62 research outputs found

    Flip Flops Design in Quantum Dot Cellular Automata Technology: Towards Digitization

    Get PDF
    Quantum-Dot Cellular Automata (QCA) is a transistor-less technology. In QCA, Columbic repulsion between electrons in the quantum dots makes data transfer possible. This paper presents the design of flip flops using a proposed Rotated-Normal Cells with Displacement (RND) inverter and a cell interaction method. The SR latch, SR Flip Flop (FF), D FF, and T FF are developed using QCA. The proposed D FF gives total and average energy dissipation of 1.31e-002eV and 1.19e-003eV respectively. It also gives a delay of 1 clock phase.  The Proposed T FF provides total and average energy dissipation of 2.40e-002eV and 2.18e-003eV respectively, depicting efficient D FF and T FF in energy dissipation. The proposed SR Flip flop design gives an efficient area. The FFs with the proposed RND inverter and cell interaction method can be the best choice for future Nano communication to construct Nano circuits with less energy dissipation and high speed

    Implementation of Binary to Gray Code Converters in Quantum Dot Cellular Automata

    Get PDF
    Quantum dot cellular automaton (QCA) are dominant nanotechnology which has been used extensively in digital circuits and systems. It is a promising alternative to complementary metal–oxide–semiconductor (CMOS) technology with many enticing features such as high-speed, low power consumption and higher switching frequency than transistor based technology. The code converters are the basic unit for transformation of data to execute arithmetic processes. In this paper, QCA based 2-bit binary-to- gray; 3-bit binary-to-gray and 4-bit binary-to-gray code converter have been proposed. The proposed design reduces the number of cells, area and raises switching speed. The simulations are completed using QCADesigner and Microwindlite tool which is widely used for simulation and verification

    Design and analysis of efficient QCA reversible adders

    Get PDF
    Quantum-dot cellular automata (QCA) as an emerging nanotechnology are envisioned to overcome the scaling and the heat dissipation issues of the current CMOS technology. In a QCA structure, information destruction plays an essential role in the overall heat dissipation, and in turn in the power consumption of the system. Therefore, reversible logic, which significantly controls the information flow of the system, is deemed suitable to achieve ultra-low-power structures. In order to benefit from the opportunities QCA and reversible logic provide, in this paper, we first review and implement prior reversible full-adder art in QCA. We then propose a novel reversible design based on three- and five-input majority gates, and a robust one-layer crossover scheme. The new full-adder significantly advances previous designs in terms of the optimization metrics, namely cell count, area, and delay. The proposed efficient full-adder is then used to design reversible ripple-carry adders (RCAs) with different sizes (i.e., 4, 8, and 16 bits). It is demonstrated that the new RCAs lead to 33% less garbage outputs, which can be essential in terms of lowering power consumption. This along with the achieved improvements in area, complexity, and delay introduces an ultra-efficient reversible QCA adder that can be beneficial in developing future computer arithmetic circuits and architecture

    Presentation of a fault tolerance algorithm for design of quantum-dot cellular automata circuits

    Get PDF
    A novel algorithm for working out the Kink energy of quantum-dot cellular automata (QCA) circuits and their fault tolerability is introduced. In this algorithm at first with determining the input values on a specified design, the calculation between cells makes use of Kink physical relations will be managed. Therefore, the polarization of any cell and consequently output cell will be set. Then by determining missed cell(s) on the discussed circuit, the polarization of output cell will be obtained and by comparing it with safe state or software simulation, its fault tolerability will be proved. The proposed algorithm was implemented on a novel and advance fault tolerance full adder whose performance has been demonstrated. This algorithm could be implemented on any QCA circuit. Noticeably higher speed of the algorithm than simulation and traditional manual methods, expandability of this algorithm for variable circuits, beyond of four-dot square of QCA circuits, and the investigation of several damaged cells instead just one and special cell are the advantages of algorithmic action

    Adiabatic technique based low power synchronous counter design

    Get PDF
    The performance of integrated circuits is evaluated by their design architecture, which ensures high reliability and optimizes energy. The majority of the system-level architectures consist of sequential circuits. Counters are fundamental blocks in numerous very large-scale integration (VLSI) applications. The T-flip-flop is an important block in synchronous counters, and its high-power consumption impacts the overall effectiveness of the system. This paper calculates the power dissipation (PD), power delay product (PDP), and latency of the presented T flip-flop. To create a 2-bit synchronous counter based on the novel T flip-flops, a performance matrix such as PD, latency, and PDP is analyzed. The analysis is carried out at 100 and 10 MHz frequencies with varying temperatures and operating voltages. It is observed that the presented counter design has a lesser power requirement and PDP compared to the existing counter architectures. The proposed T-flip-flop design at the 45 nm technology node shows an improvement of 30%, 76%, and 85% in latency, PD, and PDP respectively to the 180 nm node at 10 MHz frequency. Similarly, the proposed counter at the 45 nm technology node shows 96% and 97% improvement in power dissipation, delay, and PDP respectively compared to the 180 nm at 10 MHz frequency

    A polymorphic hardware platform

    Get PDF
    In the domain of spatial computing, it appears that platforms based on either reconfigurable datapath units or on hybrid microprocessor/logic cell organizations are in the ascendancy as they appear to offer the most efficient means of providing resources across the greatest range of hardware designs. This paper encompasses an initial exploration of an alternative organization. It looks at the effect of using a very fine-grained approach based on a largely undifferentiated logic cell that can be configured to operate as a state element, logic or interconnect - or combinations of all three. A vertical layout style hides the overheads imposed by reconfigurability to an extent where very fine-grained organizations become a viable option. It is demonstrated that the technique can be used to develop building blocks for both synchronous and asynchronous circuits, supporting the development of hybrid architectures such as globally asynchronous, locally synchronous

    Fault and Defect Tolerant Computer Architectures: Reliable Computing With Unreliable Devices

    Get PDF
    This research addresses design of a reliable computer from unreliable device technologies. A system architecture is developed for a fault and defect tolerant (FDT) computer. Trade-offs between different techniques are studied and yield and hardware cost models are developed. Fault and defect tolerant designs are created for the processor and the cache memory. Simulation results for the content-addressable memory (CAM)-based cache show 90% yield with device failure probabilities of 3 x 10(-6), three orders of magnitude better than non fault tolerant caches of the same size. The entire processor achieves 70% yield with device failure probabilities exceeding 10(-6). The required hardware redundancy is approximately 15 times that of a non-fault tolerant design. While larger than current FT designs, this architecture allows the use of devices much more likely to fail than silicon CMOS. As part of model development, an improved model is derived for NAND Multiplexing. The model is the first accurate model for small and medium amounts of redundancy. Previous models are extended to account for dependence between the inputs and produce more accurate results
    • …
    corecore