates = 2,
funEvals = Inf,
optimizerControl = list(funEvals = 200 * length(cfg$lower)),
multiStart = 2,
parNames = cfg$tunepars,
yImputation = list(
handleNAsMethod = handleNAsMean,
imputeCriteriaFuns = list(is.infinite, is.na, is.nan),
penaltyImputation = 3

)
)

)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
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Chapter 9
Case Study II: Tuning of Gradient
Boosting (xgboost)

Thomas Bartz-Beielstein, Sowmya Chandrasekaran, and Frederik Rehbach

Abstract This case study gives a hands-on description of Hyperparameter Tuning
(HPT) methods discussed in this book. The Extreme Gradient Boosting (XGBoost)
method and its implementation xgboost was chosen, because it is one of the most
powerful methods in many Machine Learning (ML) tasks, especially when standard
tabular data should be analyzed. This case study follows the same HPT pipeline
as the first and third studies: after the data set is provided and pre-processed, the
experimental design is set up. Next, the HPT experiments are performed. The R
package SPOT is used as a “datascope” to analyze the results from the HPT runs
from several perspectives: in addition toClassification andRegressionTrees (CART),
the analysis combines results from the surface, sensitivity, and parallel plots with a
classical regression analysis. Severity is used to discuss the practical relevance of
the results from an error-statistical point-of-view. The well-proven R package mlr is
used as a uniform interface from the methods of the packages SPOT and SPOTMisc
to theMLmethods. The corresponding source code is explained in a comprehensible
manner.

9.1 Introduction

This chapter considers the XGBoost algorithm which was detailed in Sect. 3.6.
How to find suitable parameter values and bounds, and how to perform experiments
w.r.t. the following nine XGBoost hyperparameters will be discussed: nrounds,
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eta, lambda, alpha, subsample, colsample, gamma, maxdepthx, and
minchild.

9.2 Data Description

The first step is identical to the step in the ranger example in Chap. 8, because the
Census-Income (KDD) Data Set (CID) will be used.1 So, the function
getDataCensus is called with the parameters from Table 8.3 to get the CID data
from Table 8.2. The complete data set, (X,Y) contains n = 299, 285 observations
with 41 features on demography and employment.

9.3 getMlConfig: Experimental Setup
and Configuration of the Gradient Boosting Model

Again, a subset with n = 1e4 samples that defines the subset (X,Y ) ∈ (X,Y) is pro-
vided. The project setup is also similar to the setup described in Sect. 8.1. Therefore,
only the differences will be shown. The full script is available in Sect. 9.10.

The function getMlConfig is called with the same arguments as in Chap. 8,
with one exception: model is set to "xgboost". The function getMlConfig
defines the ML task, the model configuration, and the data split (generation of the
training and test data sets, i.e., (X,Y )(train)and (X,Y )(test).) To achieve this goal, the
functions getMlTask, getModelConf, and getMlrResample are executed.
As a result, the list cfg with 13 elements is available, see Table9.1.

model <- "xgboost"
cfg <- getMlConfig(
target = target,
model = model,
data = dfCensus,
task.type = task.type,
nobs = nobs,
nfactors = nfactors,
nnumericals = nnumericals,
cardinality = cardinality,
data.seed = data.seed,
prop = 2 / 3

)

1 The data from CID is historical. It includes wording or categories regarding people which do not
represent or reflect any views of the authors and editors.

http://dx.doi.org/10.1007/978-981-19-5170-1_8
http://dx.doi.org/10.1007/978-981-19-5170-1_8
http://dx.doi.org/10.1007/978-981-19-5170-1_8
http://dx.doi.org/10.1007/978-981-19-5170-1_8
http://dx.doi.org/10.1007/978-981-19-5170-1_8
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Table 9.1 Result from the function getMlConfig: the cfg list

Parameter Type Value

learner chr "classif.xgboost"

tunepars chr [1:9] "nrounds" "eta" "lambda" "alpha" ..., see Table9.2

defaults num [1,
1:9]

0 -1.74 0 -10 1 ...

lower num [1:9] 0 -10 -10 -10 0.1 ...

upper num [1:9] 11 0 10 10 1 1 10 15 7

type chr [1:9] "numeric" "numeric" "numeric" "numeric" ...

fixpars list eval_metric: chr "logloss" and number of threads

factorlevels list()

transformations: List of 9 Transformation functions, see Table9.2

dummy logi TRUE

relpars list() Empty list (no parameters are relative to each other)

task List of 6 mlr task object

resample List of 5 Resample information

9.3.1 getMlrTask: Problem Design and Definition
of the Machine Learning Task

The problem design describes the target and task type, the number of observations,
as well as the number of factorial, numerical, and cardinal variables. It was described
in Sect. 8.3.2.1.

9.3.2 getModelConf Algorithm
Design—Hyperparameters of the Models

The function getModelConf, which is called from getMlConf, computes an
adequate XGBoost hyperparameter setting. Examples from literature shown in
Table 3.6 in Sect. 3.6 will be used as a guideline. These values were modified as
follows:

nrounds: An upper value (25), which is similar to the Random For-
est (RF) configuration, was chosen. This value is smaller
than the value used by Probst et al. (2019a), who used
5000.

colsample_bytree: The lower value was chosen as 1/getTaskNFeats
(task). This is aminor deviation from the settings used
in Probst et al. (2019a). The reason for this modification

http://dx.doi.org/10.1007/978-981-19-5170-1_8
http://dx.doi.org/10.1007/978-981-19-5170-1_3
http://dx.doi.org/10.1007/978-981-19-5170-1_3
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Table 9.2 XGBoost hyperparameter. NFeats denotes the output from getTaskNFeats(task)
Name Type Default Lower (mlr) Upper (mlr) Upper

(SPOT)
Lower
(SPOT)

Trans

nrounds integer – 1 Inf 0 5 2pow_round

eta numeric 0.3 0 1 –10 0 2pow

lambda numeric 1 0 Inf –10 10 2pow

alpha numeric 0 0 Inf –10 10 2pow

subsample numeric 1 0 1 0.1 1 id

colsample_bytree numeric 1 0 1 1/NFeats 1 id

gamma numeric 0 0 Inf –10 10 2pow

max_depth integer 6 0 Inf 1 15 id

min_child_weight numeric 1 0 Inf 0 7 2pow

is simple: a lower value of zero makes no sense, because
at least one feature should be chosen via colsample.

gamma: A lower value of −10 was chosen. This value is smaller
than the value chosen by Thomas et al. (2018). Accord-
ingly, a larger upper value (10) than by Thomas et al.
(2018) was selected.

Hyperparameter transformations are shown in the column trans in Table9.2.
These transformations are similar to the transformations used by Probst et al. (2019a)
and Thomas et al. (2018) with one minor change: trans_2pow_round was
applied to the hyperparameter nrounds.

The ML configuration list cfg contains information about the hyperparameters
of the XGBoost model, see Table9.2.

Background: XGBoost Hyperparameters

The complete list of XGBoost hyperparameters can also be shown using the function
getModelConf. Note: the hyperparameter colsample_bytree is a relative
hyperparameter, i.e., it depends on the number of features (nFeatures), see the
discussion in Sect. 3.6. Hence, the value nFeatures must be determined before
the hyperparameter bounds can be computed.

nFeatures <- sum(task$task.desc$n.feat)
modelCfg <- getModelConf(
task.type = task.type,
model = model,
nFeatures = nFeatures

)

The list of hyperparameters is stored as the list elementtunepars, see Table9.2.

http://dx.doi.org/10.1007/978-981-19-5170-1_3
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Furthermore, all factor features will be replaced with their dummy variables.
Dummy variables are recommended for XGBoost: internally, a model.matrix is
used and non-factor features will be left untouched and passed to the result. The seed
can be set to improve reproducibility. Finally, these settings are compiled to the list
cfg.

9.3.3 getMlrResample: Training and Test Data

The partition of the full data set is done as described in Sect. 8.3.2.3. rsample
specifies a training data set, which contains 2/3 of the data and a testing data set with
the remaining 1/3 of the data.

9.4 Objective Function (Model Performance)

Because the XGBoost method is more complex than RF, an increased computational
budget is recommended, e.g., by choosing a budget for tuning of 6 × 3,600 s or
six hours. The increased budget is used in the global study (Chap. 12). For the
experiments performed in the current chapter, the budget was not increased.

Before the hyperparameter tuner is called, the objective function is defined: this
function receives a configuration for a tuning experiment and returns an objective
function to be tuned via spot. A detailed description of the objective function can
be found in Sect. 8.4.4.

9.5 spot: Experimental Setup for the Hyperparameter
Tuner

TheR packageSPOT is used to perform the actual tuning (optimization). Because the
generic Sequential Parameter Optimization Toolbox (SPOT) setup was introduced
in Sect. 4.5, this section highlights the modifications of the generic setup that were
made for the xgboost hyperparameter tuning experiments.

The third step of the hyperparameter tuning pipeline as shown in Fig. 8.5 starts
the SPOT hyperparameter tuner.

result <- spot(
x = NULL,
fun = objf,
lower = cfg$lower,
upper = cfg$upper,
control = list(

http://dx.doi.org/10.1007/978-981-19-5170-1_8
http://dx.doi.org/10.1007/978-981-19-5170-1_12
http://dx.doi.org/10.1007/978-981-19-5170-1_8
http://dx.doi.org/10.1007/978-981-19-5170-1_4
http://dx.doi.org/10.1007/978-981-19-5170-1_8
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types = cfg$type,
time = list(maxTime = timebudget / 60),
noise = TRUE,
OCBA = TRUE,
OCBABudget = 3,
seedFun = 123,
designControl = list(
replicates = Rinit,
size = initSizeFactor * length(cfg$lower)

),
replicates = 2,
funEvals = Inf,
modelControl = list(
target = "ei",
useLambda = TRUE,
reinterpolate = FALSE

),
optimizerControl = list(funEvals = 200 * length(cfg$lower)),
multiStart = 2,
parNames = cfg$tunepars,
yImputation = list(
handleNAsMethod = handleNAsMean,
imputeCriteriaFuns = list(is.infinite, is.na, is.nan),
penaltyImputation = 3

)
)

)

The result is written to a file and can be accessed via

load("supplementary/ch09-CaseStudyII/xgboost00001.RData")

The full R code for running this case study is shown in the Appendix (Sect. 9.10).

9.6 Tunability

9.6.1 Progress

The function prepareProgressPlot generates a data frame that can be used
to visualize the hyperparameter tuning progress. The data frame can be passed to
ggplot. Figure9.1 visualizes the progress during the ranger hyperparameter
tuning process during the spot tuning procedure.

After 60min, 157 xgboost models were evaluated. Comparing the worst con-
figuration that was observed during the HPT with the best, a 66.3743% reduction
was obtained. After the initial phase, which includes 18 evaluations, the smallest
Mean Mis-Classification Error (MMCE) reads 0.1793641. The dotted red line in
Fig. 8.6 illustrates this result. The final best value reads 0.1724655, i.e., a reduction

http://dx.doi.org/10.1007/978-981-19-5170-1_8
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Fig. 9.1 XGB: Hyperparameter tuning progress. Validation loss plotted against the number of
function evaluations, i.e., the number of evaluated XGBoost models. The red dashed line denotes
the best value found by the initial designs to show the hyperparameter tuning progress. The blue
dashed line represents the best value from the whole run

of the MMCE of 3.8462%. These values, in combination with results shown in the
progress plot (Fig. 8.6), indicate that a quick HPT run is able to improve the quality
of the xgboost method. It also indicates that increased run times do not result in a
significant improvement of the MMCE.

•! Attention

These results do not replace a sound statistical comparison, they are only indicators,
not final conclusions.

http://dx.doi.org/10.1007/978-981-19-5170-1_8
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Table 9.3 Comparison of the default and tuned hyperparameters of the XGBoost method.
colsample denotes colsample_bytree. Table shows transformed values. Note: the alpha
and gamma values are identical. They are computed as 2−10, which is the lower bound value,
because the theoretical default value 0 is infeasible. See also Table 3.8
Method nrounds eta lambda alpha subsample colsample gamma max_depth min_child_

weight

Default 1 0.3 1 0.001 1 1 0.001 6 1

Tuned 1873 0.058 155.3 2.46 0.992 0.408 0.004 13 1.83

Fig. 9.2 Comparison of
XGBoost methods with
default (D) and tuned (T)
hyperparameters.
Classification error (MMCE)
plotted on the horizontal
axis. Vertical lines in the
violin figures mark quantiles
(0.25, 0.5, 0.75) of the
corresponding distribution.
Numerical values are shown
in Table9.3
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9.6.2 evalParamCensus: Comparing Default and Tuned
Parameters on Test Data

As a baseline for comparison, XGBoost was run with default hyperparameter values.
The corresponding R code for replicating the experiment is available in the code
folder. The best (minimum MMCE) result from thirty repeats is reported. The cor-
responding values are shown in Table9.3. The function evalParamCensus was
used to perform this comparison. By specifying the ML model, e.g., "xgboost"
and the runNr, the function evalParamCensus was called.

The result files can be loaded and the violin plot of the obtained MMCE can be
visualized (Fig. 9.2). It can be seen that the tuned solutions provide a better MMCE.
Default and tuned results for the rangermodel are available as rangerDefault
Evaluation.RData andxgboost00001Evaluation.RData, respectively.

The scores are stored as a matrix. Attributes are used to label the measures. The
following measures are calculated for each hyperparameter setting: accuracy, ce,
f1, logLoss, mae, precision, recall, and rmse. The comparison is based
on the MMCE that was defined in Eq. (2.2). Hyperparameters of the default and the
tuned configurations are shown in Table9.3. The full procedure, i.e., starting from
scratch, to obtain the default xgboost hyperparameters is shown in Sect. 9.10.

Next, the hyperparameters of the tuned xgboost methods are shown.

http://dx.doi.org/10.1007/978-981-19-5170-1_3
http://dx.doi.org/10.1007/978-981-19-5170-1_2


9 Case Study II: Tuning of Gradient Boosting (xgboost) 229

9.7 Analyzing the Gradient Boosting Tuning Process

The analysis and the visualizations are based on the transformed values.
To analyze effects and interactions between hyperparameters of the xgboost

Model, a simple regression tree as shown in Fig. 9.3 and Fig. 9.4 can be used.

alpha < 6.7

gamma < 5.5

nrounds >= 3.3

0.2
100%

0.19
93%

0.19
88%

0.18
82%

0.22
6%

0.26
5%

0.34
7%

yes no

Fig. 9.3 Regression tree. Case study II. XGBoost

alpha < 107

gamma < 52

nrounds >= 10

0.2
100%

0.19
93%

0.19
88%

0.18
82%

0.22
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0.26
5%

0.34
7%

yes no

Fig. 9.4 Regression tree. Case study II. XGBoost. Hyperparameters are transformed values
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Fig. 9.6 Sensitivity plot (best). Too large alpha values result in poor results

Same tree with the transformed values:
The regression tree supports the observations that hyperparameter values for alpha,

lambda, gamma, and nrounds have the largest effect on the MMCE.

alpha lambda gamma nrounds subsample eta colsample_bytree

1 0.23112227 0.04431784 0.04039483 0.014028719 0.012203015 0.009397272 0.0028057437

alpha is the most relevant hyperparameter.
To perform a sensitivity analysis, parallel and sensitivity plots can be used

(Figs. 9.5 and 9.6).
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Fig. 9.7 Surface plot: x3 plotted against x1. This surface plot indicates that alpha has a large
effect. Too large alpha values result in poor results

Results from the spot run can be passed to the function plotSenstivity,
which generates a sensitivity plot as shown in Fig. 8.10. Sensitivity plots were intro-
duced in Sect. 8.6. Contour plots are shown in Fig. 9.7.

Finally, a simple linear regression model can be fitted to the data. Based on the
data from SPOT’s result list, the summary is shown below.

##
## Call:
## lm(formula = y ˜ ., data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.073397 -0.015307 -0.008367 0.001629 0.223535
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2561669 0.0184896 13.855 < 2e-16 ***
## nrounds -0.0032016 0.0012827 -2.496 0.01366 *
## eta -0.0003031 0.0016994 -0.178 0.85870
## lambda 0.0021936 0.0007939 2.763 0.00646 **
## alpha 0.0072423 0.0007848 9.228 2.77e-16 ***
## subsample -0.1033194 0.0137081 -7.537 4.55e-12 ***
## colsample_bytree 0.0050479 0.0132658 0.381 0.70411
## gamma 0.0010887 0.0009034 1.205 0.23007
## max_depth 0.0023106 0.0010527 2.195 0.02974 *
## min_child_weight 0.0082803 0.0025515 3.245 0.00145 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.04047 on 147 degrees of freedom
## Multiple R-squared: 0.5222, Adjusted R-squared: 0.493
## F-statistic: 17.85 on 9 and 147 DF, p-value: < 2.2e-16

http://dx.doi.org/10.1007/978-981-19-5170-1_8
http://dx.doi.org/10.1007/978-981-19-5170-1_8
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Although this linear model requires a detailed investigation (a misspecification
analysis is necessary) it also is in accordance with previous observations that hyper-
parameters alpha, lambda, gamma, nrounds have significant effects on the loss
function.

9.8 Severity: Validating the Results

Now, we utilize hypothesis testing and severity to analyze the statistical significance
of the achieved performance improvement. Considering the results from the pre-
experimental runs, the difference is x̄ = 0.0199. Since this value is positive, for the
moment, let us assume that the tuned solution is superior. The corresponding standard
deviation is sd = 0.0081. Based on Eq. 5.14, and with α = 0.05, β = 0.2, and � =
0.01, let us identify the required number of runs for the full experiment using the
getSampleSize() function.

Table 9.4 Case study II: result analysis

p-value Decision power Cohen’s d Hedge’s g Severity

0 H0 rejected 0.9999999 2.3978067 2.3666664 � ≤ 0.015 are
well supported
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Fig. 9.8 Tuning XGB. Severity of rejecting H0 (red), power (blue), and error (gray). Left: The
observed mean x̄ =0.0199 is larger than the cut-off point c1−α =0.0024 Right: The claim that the
true difference is as large or larger than 0.01 is well supported by severity. However, any difference
larger than 0.015 is not supported by severity

http://dx.doi.org/10.1007/978-981-19-5170-1_5
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For a relevant difference of 0.01, approximately 8 runs per algorithm are required.
Hence, we can proceed to evaluate the severity and analyze the performance improve-
ment achieved through tuning the parameters of the xgboost.

The summary result statistics is presented in Table 9.4. The decision based on
p-value is to reject the null hypothesis, i.e., the claim that the tuned parameter setup
provides a significant performance improvement in terms of MMCE is supported.
The effect size suggests that the difference is of a larger magnitude. For the chosen
� =0.01, the severity value is at 1 and thus it strongly supports the decision of reject-
ing the H0. The severity plot is shown in Fig. 9.8. Severity shows that performance
differences smaller than 0.015 are well supported.

9.9 Summary and Discussion

The analysis indicates that hyperparameter alpha has the greatest effect on the algo-
rithm’s performance. The recommended value of alpha is 7.2791, which is much
larger than the default value.

This case study demonstrates how functions from the R packages mlr and SPOT
can be combined to perform a well-structured hyperparameter tuning and analysis.
By specifying the time budget via maxTime, the user can systematically improve
hyperparameter settings. Before applying ML algorithms such as XGBoost to com-
plex classification or regression problems, HPT is recommended. Wrong hyperpa-
rameter settings can be avoided. Insight into the behavior of ML algorithms can be
obtained.

9.10 Program Code

Program Code

target <- "age"
task.type <- "classif"
nobs <- 1e4
nfactors <- "high"
nnumericals <- "high"
cardinality <- "high"
data.seed <- 1
cachedir <- "oml.cache"

dfCensus <- getDataCensus(
task.type = task.type,
nobs = nobs,
nfactors = nfactors,
nnumericals = nnumericals,
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cardinality = cardinality,
data.seed = data.seed,
cachedir = cachedir,
target = target

)
task <- getMlrTask(
dataset = dfCensus,
task.type = "classif",
data.seed = 1

)

model <- "xgboost"
cfg <- getMlConfig(
target = target,
model = model,
data = dfCensus,
task.type = task.type,
nobs = nobs,
nfactors = nfactors,
nnumericals = nnumericals,
cardinality = cardinality,
data.seed = data.seed,
prop = 2 / 3

)
transformX(cfg$defaults, cfg$transformations)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
## [1,] 1 0.3 1 0.0009765625 1 1 0.0009765625 6 1
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Chapter 10
Case Study III: Tuning of Deep Neural
Networks

Thomas Bartz-Beielstein, Sowmya Chandrasekaran, and Frederik Rehbach

Abstract A surrogate model based Hyperparameter Tuning (HPT) approach for
Deep Learning (DL) is presented. This chapter demonstrates how the architecture-
level parameters (hyperparameters) of Deep Neural Networks (DNNs) that were
implemented in keras/tensorflow can be optimized. The implementation of the
tuning procedure is 100% accessible from R, the software environment for statistical
computing. How the software packages (keras, tensorflow, and SPOT) can be
combined in a very efficient and effective manner will be exemplified in this chapter.
The hyperparameters of a standard DNN are tuned. The performances of the six
Machine Learning (ML) methods discussed in this book are compared to the results
from the DNN. This study provides valuable insights in the tunability of several
methods, which is of great importance for the practitioner.

10.1 Introduction

The DNN hyperparameter study described in this chapter uses the same data and
the same HPT process as the ML studies in Chaps. 8 and 9. Section10.2 describes
the data preprocessing. Section10.3 explains the experimental setup and the con-
figuration of the DL models. The objective function is defined in Sect. 10.4. The
hyperparameter tuner, spot, is described in Sect. 10.5. Based on this setup, experi-
mental results are analyzed: After discussing tunability based on the HPT progress
in Sect. 10.6, default, λ0 and tuned hyperparameters, λ� are compared in Sect. 10.6.2.
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Table 10.1 Deep-learning hyperparameter pipeline
Step Description Function Result Details

1 Get data getDataCensus dfCensus Data frame

2.1 Split data into
training,
validation, and test
data

getGenericTrainValTestData Data Partitioned data

2.2 Spec genericDataPrep specList List with the
following data

2.3.1 keras
configuration

getKerasConf kerasConf Configuration list
for keras

2.3.2 Model
configuration

getModelConf cfg Model

3 Hyperparameter
tuning

spot Result Result list

4 Evaluate on test
data

evalParamCensus Score Metrics

The DL tuning process is analyzed in Sect. 10.7. Results are validated using severity
in Sect. 10.8. A summary in Sect. 10.9 concludes this chapter. The DL hyperparam-
eter tuning pipeline, that was used for the experiments, is summarized in Table10.1
and illustrated in Fig. 10.1. The first sections in this chapter highlight the most impor-
tant steps of this pipeline. The program code for performing the experiments is shown
in Sect. 10.10.
keras isTensorFlow (TF)’s high-levelApplicationProgramming Interface (API)

designed with a focus on enabling fast experimentation. TF is an open source soft-
ware library for numerical computations with data flow graphs (Abadi et al. 2016).
Mathematical operations are represented as nodes in the graph, and the graph edges
represent the multidimensional arrays of data (tensors) (O’Malley et al. 2019). The
full TF API can be accessed via the tensorflow package from within the R soft-
ware environment for statistical computing and graphics (R).

The Appendix contains information on how to set up the required Python soft-
ware environment for performingHPTwith keras, SPOT, and SPOTMisc. Source
code for performing the experimentswill included in theR packageSPOTMisc. Fur-
ther information is published on https://www.spotseven.de and with some delay on
Comprehensive R Archive Network (CRAN) (https://cran.r-project.org/package=
SPOT). This delay is caused by an intensive code check, which is performed by the
CRAN team. It guarantees high-quality open source software and is an important
feature for providing reliable software that is not just a flash in the pan.

https://www.spotseven.de
https://cran.r-project.org/package=SPOT
https://cran.r-project.org/package=SPOT
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Fig. 10.1 Overview. The
HPT pipeline introduced in
this chapter comprehends the
following steps: After the
data acquisition
(getDataCensus), the
data is split into training,
validation, and test sets.
These data sets are processed
via the function
genericDataPrep.
keras is configured via the
function getKerasConf.
The hyperparameter tuner
spot is called and finally,
the results are evaluated
(evalParamCensus)

start

end

1 Data Acquisition

getDataCensus

2.1.1 Train, Val, Test

getGenericTrainVal
TestData

2.1.2 specList

genericDataPrep

getKerasConf

3 Hyperparameter Tuning

spot

4 Evaluation

evalParamCensus

cfg (list), objf (function)

result (list)
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10.2 Data Description

Identically to the ML case studies, the DL case study presented in this chapter uses
the Census-Income (KDD) Data Set (CID), which is made available, for example,
via the University of California, Irvine (UCI) Machine Learning Repository.1,2

10.2.1 getDataCensus: Getting the Data from OpenML

Before training the DNN, the data is preprocessed by reshaping it into the shape the
DNN can process. The function getDataCensus is used to get the OpenMachine
Learning (OpenML) data (from cache or from server). The same options as in the
previous ML studies will be used, i.e., the parameter settings from Table8.3 will be
used.

target <- "age"
task.type <- "classif"
nobs <- 1e4
nfactors <- "high"
nnumericals <- "high"
cardinality <- "high"
data.seed <- 1
cachedir <- "oml.cache"
prop <- 2 / 3
dfCensus <- getDataCensus(
task.type = task.type,
nobs = nobs,
nfactors = nfactors,
nnumericals = nnumericals,
cardinality = cardinality,
data.seed = data.seed,
cachedir = cachedir,
target = target

)

10.2.2 getGenericTrainValTestData: Split Data in
Train, Validation, and Test Data

The data frame dfCensus, (X,Y ) ⊂ (X,Y), with 10000 observations of 23 vari-
ables, is available. Based on prop, the data is split into training, validation, and test

1 https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD).
2 The data from CID is historical. It includes wording or categories regarding people which do not
represent or reflect any views of the authors and editors.

https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)
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data sets, (X,Y )(train), (X,Y )(val), and (X,Y )(test), respectively. If prop = 2/3, the
training data set has 4444 observations, the validation data set has 2222 observations,
and the test data set the remaining 3334 observations.

data <- getGenericTrainValTestData(dfGeneric = dfCensus, prop = prop)

10.2.3 genericDataPrep: Spec

The third step of the data preprocessing generates a specList.

batch_size <- 32
specList <- genericDataPrep(data = data, batch_size = batch_size)

The function genericDataPrep works as described in Sects. 10.2.3.1–
10.2.3.5.

10.2.3.1 The Iterator: Data Frame to Data Set

The helper function df_to_dataset3 converts the data frame dfCensus into a
data set. This procedure enables processing of very large Comma Separated Values
(CSV) files (so large that they do not fit into memory). The elements of the training
data sets are randomly shuffled. Finally, consecutive elements of this data set are
combined into batches.

Applying the function df_to_dataset generates a list of tensors. Each tensor
represents a single column. The most significant difference to R’s data frames is that
a TF data set is an iterator.

train_ds_generic <-
df_to_dataset(data$trainGeneric, batch_size = batch_size)

val_ds_generic <-
df_to_dataset(data$valGeneric, shuffle = FALSE, batch_size = batch_size)

Background: Iterators

Each time an iterator is called it will yield a different batch of rows from the data
set. The iterator function iter_next can be called as follows, so that batches are
shown.

train_ds %>%
reticulate::as_iterator() %>%
reticulate::iter_next()

3 https://tensorflow.rstudio.com/tutorials/advanced/structured/classify/.

https://tensorflow.rstudio.com/tutorials/advanced/structured/classify/
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The data set train_ds_generic returns a list of column names (from the
data frame) that map to column values from rows in the data frame.

10.2.3.2 The feature_spec Object: Specifying the Target

TF has built-in methods to perform common input conversions.4 The powerful
feature_column system will be accessed via the user-friendly, high-level inter-
face called feature_spec. While working with structured data, e.g., CSV data,
column transformations and representations can be initialized and specified. A prac-
tical benefit of implementing data preprocessing within model A is that when A is
exported, the preprocessing is already included. In this case, new data can be passed
directly toA.

•! Attention: Keras Preprocessing Layers

keras and tensorflow are under constant development. The current implemen-
tation inSPOTMisc classifies structured datawith feature columns. The correspond-
ing TF module was designed for the use with TF version 1 estimators. It does fall
under compatibility guarantees.5 The newly developed keras module uses “pre-
processing layers” for building keras-native input processing pipelines. Future
versions of SPOTMisc will be based on preprocessing layers. However, because
the underlying ideas of both preprocessing layers are similar (TF provides a migra-
tion guide6), the most important preprocessing steps will be presented next.

First the spec object specGeneric is defined. The response variable, here:
target, can be specified using a formula, see Chambers and Hastie (1992) and the
R function formula.

specGeneric <- feature_spec(dataset = train_ds_generic, target ˜ .)

10.2.3.3 Adding Steps to the feature_spec Object

The CID data set contains a variety of data types. These mixed data types are con-
verted to a fixed-length vector for the DL model to process. Based on their feature
type, their data type or level, the columns will be treated differently. After creat-
ing the feature_spec object the step functions from Table10.2 can be used to

4 https://tensorflow.rstudio.com/tutorials/beginners/load/load_csv/.
5 https://www.tensorflow.org/tutorials/structured_data/feature_columns?authuser=0.
6 https://www.tensorflow.org/guide/migrate/migrating_feature_columns.

https://tensorflow.rstudio.com/tutorials/beginners/load/load_csv/
https://www.tensorflow.org/tutorials/structured_data/feature_columns?authuser=0
https://www.tensorflow.org/guide/migrate/migrating_feature_columns
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Table 10.2 Steps: data transformations depending on the data type

Step functions Description

step_numeric_column Numeric variables

step_categorical_with_vocabulary_list Categorical variables with a
fixed vocabulary

step_categorical_column_with_hash_bucket Categorical variables using
the hash trick

step_categorical_column_with_identity Categorical variables stored
as integers

step_categorical_column_with_vocabulary_file Vocabulary stored in a file

Table 10.3 Description of the CID feature and data types that are used in the data set (X, Y ) ⊂
(X,Y)

Column Feature type Data type/levels

capital_gains Num Double

capital_losses Num Double

dividends_from_stocks Num Double

wage_per_hour Num Double

weeks_worked_in_year Num Integer

class_of_worker Factor 9

industry_code Factor 51

occupation_code Factor 47

Education Factor 17

marital_status Factor 7

major_industry_code Factor 24

major_occupation_code Factor 15

Race Factor 5

hispanic_origin Factor 10

Sex Factor 2

tax_filer_status Factor 6

detailed_household_and_family_stat Factor 29

detailed_household_summary_in_household Factor 8

country_of_birth_self Factor 42

Citizenship Factor 5

income_class Factor 2

Target Factor 2

add further steps. Depending on the data type, the step functions specify the data
transformations. Table10.3 shows these types.

The R package tfdatasets provides selectors to select certain variable types
and ranges, e.g., all_numeric to select all numeric variables, all_nominal
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to select all characters, or has_type("float32") to select variables based on
their TF variable type. Based on the feature and data type shown in Table10.3, the
data transformations from Table10.2 are applied. We will consider feature specs for
continuous and catergorical data separately.

10.2.3.4 Feature Spec: Continuous Data

For continuous data, i.e., numerical variables, the function step_numeric_
column will be used and all numeric variables will be normalized (scaled).
The R package tfdataset provides the scaler function scaler_min_max,
which uses the minimum and maximum of the numeric variable and the function
scaler_standard, which uses the mean and the standard deviation.

10.2.3.5 Feature Spec: Categorical Data

The DNN model A cannot directly process categorical (nominal) data—they must
be transformed so that they can be represented as numbers. The representation of
categorical variables as a set of one-hot encoded columns is widely used in prac-
tice (Chollet and Allaire 2018). There are basically two options for specifying the
kind of numeric representation used for categorical variables: indicator columns or
embedding columns.

Background: Embedding

Suppose instead of having a factor with a few levels (e.g., three categorical features
such as red, green, or blue), there are hundreds or even more levels. As the
number of levels grows very large, it becomes unfeasible to train a DNN using one-
hot encodings. In this situation, embedding should be used: instead of representing
the data as a very large one-hot vector, the data can be stored as a low-dimensional
vector of real numbers. Note, the size of the embedding is a parameter that must be
tuned (Abadi et al. 2015).

The implementation in SPOTMisc uses two steps: first, based on the number
of levels, i.e., the value of the parameter minLevelSizeEmbedding in the
following code, the set of columns where embedding should be used, is deter-
mined. Then, either the function step_indicator_column or the function
step_embedding_column is applied.

minLevelSizeEmbedding <- 100
embeddingDim <- floor(log(minLevelSizeEmbedding))
df <- data$trainGeneric
df <- df[-which(names(df) == "target")]
embeddingVars <-
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names(df %>%
mutate_if(is.character, factor) %>%
select_if(˜ is.factor(.) & nlevels(.) > minLevelSizeEmbedding))

noEmbeddingVars <-
names(df %>%
mutate_if(is.character, factor) %>%
select_if(˜ is.factor(.) & nlevels(.) <= minLevelSizeEmbedding))

specGeneric <- specGeneric %>%
step_numeric_column(all_numeric(),
normalizer_fn = scaler_standard()

) %>%
step_categorical_column_with_vocabulary_list(all_nominal()) %>%
step_indicator_column(matches(noEmbeddingVars)) %>%
step_embedding_column(matches(embeddingVars), dimension = embeddingDim)

After adding a step we need to fit the specGeneric object:

specGeneric_prep <- fit(specGeneric)

Finally, the following data structures are available:

1. train_ds_generic (batched, based on 4444 samples)
2. val_ds_generic, (batched, based on 2222 samples)
3. specGeneric_prep and
4. testGeneric (the remaining 3334 samples).

These data are returned as the list specList from the function genericData
Prep.

specList <- genericDataPrep(data = data, batch_size = batch_size)

Dense features prepared with TF’s feature columns mechanism can be listed. There
are 22 dense features that will be passed to the DNN.

names(specList$specGeneric_prep$dense_features())

## [1] "wage_per_hour"

## [2] "capital_gains"

## [3] "capital_losses"

## [4] "divdends_from_stocks"

## [5] "num_persons_worked_for_employer"

## [6] "weeks_worked_in_year"

## [7] "indicator_class_of_worker"

## [8] "indicator_industry_code"

## [9] "indicator_major_industry_code"

## [10] "indicator_occupation_code"

## [11] "indicator_major_occupation_code"

## [12] "indicator_education"

## [13] "indicator_marital_status"

## [14] "indicator_race"

## [15] "indicator_hispanic_origin"
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## [16] "indicator_sex"

## [17] "indicator_tax_filer_status"

## [18] "indicator_detailed_household_and_family_stat"

## [19] "indicator_detailed_household_summary_in_household"

## [20] "indicator_country_of_birth_self"

## [21] "indicator_citizenship"

## [22] "indicator_income_class"

10.3 Experimental Setup and Configuration of the Deep
Learning Models

10.3.1 getKerasConf: keras and Tensorflow
Configuration

Setting up the keras configuration from within SPOTMisc is a simple step: the
function getKerasConf is called. The function getKerasConf passes addi-
tional parameters to the keras function, e.g.,

activation: Activation function in the last Neural Network (NN)
layer. Default: "sigmoid".

active: Vector of active variables, e.g., c(1,10) specifies that
only the first and tenth variable will be considered by
spot. This mechanism allows the shrinking the full set
of tunable parameters, say λ, to a smaller set, λ(−), if the
user wants to investigate the tunability (or the effect) of
one or only a few hyperparameters.

callbacks: List of callbacks to be called during training. Default:
list().

clearSession: Whether to call k_clear_session or not at the end
of keras modeling. Default: FALSE.

encoding: Encoding used during data preparation. Default:
"oneHot".

loss: Loss function, L, for the compile from the package
keras. For example Binary Cross Entropy (BCE) loss
as defined in Eq. (2.3).
Default: "loss_binary_crossentropy".

metrics: Metrics function for compile. Default: "binary_
accuracy".

model: Model, A, as specified via getModelConf. Default:
"dl". Forthcoming versions of SPOTMisc will pro-
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vide additional DNN model types, e.g., Convolutional
Neural Networks (CNNs).

nClasses: Number of classes in (multi-class) classification. Speci-
fies the number of units in the last layer (before
softmax). Default: 1 (binary classification).

resDummy: If TRUE, generate dummy (mock up) result for testing.
If FALSE, run keras and tensorflow evaluations.
Default: FALSE.

returnValue: Return value. Can be one of "trainingLoss",
"negTrainingAccuracy","validationLoss",
"negValidation Accuracy", "testLoss", or
"negTestAccuracy".

returnObject: Return object. Can be one of "evaluation",
"model", "pred". Default: "evaluation".

shuffle: Logical (whether to shuffle the training data (X,Y )(train)

before each epoch) or string (for “batch”). Used in the
function df_to_dataset. "batch" is a special option
for dealing with the limitations of the Hierarchical Data
Format (HDF) version 5 data. It shuffles in batch-sized
chunks. Default: FALSE.

testData: Test data, (X,Y )(test), on which to evaluate the loss, L,
and any model metrics,ψ(test)at the end of the optimiza-
tion using the function evaluate.

tfDevice: Tensorflow device. CPU/GPU allocation. Passed to
tensorflow via tf$device(kerasConf
$tfDevice). Default: "/cpu:0" (use CPU only).

trainData: Training data, (X,Y )(train), on which to evaluate the loss
and any model metrics at the end of each epoch.

validationData: Validation data, (X,Y )(val), onwhich to evaluate the loss
ψ(val)and any model metrics at the end of each epoch.

validation_split: Float between 0 and 1. Fraction of the training data
(X,Y )(train)to be used internally byA as validation data
(X,Y )(valtrain).Awill set apart this fraction of the train-
ing data, will not train on it, and will evaluate the loss
and any model metrics on (X,Y )(valtrain)at the end of
each epoch. (X,Y )(valtrain)is selected from the last sam-
ples in the (X,Y )(train)data provided, before shuffling.
Default: 0.2.

verbose: Verbosity mode (0 = silent, 1 = progress bar, 2 = one
line per epoch). Default: 0.

The default settings are useful for the binary classification task analyzed in this
chapter. Only the parameter kerasConf$clearSession is set to TRUE and
kerasConf$verbose is set to 0.
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kerasConf <- getKerasConf()
kerasConf$clearSession <- TRUE
kerasConf$verbose <- 0

10.3.2 getModelConf: DL Hyperparameters

cfg <- getModelConf(model = "dl")

If the default values from the function getKerasConf are used, the vector of
hyperparameter λ contains the following elements: the dropout rates (dropout rates
of the layers will be tuned individually), the number of units (the number of single
outputs from a single layer), the learning rate (controls howmuch to change the DNN
model in response to the estimated error each time the model weights are updated),
the number of training epochs (a training epoch is one forward and backward pass
of a complete data set), the optimizer for the inner loop, Oinner, and its parameters
(i.e., β1, β2 as well as ε) and the number of layers. These hyperparameters and their
ranges are listed in Table10.4.

Table 10.4 The hyperparameters, λ, for the DNN, which implements a fully connected network

Variable Hyperparameter Type Default Lower bound Upper bound

x1 dropout: first
layer dropout rate

Numeric 0 0 0.4

x2 dropoutfact:
dropout multiplier

Numeric 0 0 0.5

x3 units: units per
first layer

Integer 32 1 32

x4 unitsfact: units
multiplier

Numeric 0.2 0.25 1

x5 learning_rate:
learning rate for the
optimizer

Numeric 1e − 3 1e − 6 1e − 2

x6 epochs inner loop
Oinner number of
training epochs

Integer 16 8 128

x7 beta_1 Numeric 0.9 0.9 0.99

x8 beta_2 Numeric 0.999 0.999 0.9999

x9 layers Integer 1 1 4

x10 epsilon Numeric 1e − 7 1e − 9 1e − 8

x11 optimizer Factor 5 1 7
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Table 10.5 Optimizers that can be selected via hyperparameter x11. Default optimizer Oinner is
adam. The function selectKerasOptimizer from the SPOTMisc implements the selection.
The corresponding R functions have the prefix optimizer_, e.g., adamax can be called via
optimizer_adamax

Level Name Description Reference

1 sgd SGD optimizer with support for momentum,
learning rate decay, and Nesterov momentum

Ruder (2017)

2 rmsprop RMSProp optimizer Ruder (2017)

3 adagrad Adagrad optimizer Duchi et al. (2011)

4 adadelta Adadelta optimizer Zeiler (2012)

5 adam Adam optimizer Kingma and Ba (2014)

6 adamax Adamax optimizer Kingma and Ba (2014)

7 nadam Nesterov Adam optimizer Sutskever et al. (2013)

To enable compatibility with the ranges of the learning rates of the other opti-
mizers, the learning rate of the optimizer adadelta is internally mapped to
1-learning_rate. That is, a learning rate of 0 will be mapped to 1 (which
is adadelta’s default learning rate). The learning rate of adagrad and sgd is
internallymapped to10 * learning_rate. That is, a learning rate of 0.001will
be mapped to 0.01 (which is adagrad’s and sgd’s default). The learning rate learn-
ing_rate of adamax and nadam is internally mapped to 2 * learning_rate.
That is, a learning rate of 0.001 will be mapped to 0.002 (which is adamax’s and
nadam’s default.)

The hyperparameter x11, which encodes the optimizer is implemented as a
factor. Factor levels, which represent the available optimizers are listed in Table10.5.

A discussion of the DNN hyperparameters, λ, recommendations for their settings
and further information are presented in Sect. 3.8. The R function getModelConf
provides information about hyperparameter names, ranges, and types.

10.3.3 The Neural Network

Background: Network Implementation in SPOTMisc

The SPOTMisc function getModelConf selects a pre-specified, but not pre-
trained, DL network A. This network is called via funKerasGeneric, which
is the interface to spot. funKerasGeneric uses a network, that is implemented
as follows:

To build the DNN in keras, the function layer_dense_features that
processes the feature columns specification is used (Fig. 10.2). It receives the data set
specGeneric_prep as input and returns an array off all dense features:
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layer <-
layer_dense_features(
feature_columns = dense_features(specList$specGeneric_prep)

)

The iterator can be called to take a look at the (scaled) output:

specList$train_ds_generic %>%
reticulate::as_iterator() %>%
reticulate::iter_next() %>%
layer()

TheNNmodel can be compiled after theloss functionL, which determines how
good the DNN prediction is (based on the (X,Y )(val)), the optimizer, i.e., Oinner,
i.e., the update mechanism of A, which adjusts the weights using backpropagation,
and the metrics. metrics The metrics monitor the progress during training and
testing and are specified using the compile function from keras.

•! Attention: Hyperparameter Values

To improve the readability of the code, evaluated (“forced” values) of the hyperpa-
rameters λ are shown in the code snippets below instead of the arguments that are
passed from the tuner spot to the function funKerasGeneric.

units1 <- 2
model <- keras_model_sequential() %>%
layer_dense_features(dense_features(specList$specGeneric_prep)) %>%
layer_dense(units = units1, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
loss = loss_binary_crossentropy,
optimizer = "adam",
metrics = "binary_accuracy"

)

The DNN training can be started as follows (using keras’ fit function). Train
themodel on theCPUusing the settingtf$device("/cpu:0") on the validation
data set:

with(tf$device("/cpu:0"), {
historyD <-
model %>%
fit(dataset_use_spec(specList$train_ds_generic,
spec = specList$specGeneric_prep

),
epochs = 25,
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Fig. 10.2 Simple DNN
based on the code in this
section

validation_data =
dataset_use_spec(
specList$val_ds_generic,
specList$specGeneric_prep

),
verbose = 0
)

})

The predictions from the DNN model are shown in the following code snippet.
The tensor values are the output from the final DNN layer after the sigmoid function
was applied. Values are from the interval [0, 1] and represent probabilities: values
smaller than 0.5 are interpreted as predictions “age < 40”, otherwise “age ≥ 40”.

specList$test_ds_generic %>%
reticulate::as_iterator() %>%
reticulate::iter_next() %>%
model()

## tf.Tensor(

## [[0.31883082]

## [0.47055224]

## [0.99928933]

## [0.9962864 ]

## [0.27977774]

## [0.34997565]

## [0.7686823 ]

## [0.99928933]

## [0.32100695]

## [0.99928933]

## [0.16852783]

## [0.33614054]

## [0.36855838]

## [0.4346528 ]

## [0.6968227 ]

## [0.41458437]
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Fig. 10.3 DNN training. History of the inner optimization loop

## [0.9992539 ]

## [0.01920704]

## [0.34810022]

## [0.6455758 ]

## [0.78468007]

## [0.9993542 ]

## [0.9469396 ]

## [0.00989294]

## [0.00521746]

## [0.01071302]

## [0.8888161 ]

## [0.78542197]

## [0.9993542 ]

## [0.6045456 ]

## [0.9993542 ]

## [0.9992539 ]], shape=(32, 1), dtype=float32)

Figure10.3 shows the quantities that are being displayed during training:

(i) the loss of the network over the training and validation data, ψ(train) and ψ(val),
respectively, and

(ii) the accuracy of the network over the training and validation data, f (train)
acc and

f (val)
acc , respectively.

This figure illustrates that an accuracy greater than 80% on the training data,
(X,Y )(train), can be reached quickly.

Figure10.3 can indicate (even if this is only a short fit procedure) whether the
modeling is affected by overfitting or not. If this situation occurs, it might be useful
to implement dropout layers or use other methods to prevent overfitting.
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The effects of HPT and the tunability of A will be described in the following
sections. Finally, using keras’ evaluate function, the DNNmodel performance
can be checked on X (test).

model %>%
evaluate(specList$test_ds_generic %>%
dataset_use_spec(specList$specGeneric_prep), verbose = 0)

## loss binary_accuracy

## 0.3550636 0.8068387

The relationship between ψ(train), ψ(val), and ψ(test) as well as between f (train)
acc ,

f (val)
acc , and f (test)

acc can be analyzed with Sequential Parameter Optimization Toolbox
(SPOT), because it computes and reports these values.

10.4 funKerasGeneric: The Objective Function

The hyperparameter tuner, e.g., spot, performs model selection during the tuning
run: training data X (train) is used for fitting (training) the models, e.g., the weights
of the DNNs. Each trained model Aλi

(
X (train)

)
will be evaluated on the validation

data X (val), i.e., the loss is calculated as shown in Eq. (2.9). Based on (λi , ψ
(val)
i ), at

each iteration of the outer optimization loop a surrogate model S(t) is fitted, e.g.,
a Bayesian Optimization (BO) (Kriging) model using spot’s buildKriging
function.

For each hyperparameter configuration λi , the objective function
funKerasGeneric reports information about the related DNN models Aλi

1. training loss, ψ(train),
2. training accuracy, f (train)

acc ,
3. validation (testing) loss, ψ(val), and
4. validation (testing) accuracy, f (val)

acc .

10.5 spot: Experimental Setup for the Hyperparameter
Tuner

The SPOT package for R, which was introduced in Sect. 4.5, will be used for the
DL hyperparameter tuning (Bartz-Beielstein et al. 2021). The budget is set to twelve
hours, i.e., the run time of DL tuning is larger than the run time of the ML tuning.
The budget for the spot runs was set to this value, because of the complexity of the
hyperparameter search space � and the relatively long run time of the DNN.

SPOT provides several options for adjusting the HPT parameters, e.g., type of
the Surrogate Model Based Optimization (SMBO) model, S, and optimizer, O, as
well as the size of the initial design, ninit. These parameters can be passed via the
spotControl function to spot. For example, instead of the default surrogate S,
which is BO (implemented as buildKriging), a Random Forest (RF), (imple-
mented as buildRanger) can be chosen.
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data:
trainGeneric: (X,Y )(train),
valGeneric: (X,Y )(val),
testGeneric: (X,Y )(test)

2.1.2 Data Set Preparation

genericDataPrep

train ds generic: (X,Y )(train),
val ds generic: (X,Y )(val),
test ds generic: (X,Y )(test)

keras

train ds generic: (X,Y )(train)

spot

funKerasGeneric

val ds generic : (X,Y )(val)
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test ds generic : (X,Y )(test)

Model Optimization Model Selection Model Assessment

Fig. 10.4 Overview. The DL HPT data workflow

ThegeneralDLHPTdataworkflow is as follows: first the trainingdata, (X,Y )(train)

are fed to theDNN. TheDNNwill then learn to associate images and labels. Based on
the keras parameter validation_split, the training data will be partitioned
into a (smaller) training data set, X (train), and a validation data set, (X,Y )(valtrain). The
trained DNN produces predictions for validations based on (X, Y )(val) data. The DL
HPT data workflow is shown in Fig. 10.4.

Similar to the process described in Sect. 8.1 for ML, the hyperparameter tuning
for DL can be started as follows:

startCensusRun(model = "dl")

The startCensusRun function performs the following steps:

1. Providing the CID data set, ((X,Y)CID, see Sect. 8.2.1.
2. Generating the random sample (X,Y ) ⊆ ((X,Y)CID of size nobs.
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Table 10.6 SPOT parameters used for deep learning hyperparameter tuning. The control list
contains internally further lists, see Table10.7

Parameter Value Description

x x0 Starting point, hyperparameter vector λ, see
Tables10.4 and 10.5

fun funKerasGeneric Objective function, Oouter

lower cfg$lower Lower bounds for x aka λ

upper cfg$upper Upper bounds for x aka λ

control List

kerasConf kerasConf Argument used by the objective function
funKerasGeneric

specList specList Argument used by the objective function
funKerasGeneric

Table 10.7 SPOT list parameters used for deep learning hyperparameter tuning

List Parameter Value

Control Types cfg$type

Verbosity Verbosity

Time List (maxTime = timebudget/60)

Plots Plots

Progress TRUE

Model spotModel

Optimizer spotOptim

Noise Noise

OCBA OCBA

OCBABudget OCBABudget

seedFun NA

seedSPOT tuner.seed

designControl Replicates Rinit

Size initSizeFactor * length(cfg$lower)

modelControl Target krigingTarget

useLambda krigingUseLambda

Reinterpolate krigingReinterpolate

optimizerControl funEvals multFun * length(cfg$lower))

yImputation handleNAsMethod handleNAsMethod

imputeCriteriaFuns imputeCriteriaFuns

penaltyImputation 3
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3. Defining an experimental design, including performance measures.
4. Configuration of the hyperparameter tuner, T .
5. Configuration of the DL model, A.
6. Performing the experiments.

Furthermore, it can be decided whether to use the default hyperparameter setting,
λ0, as a starting point or not. Using the parameter specifications from Tables10.6
and 10.7, we are ready to perform the HPT run: spot can be started.

10.6 Tunability

Regarding tunability as defined in Definition2.26, we are facing a special situation
in this chapter, because there is no generally accepted “default” hyperparameter
configuration, λ0, for DNNs. This problem is not as obvious in ML, because the
correspondingmethods have a long history, i.e., there are publications for most of the
shallowmethods that can give hints how to select adequate λ values. This information
is collected and summarized in Chap.3. The “default” hyperparameter setting of the
DNNs analyzed in this chapter is based on our own experiences, combined with
recommendations in the literature. Chollet and Allaire (2018) may be considered as
a reference in this field.7

The result list from the spot run can be loaded. It contains the 14 values
shown in Table4.6, e.g., names of the tuned hyperparameters that were introduced
in Table10.4:

result$control$parNames

## [1] "dropout" "dropoutfact" "units" "unitsfact"
## [5] "learning_rate" "epochs" "beta_1" "beta_2"
## [9] "layers" "epsilon" "optimizer"

The HPT inner optimization loop is shown in Fig. 10.5. The DNN uses the tuned
hyperparameters, λ� from Table10.8. The model training supports the result found
by the tuner spot that the number of training epochs should be 32. The reader may
compare the inner optimization loop with default and with tuned hyperparameters in
Figs. 10.3 and 10.5.

The tuned DNN model has the following structure:

## $model

## Model: "sequential_1"

## ________________________________________________________________________________

## Layer (type) Output Shape Param #

## ================================================================================

## dense_features_2 (DenseFeatures) multiple 0

7 An updated version of Chollet and Allaire (2018) is under preparation while we are writing this
text. Check the authors’ web-page for more information: https://www.manning.com/books/deep-
learning-with-r.

https://www.manning.com/books/deep-learning-with-r
https://www.manning.com/books/deep-learning-with-r


10 Case Study III: Tuning of Deep Neural Networks 255

lo
ss

bi
na

ry
_a

cc
ur

ac
y

0 5 10 15 20 25 30

0.3

0.4

0.5

0.65

0.70

0.75

0.80

0.85

epoch

data
training
validation

Fig. 10.5 Training DL (inner optimization loop) using the tuned hyperparameter setting λ�

Table 10.8 DNN configurations. “lr” denotes “learning_rate”. The overall mean of the loss, y is
0.3691, its standard deviation is 0.1152, whereas the mean of the best HPT configuration, λ�, found
by OCBA, is 0.3346 with s.d. 0.0343
dropout dropoutfact units unitsfact lr epochs beta_1 beta_2 layers epsilon optimizer Loss

0 0 5 0.5 0.001 4 0.9 0.999 1 0 5 0.346

0.038 0.793 5 0.742 0.002 5 0.913 0.994 1 0 4 0.335

## dense_2 (Dense) multiple 8864

## dense_3 (Dense) multiple 33

## ================================================================================

## Total params: 8,897

## Trainable params: 8,897

## Non-trainable params: 0

## ________________________________________________________________________________

##

## $history

##

## Final epoch (plot to see history):

## loss: 0.2983

## binary_accuracy: 0.8508

## val_loss: 0.3343

## val_binary_accuracy: 0.8132

10.6.1 Progress

After loading the results from the experiments, the hyperparameter tuning progress
can be visually analyzed. First of all, the result list information will be used to
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Fig. 10.6 Progress plot. In contrast to the progress plots used for the ML methods, this plot shows
the BCE loss and not the MMCE against the number of iterations (function evaluations of the tuner)

visualize the route to the solution: in Fig. 10.6, loss function values,ψ(val), are plotted
against the number of iterations, t . Each point represents one evaluation of an DNN
model Aλ(t) at time step (spot iteration) t .

The initial design, which includes the default hyperparameter setting, λ0, results
in a loss value of ψ

(val)
init = 0.3371. The best value, that was found during the tuning,

is y(∗)
val = 0.3285. These values have to be taken with caution, because they represent

onyl one evaluation ofAλ. Based on OCBA, which takes the noise in the model eval-
uation via the function funKerasGeneric into consideration, the best function
value is y(OCBA∗)

val = 0.3346.
After 12h, 914 dl models were evaluated. Comparing the worst configuration

that was observed during the HPT with the best, a 81.773% reduction in the BCE
loss was obtained. After the initial phase, which includes 44 evaluations, the smallest
BCE reads 0.3370858. The dotted red line in Fig. 8.6 illustrates this result. The final
best value reads 0.3285304, i.e., a reduction of the BCE of 2.5381%. These values, in
combinationwith results shown in the progress plot (Fig. 8.6) indicate that a relatively
short HPT run is able to improve the quality of the DNNmodel. It also indicates, that
increased run times do not result in a significant improvement of the BCE. The full
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comparison of the DL and ML algorithm performances with default, λ0, and tuned,
λ�, hyperparameters is shown in Sect. 10.9.

•! Attention

These results do not replace a sound statistical comparison, they are only indicators,
not final conclusions.

The corresponding code is presented in the Appendix. The related hyperparame-
ters values are shown in Table10.8.

There is a large variance in the loss as can be seen in Figs. 10.6 and 10.7. The
latter of these two plots visualizes the same data as the former, but uses log-log axes
instead.

10.6.2 evalParamCensus: Comparing Default and Tuned
Parameters on Test Data

The function evalParamCensus evaluates ML and DL hyperparameter configu-
rations on the CID data set. It compiles a data frame, which includes performance
scores from several hyperparameter configurations and can also process results from
default settings. This data frame can be used for a comparison of default and tuned
hyperparameters, λ0 and λ�, respectively. A violin plot of this comparison is shown
in Fig. 10.8. It is based on 30 evaluations of λ0 and λ� and shows—in contrast to the
values in the DNN progress plots—theMeanMis-Classification Error (MMCE). The
MMCE was chosen to enable a comparison of the DL results with the ML results
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Fig. 10.8 Comparison of
DL algorithms with default
(D) and tuned (T)
hyperparameters. Mean
misclassification error
(MMCE) for both
configurations. Vertical lines
mark quantiles (0.25, 0.5,
0.75) of the corresponding
distribution. Numerical
values are shown in
Table10.8
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shown in this book. Identical evaluations were done in Chaps. 8, 9, and 12. A global
comparison of the six ML and the DL methods from this book will be shown in
Sect. 10.9.

10.7 Analysing the Deep Learning Tuning Process

The values that are used for the analysis in this section are biased because they are
not using an experimental design (space filling or factorial). Instead, they are using
the data from the spot tuning process, i.e., they are biased by the search strategy
(Expected Improvenment (EI)) on the surrogate S.

Identical to the analysis of the ML methods, a simple regression tree as shown in
Fig. 10.9 can be used for analysing effects and interactions between hyperparameters
λ.

The regression tree supports the observations, that units and epochs have the
largest effect on the validation loss. The importance of the parameters from the
random forest analysis are shown in Table10.9.

To perform a sensitivity analysis, parallel and sensitivity plots can be used.
The parallel plot (Fig. 10.10) indicates that the hyperparameter units should be

set to a value of 32 (the transformed values range from 1 to 32), the epochs, i.e.
x6, should be set to a value of 32 (the transformed values range from 8 to 128), the
layers, i.e. x9, should be set to a value of 1 (the transformed values range from 1
to 4), and the optimizer, i.e. x11, should be set to a value of 4 (the transformed
values range from 1 to 7).

Looking at Fig. 10.11, the following observations can be made: Similar to the
results from the parallel plot (Fig. 10.10), the sensitivity plot shows that the epochs,
i.e. x6, and the optimizer, i.e. x11, have the largest effect: the former leads to poor
results for larger values, whereas the latter produces poor results for relatively small
values. This indicates that the number of training epochs should not be too large
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Fig. 10.9 Regression tree. Deep learning model. Transformed hyperparameter values are shown

Table 10.9 Variable importance of the DL model hyperparameters
λi units epochs beta_2 layers lr beta_1 eps opt. dropoutfact dropout unitsfact

Var.
imp.

6.04 1.69 1.36 0.63 0.47 0.46 0.42 0.33 0.22 0.19 0.10
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Fig. 10.10 Best configurations in green
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Fig. 10.12 Surface plot: epochs x6 plotted against optimizer x11. This plot indicates that longer
training (larger epochs values) worsen the performance and that the optimizer adadelta per-
forms well. Note: Plateaus are caused by discrete and factor variables

(probably to prevent overfitting, see Fig. 10.5) and that the optimizers adadelta
or adam are recommended (Fig. 10.12).

Finally, a simple linear regression model can be fitted to the data. Based on the
data from SPOT’s res list, this can be done as follows:

##
## Call:
## lm(formula = y ˜ ., data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
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## -0.19062 -0.04055 -0.00477 -0.00044 1.16255
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.291e+00 1.494e+00 1.533 0.125532
## dropout 9.491e-02 3.804e-02 2.495 0.012776 *
## dropoutfact 3.807e-02 3.167e-02 1.202 0.229606
## units 9.670e-03 3.544e-03 2.729 0.006484 **
## unitsfact -5.514e-02 2.225e-02 -2.478 0.013396 *
## learning_rate 8.281e+00 1.509e+00 5.488 5.29e-08 ***
## epochs 4.832e-02 4.628e-03 10.442 < 2e-16 ***
## beta_1 3.456e-01 1.705e-01 2.028 0.042888 *
## beta_2 -2.589e+00 1.486e+00 -1.743 0.081739 .
## layers 2.360e-02 4.573e-03 5.161 3.03e-07 ***
## epsilon -1.522e+06 7.284e+05 -2.089 0.036961 *
## optimizer2 4.672e-02 1.783e-02 2.620 0.008933 **
## optimizer3 2.791e-02 1.575e-02 1.772 0.076659 .
## optimizer4 -9.552e-03 1.343e-02 -0.711 0.477196
## optimizer5 1.282e-01 2.094e-02 6.121 1.39e-09 ***
## optimizer6 6.941e-02 1.572e-02 4.415 1.13e-05 ***
## optimizer7 1.172e-01 3.020e-02 3.880 0.000112 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Residual standard error: 0.09997 on 897 degrees of freedom
## Multiple R-squared: 0.2595, Adjusted R-squared: 0.2463
## F-statistic: 19.65 on 16 and 897 DF, p-value: < 2.2e-16

Although this linear model requires a detailed investigation (a misspecification
analysis is recommended, see, e.g., Spanos 1999), it can be used in combination with
other Exploratory Data Analysis (EDA) tools and visualizations from this section
to discover unexpected and/or interesting effects. It should not be used alone for a
final decision. Despite of a relatively low adjusted R2 value, the regression output
shows—in correspondence with previous observations—that increasing the number
of epochs worsens the model performance.

10.8 Severity: Validating the Results

Considering the results of the experimental runs the difference is x̄ = 0.0054. Since
this value is positive, for themoment, let us assume that the tuned solution is superior.
The corresponding standard deviation is sd = 0.0056. Based on Eq.5.14, and with
α = 0.05, β = 0.2, and 	 = 0.006.

Next, we will identify the required number of runs for the full experiment using
the getSampleSize function. For a relevant difference of 0.006 approximately
11 completing runs per algorithm are required. Hence, we can directly proceed to
evaluate the severity and analyse the performance improvement achieved through
tuning the parameters of the DL model.
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Table 10.10 Case Study III: Result Analysis

p-value Decision Power Cohen’s d Hedge’s g Severity

0 H0 rejected 0.9999849 0.695314 0.686284 	 ≤ 0.0045
are well
supported
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Fig. 10.13 Tuning DL. Severity of rejecting H0 (red), power (blue), and error (gray). Left: the
observed mean x̄ = 0.0054 is larger than the cut-off point c1−α = 0.0017 Right: The claim that
the true difference is as large or larger than 0.006 is not supported by severity. But, any difference
smaller than 0.0045 is supported by severity

Result summaries are presented in Table10.10. The decision based on p-value is
to reject the null hypothesis, i.e, the claim that the tuned parameter setup provides
a significant performance improvement in terms of MMCE is supported. The effect
size suggests that the difference is of mediummagnitude. For the chosen	 = 0.006,
the severity value is at 0.29 and thus it does not support the decision of rejecting the
H0. The severity plot is shown in Fig. 10.13. Severity shows that only performance
differences smaller than 0.0045 are well supported.

10.9 Summary and Discussion

A HPT approach based on SMBO was introduced and exemplified in this chapter. It
uses functions from the packages keras, SPOT and SPOTMisc from the statisti-
cal programming environment R, hence providing a HPT environment that is fully
accessible from R. Although HPT can be performed with R functions, an underly-
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ing Python environment has to be installed. This installation is explained in the
Appendix.

The first three case studies in this book are concluded with a global comparison
of the seven methods, i.e., six ML methods and one DL method. The main goal of
these studies was to analyze whether a relatively short HPT run, which is performed
on a notebook or desktop computer without High Performance Computing (HPC)
hardware, can improve the performance. Or, stated differently:

Is it worth doing a short HPT run before doing a longer study?

To illustrate the performance gain (tunability), a final comparison of the seven meth-
ods will be presented. The number of repeats will be determined first:

An approximate formula for sample size determination will be used. The reader is
referred to Sect. 5.6.5 and to Senn (2021) for details. A sample size of 30 experiments
was chosen, i.e., altogether 210 runs were performed.

The list of results from the rfunctionspot HPT run stores relevant information
about the configuration and the experimental results.

Violin plots (Fig. 10.14) can be used. These observations are based on data col-
lected from default and tuned parameter settings. Although the absolute best value
was found by Extreme Gradient Boosting (XGBoost), Support Vector Machine
(SVM) should be considered as well, because the performance is similar while the
variance is much lower. This study briefly explained how HPT can be used as a
datascope for the optimization of DNN hyperparameters. The results from this brief
study scratch on the surface of the HPT set of tools. Especially for DL, SPOT allows
recommendations for improvement, it provides tools for comparisons using different
losses and measures on different data sets, e.g., ψ(train), ψ(val), and ψ(test).

While discussing the hyperparameter tuning results, HPT does not search for the
final, best solution only. For sure, the hyperparameter practitioner is interested in the
best solution. But even from this greedy point of view, considering the route to the
solution is also of great importance, because analyzing this route enables learning
and can be much more efficient in the long run compared to a greedy strategy.

Example: Route to the solution

Consider a classification task that has to be performed several times in a different
contextwith similar data. Instead of blindly (automatically) running theHyperparam-
eter Optimization (HPO) procedure individually for each classification task (which
might also require a significant amount of time and resources, even when it is per-
formed automatically) a few HPT procedures are performed. Insights gained from
HPT might help to avoid ill specified parameter ranges, too short run times, and
further pitfalls.

In addition to an effective and efficient way to determine the optimal hyperparam-
eters, SPOT provides means for understanding algorithms’ performance (we will use
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Fig. 10.14 Comparison of ML algorithms with default (D) and tuned (T) hyperparameters. Clas-
sification error (MMCE). Note: because there is no “default” hyperparameter setting for the deep
learning models used in this study, we have chosen a setting based on our experience and recom-
mendations from the literature, see the discussion in Sect. 10.6

datascopes similar to microscopes in biology and telescopes in astronomy). Consid-
ering the research goals stated in Sect. 4.1, the HPT approach presented in this study
provides many tools and solutions.

To conclude this chapter, in addition to the research goals (R-1) to (R-8) from
Sect. 4.1, important goals that are specific for HPT in DNN are presented.

The selection of an adequate performance measure is relevant. Kedziora et al.
(2020) claimed that “research strands into ML performance evaluation remain
arguably disorganized, [. . .]. Typical ML benchmarks focus on minimizing both loss
functions and processing times, which do not necessarily encapsulate the entirety
of human requirement.” Furthermore, a sound test problem specification is neces-
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sary, i.e., train, validation, and test sets should be clearly specified. Importantly, the
initialization (this is similar to the specification of starting points in optimization)
procedures should be made transparent. Because DLmethods require a large amount
of computational resources, the usage of surrogate benchmarks should be considered
(this is similar to the use of Computational Fluid Dynamics (CFD) simulations in
optimization). Most of the ML and DL methods are noisy. Therefore, repeats should
be considered. The power of the test, severity, and related tools which were intro-
duced in Chap.5 can give hints for choosing adequate values, i.e., howmany runs are
feasible or necessary. The determination of meaningful differences—with respect to
the specification of the loss function or the accuracy—based on tools like severity are
of great relevance for the practical application. Remember: scientific relevance is not
identical to statistical significance. Furthermore, floor and ceiling effects should be
avoided, i.e., the comparison should not be based on too hard (or too easy) problems.
We strongly recommend a comparison to baseline (e.g., default settings or Random
Search (RS)).

ThemodelAmust be clearly specified, i.e., the initialization, pre-training (starting
points in optimization) should be explained. The hyperparameter (ranges, types)
should be clearly specified. If there are any additional (untunable) parameters, then
they should be explained. How is reproducibility ensured (and by whom)? Last but
not least: open source code and open data should be provided.

The final conclusion from the three case studies (Chaps. 8–10) can be formulated
as follows:

HPT provides tools for comparing, analyzing, and selecting an adequate ML
or DL method for unknown real-world problems. It requires only moderate
computational resources (notebooks or desktop computers) and limited time.
Practitioners can start HPT runs at the end of their work day and will find the
results ready on their desk the next morning.

10.10 Program Code

Program Code

runNr <- "000"
batch_size <- 16
prop <- 2 / 3
dfGeneric <- getDataCensus(target = target, nobs = 1000)
# dfGeneric <- MASS::Boston
# names(dfGeneric)[names(dfGeneric) == "medv"] <- "target"
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data <- getGenericTrainValTestData(dfGeneric = dfGeneric, prop = prop)
specList <- genericDataPrep(data = data, batch_size = batch_size)
## model configuration:
model <- "dl"
cfg <- getModelConf(list(model = model))
x <- matrix(cfg$default, nrow = 1)
#’
kerasConf <- getKerasConf()
kerasConf$nClasses <- 1
kerasConf$activation <- NULL
kerasConf$verbose <- 0
kerasConf$loss <- "mse"
kerasConf$metrics <- "mae"
## Only some variables are tuned
# kerasConf$active <- c("layers", "units", "epochs")
### First example: simple function call:
message("objectiveFunctionEvaluation(): x before transformX().")
print(x)
if (length(cfg$transformations) > 0) {
x <- transformX(xNat = x, fn = cfg$transformations)

}
message("objectiveFunctionEvaluation(): x after transformX().")
print(x)
funKerasGeneric(x, kerasConf = kerasConf, specList = specList)
#’
### Second example: evaluation of several (three) hyperparameter settings:
xxx <- rbind(x, x, x)
funKerasGeneric(xxx, kerasConf = kerasConf, specList)
#’
### Third example: spot call
kerasConf$verbose <- 0
result <-
spot(

x = NULL,
fun = funKerasGeneric,
lower = cfg$lower,
upper = cfg$upper,
control = list(

funEvals = 25,
# time = list(maxTime = 5),
noise = TRUE,
types = cfg$type,
plots = TRUE,
progress = TRUE,
seedFun = 1,
seedSPOT = 1,
replicates = 2,
OCBA = TRUE,
OCBABudget = 2,
parNames = cfg$tunepars,
designControl = list(

replicates = 2,
size = 1 * length(cfg$lower)

),
yImputation = list(

handleNAsMethod = handleNAsMean,
imputeCriteriaFuns = list(is.infinite, is.na, is.nan),
penaltyImputation = 3

),
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modelControl = list(
target = "ei",
useLambda = TRUE,
reinterpolate = FALSE

),
transformFun = cfg$transformations

),
kerasConf = kerasConf,
specList = specList

)
x <- result$xbest
message("objectiveFunctionEvaluation(): x before transformX().")
print(x)
if (length(cfg$transformations) > 0) {
x <- transformX(xNat = x, fn = cfg$transformations)

}
message("objectiveFunctionEvaluation(): x after transformX().")
print(x)
df <- data.frame(x)
names(df) <- cfg$tunepars
print(df)
save(result, file = paste0(model, runNr, ".RData"))

dfRun <- prepareProgressPlot(model, runNr, directory = ".")
ggplotProgress(dfRun)

library("rpart")
library("rpart.plot")
library("SPOT")
x <- result$x
# cfg <- getModelConf(model="dl")
transformFun <- cfg$transformations
message("predDlCensus(): x before transformX().")
print(x)
if (length(cfg$transformations) > 0) {
x <- transformX(xNat = x, fn = cfg$transformations)

}
message("predDlCensus(): x after transformX().")
print(xt)
fitTree <- buildTreeModel(
x = xt,
y = result$y,
control = list(xnames = result$control$parNames)

)
rpart.plot(fitTree$fit)

kerasConf$returnObject <- "pred"
x <- result$xbest
if (length(cfg$transformations) > 0) {
x <- transformX(xNat = x, fn = cfg$transformations)

}
x
evalKerasGeneric(
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x = x,
kerasConf = kerasConf,
specList = specList

)

library("SPOT")
library("SPOTMisc")
runNr <- "OCBA"
batch_size <- 32
prop <- 2 / 3
target <- "age"
dfGeneric <- getDataCensus(target = target, nobs = 1e4)
# dfGeneric <- MASS::Boston
# names(dfGeneric)[names(dfGeneric) == "medv"] <- "target"
data <- getGenericTrainValTestData(dfGeneric = dfGeneric, prop = prop)
specList <- genericDataPrep(data = data, batch_size = batch_size)
## model configuration:
model <- "dl"
cfg <- getModelConf(list(model = model))
# x <- matrix(cfg$default, nrow=1)
x <- result$xBestOcba
#’
kerasConf <- getKerasConf()
# kerasConf$nClasses <- 1
# kerasConf$activation <- NULL
kerasConf$verbose <- 2
# kerasConf$loss <- "mse"
# kerasConf$metrics <- "mae"
## Only some variables are tuned
# kerasConf$active <- c("layers", "units", "epochs")
### First example: simple function call:
message("objectiveFunctionEvaluation(): x before transformX().")
print(x)
if (length(cfg$transformations) > 0) {
x <- transformX(xNat = x, fn = cfg$transformations)

}
message("objectiveFunctionEvaluation(): x after transformX().")
print(x)
evalKerasGeneric(
x = x,
kerasConf = kerasConf,
specList = specList

)
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Chapter 11
Case Study IV: Tuned Reinforcement
Learning (in PYTHON)

Martin Zaefferer and Sowmya Chandrasekaran

Abstract Similar to the example in Chap.10, which considered tuning a Deep Neu-
ral Network (DNN), this chapter also deals with neural networks, but focuses on a
different type of learning task: reinforcement learning. This increases the complex-
ity, since any evaluation of the learning algorithm also involves the simulation of the
respective environment. The learning algorithm is not just tunedwith a static data set,
but rather with dynamic feedback from the environment, in which an agent operates.
The agent is controlled via theDNN.Also, the parameters of the reinforcement learn-
ing algorithm have to be considered in addition to the network parameters. Based
on a simple example from the Keras documentation, we tune a DNN used for rein-
forcement learning of the inverse pendulum environment toy example. As a bonus,
this chapter shows how the demonstrated tuning tools can be used to interface with
and tune a learning algorithm that is implemented in Python.
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11.1 Introduction

In this chapter, we will demonstrate how a reinforcement learning algorithm can be
tuned. In reinforcement learning, we consider a dynamic learning process, rather
than a process with fixed, static data sets like in typical classification tasks.

The learning task considers an agent, which operates in an environment. In each
timestep, the agent decides to take a certain action. This action is fed to the envi-
ronment, and causes a change from a previous state to a new state. The environment
also determines a reward for the respective action. After that, the agent will decide
the next action to take, based on received reward and the new state. The learning
goal is to find an agent that accumulates as much reward as possible.

To simplify things for a second, let us consider an example:Amobile robot (agent)
is placed in a room (environment). The state of the agent is the position of the robot.
The reward may be based on the distance traveled toward a target position. Different
movements of the robot are the respective actions.

In this case, our neural network can be used to map from the current state to a new
action. Thus, it presents a controller for our robot agent. The weights of this neural
network have to be learned in some way, taking into account the received rewards.
Compared to Chap.10, this leads to a somewhat different scenario: Data is usually
gathered in a dynamic process, rather than being available from the start.1 In fact,
initially, we may not have any data. We acquire data during the learning process, by
observing states/actions/rewards in the environment.

11.2 Materials and Methods

11.2.1 Software

We largely rely on the same software as in the previous chapters. That is, we use
the same tuning tools. As in Chap.10, we use Keras and TensorFlow to implement
the neural networks. However, we will perform the complete learning task within
Python, using the R package reticulate to explicitly interface between the
R-based tuner and the Python-based learning task (rather than implicitly via R’s
keras package).

On the one hand, this will demonstrate how to interface with different program-
ming languages (i.e., if your model is not trained in R). On the other hand, this is a
necessary step, because the respective environment is only available in Python (i.e.,
the toy problem).

For the sake of readability, the complete code will not be printed within the main
text, but is available as supplementary material.

1 Although it has to be noted that somewhat similar dynamics may occur, e.g., when learning a
classification model with streaming data.
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Fig. 11.1 Initial and goal state of the 2D inverted pendulum problem

11.2.2 Task Environment: Inverted Pendulum

The example we investigate is based on a Keras tutorial by Singh (2020). This relies
on a toy problem that is often used to test or demonstrate reinforcement learning
algorithms: the frictionless inverted pendulum. More specifically, we use the imple-
mentation of the inverse problem which is provided by OpenAI Gym2 denoted as
Pendulum-v0.

The inverted pendulum is a simple 2D-physical simulation. Initially, the pendulum
hangs downwards, and has to be swung upwards, by applying force at the joint, either
to the left or right. Once the pendulum is oriented upwards, it has to be balanced
there as long as possible. This situation is shown in Fig. 11.1.

The state of this problem’s environment is composed of three values: the sine and
cosine of the pendulum angle, and the angular velocity. The action is the applied
torque (with a sign representing a change of direction), and the reward is computed
with −(angle2 + 0.1 ∗ velocity2 + 0.001 ∗ torque2). This ensures that the learning
process sees the largest rewards if the pendulum is upright (angles are close to zero),
moving slowly (small angular velocities), with little effort (small torques).

2 OpenAI Gym is a collection of reinforcement learning problems; see https://github.com/openai/
gym for details such as installation instructions.

https://github.com/openai/gym
https://github.com/openai/gym
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11.2.3 Learning Algorithm

Largely, we leave the algorithm used in the original Keras tutorial as is (Singh 2020).
In fact, this algorithm follows the concept of the Deep Deterministic Policy Gradient
(DDPG) algorithm by Lillicrap et al. (2015). We will not go into all details of the
algorithm, but will note some important aspects for setting up the tuning procedure.

The learning algorithm essentially uses four different networks: an actor network,
a target actor network, a critic network, and a target critic network. The actor network
represents the policy of the agent: mapping from states to actions. The critic network
tries to guess the value (in terms of future rewards) of the current state/action pair,
thus providing a baseline to compare the actor against. That is, the critic network
maps from states and actions to a kind of estimated reward value.

The respective target networks are copies of these two networks. They use the
same architecture and weights, which are not directly trained for the target networks
but are instead updated via cloning them from the original networks regularly during
the learning process. These concepts (the actor-critic concept and target networks)
are intended to stabilize network training.

The learning algorithm also makes use of experience replay, which represents
a collection (or buffer) of tuples consisting of states, actions, rewards, and new
states. This allows learning from a set of previously experienced agent-environment
interactions, rather than just updating the model with the most recent ones.

11.3 Setting up the Tuning Experiment

11.3.1 File: run.py

The learning algorithm and task environment are processed with Python code, in
the file run.py. This is to a large extent identical to the Keras tutorial (Singh 2020).

Here, we explain the relevant changes, showing some snippets from the code.

• The complete code is wrapped into a function, which will later be called from R
via the reticulate interface.

def run_ddpg(num_hidden,critic_lr,actor_lr,
gamma,tau,activation,max_episodes,seed):

Importantly, the arguments consist of the parameters that will be tuned, as well as
max_episodes (number of learning episodes that will be run) and a seed for the
random number generator.

• Respectively, these parameters have all been changed from the original, hard-
coded values in the Keras tutorial. The original (default) values in the tutorial
are num_hidden=256, critic_lr=0.002, actor_lr=0.001, gamma=0.99, tau=0.005,
activation =“relu”.
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• Note that we vary only the size of the largest layers in the networks (default: 256).
Especially, the critic has smaller layers that collect the respective inputs (states,
actions). These remain unchanged.

• Via the argument activation, we only replace the activation functions of the
internal layers, not the activation function of the final output layers.

• To make sure that results are reproducible, we set the random number generator
seeds (for the reinforcement learning environment, TensorFlow, and NumPy):

env.seed(seed)
tf.random.set_seed(seed)
np.random.seed(seed)

• We remove the plots from the tutorial code, as these are not particularly useful
during automated tuning.

• Finally, we return the variable avg_reward_list, which is the average reward of the
last 40 episodes. This returned value will be the objective function value that our
tuner Sequential Parameter Optimization Toolbox (SPOT) observes.

• Note that all reward values we consider will be negated, since most of the proce-
dures we employ assume smaller values to be better.

More details on the tuned parameters are given next.

11.3.2 Tuned Parameters

In the previous Sect. 11.3.1, we already briefly introduced the tuned parameters and
their default values: num_hidden=256, critic_lr=0.002, actor_lr=0.001, gamma=0.99,
tau=0.005, activation=“relu”. Some of these we may recognize, matching parame-
ters of neural networks that we considered throughout other parts of this book:
num_hidden corresponds to the previously discussed units, but is a scalar value
(it is reused to define the size of all the larger layers in all networks). Instead of a
single learning_rate, we have separate learning rates for the actor and critic
networks, critic_lr, and actor_lr.

The parameter gamma is new, as it is specific to actor-critic learning algorithms:
it represents a discount factor which is applied to estimated rewards as a multipli-
cator. The parameter tau is also new, representing a multiplicator that is used when
updating the weights of the target networks. Finally, activation is the activation
function (here: shared between all internal layers). The parameters and their bounds
are summarized in Table11.1.

List of configurations

The following code snippet shows the code used to define this parameter search space
for SPOT in R.
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Table 11.1 The hyperparameters for our reinforcement learning example. Note that the defaults
and bounds concern the actual scale of each parameter (not transformed). Defaults denote the values
from the original Keras tutorial, not the formal defaults from the Keras function interfaces

Name Type Default Scale
transformation

Lower bound Upper bound

num_hidden Integer x 256 8 256

critic_lr Double 10x 0.002 1e − 5 1e − 1

actor_lr Double 10x 0.001 1e − 5 1e − 1

gamma Double 1 − 10x 0.99 0.5 1

tau Double 10x 0.001 1e − 4 1e − 0

activation Factor relu relu, swish, sigmoid

## configuration for the tuning problem
cfg <- list(
## Names of the parameters
tunepars = c("num_hidden","actor_lr","critic_lr",

"gamma","tau","activation"),
## their lower bounds
lower = c(8, -5, -5, -4, -4, 1),
## their upper bounds
upper = c(256, -1, -1, -0.3, 0, 3),
## their type
type = c("integer","numeric","numeric","numeric","numeric","factor"),
## transformations to apply
transformations =

c(trans_id,trans_10pow,trans_10pow,
trans_1minus10pow,trans_10pow,trans_id),

## another parameter that will not be tuned, but is fixed
fixpars = list(max_episodes=50L),
## specify levels of categorical parameters
## (i.e., to translate from integers to these factor levels):
factorlevels = list(activation=c("relu","swish","sigmoid")),
## not used in this example
## (specify parameters that are relative to other parameters)
relpars = list()

)

Note that we set a single fixed parameter, max_episodes, limiting the evaluation
of the learning process to 50 episodes.

11.3.3 Further Configuration of SPOT

SPOT is configured to use 300 evaluations, which are spent as follows: Each evalu-
ation is replicated (evaluated repeatedly) five times, to account for noise. Noise is a
substantial issue in reinforcement learning cases like this one.



11 Case Study IV: Tuned Reinforcement Learning (in Python) 277

30 different configurations are tested in the initial design, leading to 150 evalu-
ations (including the replications). The remaining 150 evaluations are spent by the
iterative search procedure of SPOT. Due to replications, this implies that 30 further
configurations are tested. Also, due to the stochastic nature of the problem, we set
the parameter noise=TRUE.

The employed surrogate model is Kriging (a.k.a. Gaussian process regression),
which is configured to use the so-called nugget effect (useLambda=TRUE), but no
re-interpolation (reinterpolate=FALSE).

In each iteration after the initial design, a Differential Evolution algorithm is
used to search the surrogate model for a new, promising candidate. The Differential
Evolution algorithm is allowed to spend 2400 evaluations of the surrogate model in
each iteration of SPOT.

For the sake of reproducibility, random number generator seeds are specified
(seedSPOT,seedFun). Each replicationwillworkwith a different randomnumber
generator seed (iterated, starting from seedFun).

Arguments for calling SPOT

The respective configuration and function call is

result <- spot(fun = objf,
lower=cfg$lower,
upper=cfg$upper,
control = list(types=cfg$type,

funEvals=300,
plots=TRUE,
optimizer=optimDE,
noise=TRUE,
seedSPOT=1,
seedFun=1,
designControl=list(size=5*length(cfg$lower),

replicates=5),
replicates=5,
model=buildKriging,
modelControl=list(target="ei",useLambda=TRUE,

reinterpolate=FALSE),
optimizerControl=list(funEvals=

400*length(cfg$lower))
)

)

11.3.4 Post-processing and Validating the Results

To determine how well the tuning worked, we perform a short validation experiment
at the end. There, we spend 10 replications to evaluate the best found solution. We
also spend more episodes for this test (i.e., max_episodes=100). This provides a less
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noisy and more reliable estimate of our solution’s performance, compared to the
respective performance of the default settings from the tutorial (see Table11.1).

Note that this step requires a bit of data processing, where we first aggregate our
result data set by computing mean objective values (i.e., over the 5 replications), to
determine which configuration was evaluated to work best on average.

11.4 Results

Table11.2 compares the parameters of the best solution found during tuning with
those of the defaults from the tutorial. It also lists the respective performance (average
reward) and its standard deviation. We can load the result file created after tuning to
create a visual impression of this comparison (Fig. 11.2).

load("supplementary/ch11-caseStudyIV/resultFile.RData")
boxplot(best_real_y,default_y,

names=c("tuned","default"),
xlab="performance (-reward)",
horizontal=TRUE)

Interestingly, much smaller size of the dense layers (num_hidden=64) seems to
suffice for the tuned solution. The larger tutorial network uses 256 units. The tuned
algorithm also uses a larger learning rate for the critic network, compared to the
actor network. The parameters gamma and tau deviate strongly from the respective
defaults.

Table 11.2 The hyperparameter values of the best solution found during tuning, compared against
those of the defaults from the Keras tutorial by Singh (2020). It also lists the respective performance
(mean neg. reward) and its standard deviation. Mean and standard deviation are computed over 10
replications, evaluated with 100 episodes

Variable name Default Tuned

num_hidden 256 64

critic_lr 0.00200 0.00349

actor_lr 0.00100 0.00074

gamma 0.99000 0.93668

tau 0.00100 0.01481

activation relu swish

Average negated reward 183.62 169.86

st. dev. of avg. neg. reward 37.49 27.60
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Fig. 11.2 Boxplot comparing the default and tuned configurations of the reinforcement learning
process, in terms of their negated reward

11.5 Severity: Validating the Results

Let us proceed to analyze the average negated reward attained between the tuned
and default parameters using severity. The pre-experimental runs indicate that the
difference is x̄ = 13.76. Because this value is positive, we can assume that the tuned
solution is superior. The standard deviation is sd = 32.67. Based on Eq.5.14, and
with α = 0.05, β = 0.2, and � = 40, we can determine the number of runs for the
full experiment.

For a relevant difference of 40, approximately 8 completing runs per algorithm
are required. Hence, we can proceed directly to evaluate the severity as sufficient
runs have already been performed.

The decision based on the p-value of 0.0915 is to not reject H0. Considering
a target relevant difference � = 40, the severity of not rejecting H0 is 0.99, and
thus it strongly supports the decision of not rejecting the H0. The corresponding
severity plot is shown in Fig. 11.3. Analyzing the results of hypothesis testing and
severity as shown in Table11.3, the differences in terms of parameter values do
not seem to manifest in the performance values. It can be observed in Table11.2
that a comparatively minor difference in mean performance is observed, while the
difference in standard deviation is a bit more pronounced. However, this cannot be
deemed as statistically significant relevance.

Overall, this matches well with what we see from a more detailed look at the
tuning results (Fig. 11.4):

SPOTMisc::plot_parallel(resultpp)
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Table 11.3 Case Study IV: Result Analysis

p-value Decision Power Cohen’s d Hedge’s g Severity

0.09 H0 not
rejected

0.987019 0.4178644 0.4002082 � ≥ 25 are
well supported

Fig. 11.4 Parallel plot of the achieved performance values during tuning. Red lines denote poor
configurations (poor performance), blue lines better configurations
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11.6 Summary and Discussion

In summary, the investigation shows that large parts of the search space lead to
poorly performing configurations of the algorithm. Still, there seems to be a broad
spectrum of potentially well-performing configurations, which interestingly include
fairly small networks (i.e., with few units). This observation may be linked to the
complexity of the problem, which is a relatively simple reinforcement learning sce-
nario with few states and actions.

The tuned solution seems to work a little better than the default settings from
the tutorial (Singh 2020), but those defaults are still competitive. It is reasonable
to assume that the tutorial defaults were chosen with care (potentially by some sort
of tuning procedure, or relevant experience by the tutorial’s author) and are well-
suited for this problem. While the smaller network implies faster computation, the
larger network has the advantage of being more easily transferred to more complex
reinforcement learning cases.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
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Chapter 12
Global Study: Influence of Tuning

Martin Zaefferer, Olaf Mersmann, and Thomas Bartz-Beielstein

Abstract Expanding themore focused analyses from previous chapters, this chapter
takes a broader view at the tuning process. That means, rather than tuning an individ-
ual model, this investigation considers the tuning of multiple models, with different
tuners, and varying data sets. The core aim is to see how characteristics of the data
and the model choice may impact the tuning procedure. We investigate five hypothe-
ses, concerning the necessity of tuning, the impact of data characteristics, the impact
of the target variable type, the impact of model choice, and benchmarking. Not only
does this entail an in-depth tuning study, but we also tie our results to a measure of
problem difficulty and use consensus ranking to aggregate the diverse experimental
results.

12.1 Introduction

As described in Sect. 4.4, the Sequential Parameter Optimization Toolbox (SPOT)
offers a robust approach for the tuning of Machine Learning (ML) algorithms, espe-
cially if the training and/or evaluation run time become large.

In practice, the learning process of models, A, and hence the choice of their
hyperparameters, λ, is influenced by a plethora of other factors. On the one hand,
this complex situation further motivates the use of tuning procedures, since the ML
algorithms have to be adapted to new data or situations. On the other hand, this

M. Zaefferer (B)
Bartz & Bartz GmbH and with Institute for Data Science, Engineering, and Analytics, TH Köln,
Gummersbach, Germany

Duale Hochschule Baden-Württemberg Ravensburg, Ravensburg, Germany
e-mail: zaefferer@dhbw-ravensburg.de

O. Mersmann · T. Bartz-Beielstein
Institute for Data Science, Engineering, and Analytics, TH Köln, Steinmüllerallee 1, 51643
Gummersbach, Germany
e-mail: olaf.mersmann@th-koeln.de

T. Bartz-Beielstein
e-mail: thomas.bartz-beielstein@th-koeln.de

© The Author(s) 2023
E. Bartz et al. (eds.), Hyperparameter Tuning for Machine and Deep Learning with R,
https://doi.org/10.1007/978-981-19-5170-1_12

283

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-5170-1_12&domain=pdf
mailto:zaefferer@dhbw-ravensburg.de
mailto:olaf.mersmann@th-koeln.de
mailto:thomas.bartz-beielstein@th-koeln.de
https://doi.org/10.1007/978-981-19-5170-1_12


284 M. Zaefferer et al.

raises the question of how such factors influence the tuning process itself. We want
to investigate this in a structured manner.

In detail, the following factors, which are introduced in Sect. 8.2.1, are objects of
our investigation.1 We test their influence on the tuning procedures.

• Number of numerical features in the data (nnumericals).
• Number of categorical features in the data (nfactors).
• Cardinality of the categorical features, i.e., the maximal number of levels
(cardinality).

• Number of observations in the data (n).
• Task type, classification or regression.
• Choice of model.

12.2 Research Questions

We want to investigate the following hypotheses.

(H-1) Tuning is necessary to find good parameter values (compared to defaults).
(H-2) Data: Properties of the data influence (the difficulty of) the tuning process.

• Information content: If the data has little information content, models are easier to
tune, sincemore parameter configurations achieve near-optimal quality. In general,
changing parameters has less impact on model quality in this case.

• Number of features: A larger number of features leads to longer run times, which
affects how many evaluations can be made during tuning.

• Type of features: The number of numerical and/or categorical features and their
cardinality influences how much information is available to the model, hence may
affect the difficulty of tuning.

• Number of observations n: With increasing n, the average run time of model
evaluations will increase.

(H-3) Target variable: There is no fundamental difference between tuning regres-
sion or classification models.

(H-4) Model: The choice of model (e.g., Elastic Net (EN) or Support Vector
Machine (SVM)) affects the difficulty of the tuning task, but not necessarily
the choice of tuning procedure.

(H-5) Benchmark: The performance of the employed tuners can be measured in a
statistically sound manner.

1 Thedata fromCensus-Income (KDD)DataSet (CID) is historical. It includeswordingor categories
regarding people which do not represent or reflect any views of the authors and editors.
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12.3 Setup

To investigate our research questions, the data set needs to be pre-processed accord-
ingly. This pre-processing is documented in the included source code and is explained
in Sect. 8.2.1.

For classification, the experiments summarized in Table12.1 are performed with
each tuner and each model. A reduced number of experiments are performed for
regression, see Table12.2.

To judge the impact of creating random subsets of the data (i.e., to reduce n), and
to consider the test/train split, three data sets are generated for each configuration.
All experiments are repeated for each of those three data sets.

Table 12.1 Experiments for classification: Investigated combinations of the number of categorical
features (nfactors), numerical features(nnumericals), cardinality, and n. An empty field for cardi-
nality occurs for low nfactors. In that case, no categorical features are present, so the number of
categories becomes irrelevant. The number of observations, n, is varied on a logarithmic scale with
five levels in the range from 104 to 105, i.e., 10 000, 17 783, 31 623, 56 234, and 100 000

nfactors nnumericals Cardinality Number of
observations (n)

High Low Low 104, 104.25, . . . , 105

Medium Medium Low 104, 104.25, . . . , 105

Low High 104, 104.25, . . . , 105

High High Low 104, 104.25, . . . , 105

High Low Medium 104, 104.25, . . . , 105

Medium Medium Medium 104, 104.25, . . . , 105

High High Medium 104, 104.25, . . . , 105

High Low High 104, 104.25, . . . , 105

Medium Medium High 104, 104.25, . . . , 105

High High High 104, 104.25, . . . , 105

Complete data set 299285

Table 12.2 Experiments for regression: Investigated combinations of the number of categorical
features (nfactors), numerical features (nnumericals), cardinality, and n. An empty field for cardi-
nality occurs for low nfactors. In that case, no categorical features are present, so the number of
categories becomes irrelevant

nfactors nnumericals Cardinality Number of
observations (n)

low High 104, 104.25, . . . , 105

High High Low 104, 104.25, . . . , 105

High High High 104, 104.25, . . . , 105
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12.3.1 Model Configuration

The experiments include the models k-Nearest-Neighbor (KNN), Decision Tree
(DT), EN, Random Forest (RF), Gradient Boosting (GB), and SVM. Their respective
parameters are listed in Table4.1.

For EN, lambda is not optimized by the tuner. Rather, the glmnet implemen-
tation itself tunes that parameter. Here, a sequence of different lambda values is
tested (Hastie and Qian 2016; Friedman et al. 2020).

For SVM, the choice of the kernel (kernel) is limited toradial andsigmoid,
since we experienced surprisingly large runtimes for linear and polynomial
in a set of preliminary experiments. Hence, degree is also excluded, as it is only
relevant for the polynomial kernel. Due to experiment runtime, we also did not
perform experiments with SVM and KNN on data sets with m ≥ 105 observations.
These would require using model variants that are able to deal with huge data sets
(e.g., some sparse SVM type).

Table3.8 lists hyperparameters that are actually tuned in the experiments, includ-
ing data type, bounds, and employed transformations. Here, we mostly follow the
bounds and transformations as used by Probst et al. (2019a). Fundamentally, these
are not general suggestions. Rather, reasonable bounds will usually require some
considerations with respect to data understanding, modeling/analysis, and computa-
tional resources. Bounds on values which affect run time should be chosen so that
experiments are still possible within a reasonable time frame. Similar considera-
tion can apply to memory requirements. Where increasing/decreasing parameters
may lead to increasing/decreasing sensitivity of the model, a suitable transformation
(e.g., log-transformation) should be applied.

Most other configurations of the investigated models remain at default values.
The only exceptions are:

• ranger: For the sake of comparabilitywith othermodels,model training and eval-
uation are performed in a single thread, without parallelization (num.threads
= 1).

• xgboost: Similarly to ranger, we set nthread=1. For regression, the evalu-
ation metric is set to the root-mean-square error (eval_metric="rmse"). For
classification, log-loss is chosen (eval_metric="logloss").

12.3.2 Runtime For the Global Study

Similar to the local studies (Chaps. 8–10), run times are recorded in addition toMean
Mis-Classification Error (MMCE) (MMCE is defined in Eq. (2.2)). The recorded run
times are overall run time of a model evaluation, run time for prediction, and run
time for training.

Runtime budget: To mirror a realistic use case, we specify a fixed run time budget
for the tuner. This limits how long the tuner may take to find potentially optimal
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hyperparameter values. We set a budget of 5h for SVM, KNN, RF, and GB.
Since EN and DT are much faster to evaluate and less complex, they receive a
considerably lower budget (EN: 1h, DT: 5min).

Timeout: For a majority of the models, the run time of a single evaluation (training
+ prediction) is hard to predict and may easily become excessive if parameters are
chosen poorly. In extreme cases, the run time of a single evaluation may become
so large that it consumes the bulk of the tuner’s allotted run time, or more. In such
a case, there would be insufficient time to test different hyperparameter values.
To prevent this, we specify a limit for the run time of a single evaluation, which
we call timeout. If the timeout is exceeded by the model, the evaluation will be
aborted. During the experiments, we set the timeout to a twentieth of the tuner’s
overall run time budget. Exceptions are the experiments with DT (rpart): Since
rpart evaluates extremely quickly, (in our experiments: usually much less than
a second) and has a correspondingly reduced run time budget (5min), the timeout
is not required. In fact, tracking the timeout would add considerable overhead to
the evaluation time in this case.

Additional performance measure from the mlr package could be easily integrated
when necessary.2

12.3.2.1 Surrogate Model

In one important case, we deviate from more common configurations of surrogate
model based optimization algorithms: For the determination of the next candidate
solution to be evaluated, we directly use the predicted value of the Gaussian pro-
cess model, instead of the so-called expected improvement. Our reason is, that the
expected improvement may yield worse results if the number of evaluations is low,
or the dimensionality rather high (Rehbach et al. 2020; Wessing and Preuss 2017).
With the strictly limited run time budget, our experience is that the predicted value
is preferable. A similar observation is made by De Ath et al. (2019).

12.3.2.2 Configuration of Random Search

With Random Search (RS), hyperparameter values will be sampled uniformly from
the search space. All related configurations (timeout, run time budget, etc.) corre-
spond to those of SPOT.

2 A complete list of measures in mlr can be found at https://mlr.mlr-org.com/articles/tutorial/
measures.html.

https://mlr.mlr-org.com/articles/tutorial/measures.html
https://mlr.mlr-org.com/articles/tutorial/measures.html
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12.3.3 Benchmark of Runtime

The experiments are not run on entirely identical hardware, but on somewhat diverse
nodes of a cluster. Hence, we have to consider that single nodes are faster or slower
than others (i.e., a tuning run on one node may perform more model evaluations than
on another node, simply because of having more computational power). To preserve
some sort of comparability, we compute a corrective factor that will be multiplied
with the run time budget. Before each tuning run, we compute a short performance
benchmark. The time measured for that benchmark will be divided by the respective
value measured at a reference node, to determine the run time multiplicator. We
use the benchmark_std function from the benchmarkme R package (Gillespie
2021).

12.3.4 Defaults and Replications

As a comparison basis, we perform an additional experiment for each model, where
all hyperparameter values remain at the models default settings. However, in those
cases we do not set a timeout for evaluation. Since no search takes place, the overall
run time for default values is anyways considerably lower than the run time of SPOT
or RS. All other settings correspond to those of SPOT and RS. To roughly estimate
the variance of results, we repeat all experiments (each tuner for each model on each
data set) three times.

12.4 Results

In this section, we provide an exploratory overview of the results of the experiments.
A detailed discussion of the results in terms of the research questions defined in
Sect. 12.2 follows in Sect. 12.5.

To visualize the overall results, we show exemplary boxplots.3 Since different
results are achieved depending on the data set and optimized model, a preprocessing
step is performed first: For each sampled data set and each model, the mean value of
all observed results (model quality of the best solutions found) is determined. This
mean is then subtracted from each individual observed value of the corresponding
group. Subsequently, these subtracted individual values are examined. This allows
a better visualization of the difference between the tuners without compromising
interpretability. The resulting values are no longer on the original scale of the model
quality, but the units remain unchanged. Thus, differences on this scale can still be
interpreted well.

3 Corresponding boxplots for all experiments can be found in the appendix of this document.
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Fig. 12.1 Boxplot comparing tuners for different classification models, with m = 105, nfactors =
high, nnumericals = high, cardinality = high. For this value of n, no experiments with KNN and
SVM are performed. The presented quality measure (MMCE) shows values after preprocessing,
where the mean value for each problem instance is subtracted

For the classification experiments, Fig. 12.1 shows the results for a case with
many features and observations (nfactors, nnumericals, and cardinality are all set to
high and m = 105). The figure first shows that both tuners (RS, SPOT) achieve a
significant improvement over default values. The value of this improvement is in the
range of about 1%MMCE. In almost all cases, the tuners show a smaller dispersion of
the quality values than a model with default values. Except for the tuning of rpart,
the results obtained by SPOT are better than those of RS.

Likewise for classification, Fig. 12.2 shows the case with n = 104, without cat-
egorical features (nfactors=low) and with maximum number of numerical features
(nnumericals=high). Here the data set contains much less information, since a large
part of the features is missing and only few observations are available. Still, both
tuners are significantly better than using default values. In this case, it is mostly not
clear which of the two tuners provides better results. For rpart (DT) and SVM, RS
seems to work better.

In the same form as for classification, Figs. 12.3, and 12.4 show results for regres-
sion models. Unlike for classification, the results here are somewhat more diverse. In
particular, glmnet shows a small difference between the tuners and default values.
There are also differences of several orders of magnitude between the individual
models (e.g. RF and SVM). For example, for RF the differences between tuners and
default values are about 0.02 years (the target variable scale is age in years). As
shown in Figs. 12.3 and 12.4, the interquartile range is about 0.01 years.

For GB, on the other hand, there is a difference of about 20 years between tuners
and default values. Here, the default values seem to be particularly poorly suited.
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Fig. 12.2 Boxplot comparing tuners for different classification models, with m = 104, nfactors =
low, nnumericals= high. The presented qualitymeasure (MMCE) shows values after preprocessing,
where the mean value for each problem instance is subtracted
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Fig. 12.3 Boxplot comparing tuners for different regression models, with m = 105, nfactors =
high, nnumericals = high, cardinality = high. For this value of n no experiments with KNN and
SVM are performed. The presented quality measure (MMCE) shows values after preprocessing,
where the mean value for each problem instance is subtracted
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Fig. 12.4 Boxplot comparing tuners for different regressionmodels, withm = 104, nfactors= low,
nnumericals = high. The presented quality measure (MMCE) shows values after preprocessing,
where the mean value for each problem instance is subtracted

12.5 Discussion

12.5.1 Rank-Analysis

Weanalyze the results of the experiments using rankings of the result values instead of
the raw results. Rankings are scale invariant, so aggregating the results from different
problem instances (resulting from data set and model choice) with different scales
for the result values is possible. This is important because we have to aggregate over
very diverse problem instances.

To aggregate rankings (also called consensus rankings), we follow the so-called
“optimal ranking” approach of Kemeny (1959). Here, the consensus ranking is deter-
mined such that themean distance between the consensus ranking and observed rank-
ing is minimal. The distance measure used for this purpose is Kendall’s tau (Kendall
1938), which counts the number of pairwise comparisons in which two rankings
contradict each other. The ranking determined using this approach can be interpreted
as the “median” of the individual rankings.

This procedure has the following advantages (Hornik andMeyer 2007;Mersmann
et al. 2010a):

• Scale invariant.
• Invariant to irrelevant alternatives.
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• Aggregation of large sets of comparisons, over arbitrary factors.
• Easy/intuitive to interpret results and visualizable.
• Generates relevant information: selection of the best one.
• Additional weights for preferences can be inserted.
• Fast evaluation.
• Non-parametric method, no distribution assumptions.
• Visualization of clusters over distance is possible, identification of problem classes
with similar algorithm behavior.

However, in addition to these advantages, there are also disadvantages:

• Estimating uncertainty in the ranking is difficult.
• The ranking does not have to induce a strict ordering, ties are possible.

We generate the consensus ranking by combining rankings of tuners (SPOT,
RS, default) of individual experiments. We always summarize the rankings of 9
experiments (3 repetitions of the tuner runs on each of 3 randomly drawn data sets).
Then, to aggregate across different variables related to the study subjects (e.g. n,
nfactors), we count how often the tuners reach a certain consensus rank.

This count is divided by the total number of experiments (or number of rankings)
on the corresponding problem instances. Thus, we record for each tuner how often
a particular consensus rank is achieved.

Simplified example:

• For case 2 (i.e., for a fixed choice of nnumericals, nfactors, cardinality, model, n,
target variable), the comparison of SPOT, RS, and default methods resulted in the
ranks

{1, 3, 2} {1, 2, 3} {2, 1, 3}.

The consensus ranking for this case is {1, 2, 3}.
• For case 2 (i.e., for another fixed choice of nnumericals, nfactors, cardinality,
model, n, target variable), the comparison of SPOT, RS, and default methods
resulted in the ranks

{3, 2, 1} {1, 2, 3} {2, 1, 3}.

The consensus ranking for this case is {2, 1, 3}.
• When both experiments are combined for an analysis, the frequencies for the
obtained rankings are as follows:

– SPOT: rank 1 with 50%, rank 2 with 50%, rank 3 with 0%.
– RS: rank 1 with 50%, rank 2 with 50%, rank 3 with 0%.
– Default: rank 1 with 0%, rank 2 with 0%, rank 3 with 100%.
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12.5.2 Rank-Analysis: Classification

Based on the analysis method described in Sect. 12.5.1, Fig. 12.5 shows the relation-
ship between the tuners, the number of observations n, and the optimized models. It
shows that SPOT and RS mostly beat the default setting and SPOT also usually per-
forms better than RS. However, some cases deviate from this. Especially, glmnet
(EN) and rpart (DT) seem to profit less from tuning: here the distinction between
the ranks of tuners is more difficult. In addition, when the number of observations is
small, there tends to be a greater uncertainty in the results. These results can be partly
explained by the required runtime of the models. With a smaller number of obser-
vations, the runtime of the individual models decreases, and glmnet and rpart
are the models with the lowest runtime (in the range of a few seconds, or below one
second in the case of rpart). If the evaluation of the models itself takes hardly
any time, it is advantageous for RS that its runtime overhead is low. SPOT, on the
other hand, requires a larger overhead (for the surrogatemodel and the corresponding
search for new parameter configurations).
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Fig. 12.5 Rank of tuners depending on number of observations (n) and model, for classification
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Fig. 12.6 Rank of tuners as a function of the number of categorical features (nfactors) and the
model, for classification
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Fig. 12.7 Rank of tuners depending on number of numerical features (nnumericals) and model,
for classification

Figure12.6 shows the corresponding summary of the results depending on the
number of categorical features (nfactors). Again, SPOT usually performs best, fol-
lowed by RS. There is a tendency for the greatest uncertainty to be found in cases
where number of categorical features is low. Two explanations are possible: On the
one hand, the reduction of features also means a reduction of the required runtime.
On the other hand, the difficulty of the modeling increases, since with fewer features
less information is available to separate the classes.

The corresponding results for the number of numerical features can be found in
Fig. 12.7. There are hardly any differences, the number of numerical features seems
to have little influence. It should be noted that the data set contains fewer numerical
than categorical features anyway.

The cardinality of the categorical features also has little influence, see Fig. 12.8.
However, there is a slight tendency: at higher cardinality, the distinction between the
first rank (SPOT) and second rank (RS) is clearer. This can be explained (similarly
to nfactors) by the higher information content of the data set.
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Fig. 12.8 Rank of tuners as a function of the cardinality of categorical features and the model,
for classification. Note This figure does not include the cases where the data set no longer contains
categorical features (cardinality cannot be determined)
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Fig. 12.9 Rank of tuners depending on the model, for classification on the complete data set. Due
to the increased runtime, kknn (KNN) and e1071 (SVM) are not included

Finally, Fig. 12.9 shows the result of the tuners on the unmodified, complete data
set. For each case, SPOT gets rank 1 and RS rank 2. This result is in line with the
trends described above, since the complete data set contains the most information
and also leads to the largest runtimes (for model evaluations).

12.5.3 Rank-Analysis: Regression

In addition to the classification experiments, a smaller set of experiments with regres-
sion as an objective are also conducted. Figure12.10 shows the results for this case
separately for each optimized model. Here, too, SPOT is usually ranked first. Unlike
in case of classification, however, there is more uncertainty.

For glmnet (EN), default values occasionally even achieve rank 1. It seems that
linear modeling with glmnet is unsuitable for regression with the present data set,
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Fig. 12.10 Rank of tuners depending on model for regression
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Fig. 12.11 Rank of tuners, depending on number of observations (n), for regression

so that the tuners can hardly achieve differences to the default values. This behavior
was already indicated in Fig. 12.4.

In the case of SVM, RS is more often ranked first than SPOT. The reason for
this is not clear. A possible cause is a lower influence of the hyperparameters on
the model quality of SVM for regression (compared to classification). However, it
should also be considered that less experiments were conducted for regression than
for classification.

The dependence on the number of observations n is shown in Fig. 12.11. The
results for regression with respect to n are largely consistent with those for classifi-
cation. With an increasing number of observations, SPOT is more clearly ahead of
RS.

The correlation with categorical features (number, cardinality) is also consistent
with the classification results, see Fig. 12.12. With larger number of features and
larger cardinality, a clearer separation between the tuners is observed.

12.5.4 Problem Analysis: Difficulty

In the context of this study, an interesting question arose as to how the difficulty of the
modeling problem is related to the results of the tuning procedures. We investigate
this on the basis of the data obtained from the experiments.
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Fig. 12.12 Rank of tuners, depending on cardinality and number of categorical features (nfactors),
for regression

In general, there are many measures of the difficulty of modeling problems in
the literature. An overview is given by Lorena et al. (2019). Of these measures, the
overlap volume (F2, seeLorena et al. 2019) is of interest, since it is easily interpretable
and not specific to a particular model.

First, the values of each feature are separated into two groups, one for each class.
Then, the range of the intersection of the two groups is computed for each individual
feature. This is called the overlap of a feature. The overlap volume of the data set is
then the product of the individual overlap values.

However, this measure is unsuitable for categorical features (even after dummy
coding). Furthermore, outliers are very problematic for this measure.

We therefore use a slight modification: We calculate the proportion of sample
values for each feature, which could occur in both classes (i.e. for which a swap of
the classes based on the feature value is possible). As an example, this is illustrated
for a numeric and a categorical feature in Fig. 12.13. For the overall data set, the
individual overlap values of each feature are multiplied. Subsequently, we refer to
this measure as sample overlap.

Figure12.14 shows the dependence of the sample overlap on our data properties
(n, nfactors, nnumericals, cardinality).

Our data sets can be grouped into 4 difficulty levels based on these values of
sample overlap:

1. Sample overlap ≈ 0.39: nfactors = high and cardinality = high (green).
2. Sample overlap ≈ 0.54: nfactors = high and cardinality = med (blue).
3. Sample overlap ≈ 0.76: all others (orange).
4. Sample overlap ≈ 1.00: nfactors = low (red).

Here, 4 corresponds to the highest level of difficulty. For the range relevant in the
experiments, there is almost no change depending on n or nnumericals. For nfactors
and cardinality a strong correlation can be seen.

Based on the 4 difficulty levels, the ranks already determined in previous sections
can be re-ranked. The result is summarized in Fig. 12.15. It turns out that as the
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feature 1 (numeric)

feature 2 (categoric)

overlap range

category 1 category 2 category 3 category 4

overlap categories

Fig. 12.13 Example of the sample overlap for two features of a classification problem with two
classes. The crosses show samples from the data set. All sampleswith class 1 are red (+). All samples
with class 2 are blue (x). For feature 1, the overlap is 50% (number of samples in the overlap area
divided by the total number of samples). For feature 2, the overlap is 70% (number of samples in
the overlap categories divided by total number of samples). For both characteristics together, the
sample overlap is 0.5 × 0.7 = 0.35

Fig. 12.14 Sample overlap depending on the properties of the data set varied in the experiments.
The sample overlap is used as a measure of problem difficulty and leads to the definition of four
difficulty levels (marked in color)
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Fig. 12.15 Frequency of the achieved ranks of the tuners depending on the difficulty level

difficulty of the problem increases, the rank differences are less robust. That is, with
larger sample overlap it is harder to estimate which tuner works best. This is plausible
with respect to the theoretical extreme case: A maximally difficult data set cannot
be learned by any model, since the features no longer contain any information about
the classes. In this case, the hyperparameters no longer have any influence and the
tuners cannot improve.

12.6 Summary and Discussion

To summarize our findings, we discuss the hypotheses from Sect. 12.2.

(H-1) Tuning is necessary: In almost all cases, significantly worse results are
obtained with default settings. In addition, the variance of the results
decreases when tuners are used (see Figs. 12.1, 12.2, 12.3 and 12.4).

(H-2) Data:Differences between tuners become apparent for data sets with a high
information content and for larger data volumes. If the number of levels or
features (categorical and numerical) decreases, it can be observed that the
differences between the tuners become smaller.
It has been confirmed that as the number of features and observations
increases, the runtime increases. As the mean runtime of the models
increases (i.e., for more complex models or larger data sets), SPOT per-
forms increasingly better than RS, as the ratio of overhead to evaluation
time decreases more for SPOT.

(H-3) Target variable: The execution of the tuning is not affected by the change of
the target variable. A peculiarity that requires further investigation occurred
when tuning SVM for regression: RS seems to perform better than SPOT.
We recommend using a larger data base to investigate this case.

(H-4) Model: The choice of tuning method is not fundamentally influenced by the
models. Models that can be evaluated very quickly (e.g. rpart) benefit
from the larger number of evaluations. This is due to the fact that time was
chosen as a termination criterion.
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(H-5) Benchmark: As described in Sect. 12.5.1, analysis methods based on con-
sensus ranking can be used to evaluate the suitability of tuners in a simple
and statistically valid way.

Overall, the result of this experimental investigation underlines that tuning of
machine learning models is essential to produce good configurations of the hyper-
parameters and thus models of high quality.

It is especially important to use tuners at all, since the biggest differences are usu-
ally observed in comparison to default settings. However, there are also differences
between tuners, which in our investigation are mostly favoring the use of SPOT, i.e.
a model-based optimizers. For the prospective focus on tuning with relatively large
data sets (large n and k), this is all the more evident, since the resulting high model
runtime favors the use of model-based methods.

Since the number of hyperparameters is manageable (<< 100), the addition of a
fewmore parameters does not significantly increase the complexity of the tuning. For
both Random Search (Bergstra and Bengio 2012) and SPOT, the addition of a few
parameters is harmless, even if they have only a small effect on the model quality.

Moreover, the analysis results in additional benefits:

• Possible software bugs can be detected,
• seemingly unimportant parameters are detected as important,
• unknown interactions can be uncovered.

The surrogate model allows to learn the influence of the hyperparameters on the
model values. Unimportant parameters are consequently weighted less in the search.

Finally, we recommend for the selection of the tuner, in the context of this study:

• Random Search can be used when either very little time (order of magnitude: time
is sufficient for a single-digit number of sequential evaluations) but a lot of parallel
computing capacity is available or when models can be evaluated extremely fast
(in the range of seconds).

• If time-consuming computations with complex data and models need to be per-
formed in more time (with relatively limited parallel computing capacity), we
recommend model-based tuning with SPO.

• In exceptional cases, which deviate from our considered objective of tuning with
complex data and models (extremely large amount of computing time available,
average evaluation times for the models), the use of surrogate model-free tuning
methods may also be considered.
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Appendix
Software Installations

A.1 Installing SPOT and SPOTMisc

SPOT version 2.11.14 and SPOTMisc version 1.19.40, which are available on Com-
prehensive R Archive Network (CRAN), were used to execute the code in this
book. Most recent versions of these packages can be downloaded from https://www.
spotseven.de/spot/.

A.2 Installing Python

A.2.1 Create and Activate a PYTHON Environment in the
Project

It is recommended that one Python virtual environment is used per experiment.
Navigate into the project directory by using the following command:

cd <project-dir>
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Create a new virtual environment in a folder called python within the project
directory using the following command:

python3 -m venv python

The virtualenv can be activated using the following command in a terminal:

source python/bin/activate

Toverify that the correct version of Pythonwas activated the following command
can be executed in a terminal:

which python

A.2.2 Install PYTHON Packages in the Environment

Python packages such as tensorflow-datasets, numpy, pandas, matplotlib, and other
packages can be installed in the Python virtualenv by using pip install:

python -m pip install -U pip
python -m pip install tensorflow tensorflow-datasets numpy pandas matplotlib

A.2.3 Install and Configure Reticulate to Use the Correct
PYTHON Version

Install the reticulate package using the following command in the R console
(e.g., from within RStudio):

install.packages("reticulate")

To configure reticulate to point to the Python executable in the virtualenv
python from above, create a file in the project directory called .Rprofile with
the following contents:

Sys.setenv(RETICULATE_PYTHON = "../python/bin/python")
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R software environment for statistical computing and graphics (R) (or RStudio)
must be restarted for the setting to take effect. To check that reticulate is con-
figured for the correct version of Python the following command can be used in the
R (or RStudio) console:

reticulate::py_config()

A.3 Installing Keras

To get started with Keras, the Keras R package, the core Keras library, and a backend
tensor engine (such as TensorFlow (TF)) must be installed. This can be done as
follows from within R (or RStudio):

install.packages("tensorflow")
install.packages("keras")
library("keras")
install_keras()

A.4 Installing SPOT

The following commands can be used to install the most recent version of Sequen-
tial Parameter Optimization Toolbox (SPOT) and the additional package Sequen-
tial Parameter Optimization Toolbox–Miscelleanous Functions (SPOTMisc) from
CRAN:

install.packages("SPOT")
install.packages("SPOTMisc")

Further information about the most recent SPOT versions will be published on
https://www.spotseven.de/spot/.

https://www.spotseven.de/spot/
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A.5 Installation on ARMMacs

The following information is based on https://gist.github.com/juliasilge/035d54c594
36604d6142ebebf29aa224.

brew install --cask R curl -OL

https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh

chmod +x Miniforge3-MacOSX-arm64.sh sh Miniforge3-MacOSX-arm64.sh -b

source ˜/miniforge3/bin/activate conda update -y -n base conda conda

create -y --name tf-2.6 python=3.9 conda activate tf-2.6 conda

install -y -c apple tensorflow-deps python -m pip install

tensorflow-macos python -m pip install tensorflow-metal echo

"export

RETICULATE_PYTHON=˜/miniforge3/envs/tf-2.6/bin/python" >>

˜/.Renviron

https://gist.github.com/juliasilge/035d54c59436604d6142ebebf29aa224
https://gist.github.com/juliasilge/035d54c59436604d6142ebebf29aa224
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