640 research outputs found

    Microwave and RF Applications for Micro-resonator based Frequency Combs

    Full text link
    Photonic integrated circuits that exploit nonlinear optics in order to generate and process signals all-optically have achieved performance far superior to that possible electronically - particularly with respect to speed. We review the recent achievements based in new CMOS-compatible platforms that are better suited than SOI for nonlinear optics, focusing on radio frequency (RF) and microwave based applications that exploit micro-resonator based frequency combs. We highlight their potential as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We review recent work on a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb. The comb is generated using a nonlinear microring resonator based on a CMOS compatible, high-index contrast, doped-silica glass platform. The high quality and large frequency spacing of the comb enables filters with up to 20 taps, allowing us to demonstrate a quadrature filter with more than a 5-octave (3 dB) bandwidth and an almost uniform phase response.Comment: 10 pages, 6 figures, 68 references. arXiv admin note: substantial text overlap with arXiv:1512.0174

    Reconfigurable fractional microwave signal processor based on a microcomb

    Full text link
    We propose and demonstrate reconfigurable fractional microwave signal processing based on an integrated Kerr optical microcomb. We achieve two forms of microwave signal processing functions, a fractional Hilbert transform as well as a fractional differentiator. For the Hilbert transform we demonstrate a phase shift of 45 degrees, half that of a full Hilbert transform, while for the differentiator we achieve square-root differentiation. For both, we achieve high resolution over a broad bandwidth of 17 GHz with a phase deviation of less than 5 per degree within the achieved passband. This performance in both the frequency and time domains demonstrates the versatility and power of micro-combs as a basis for high performance microwave signal processing.Comment: 4 pages 5 figures, 32 references. arXiv admin note: text overlap with arXiv:1903.08541, arXiv:1904.0099

    Digital Filter Design Using Improved Teaching-Learning-Based Optimization

    Get PDF
    Digital filters are an important part of digital signal processing systems. Digital filters are divided into finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters according to the length of their impulse responses. An FIR digital filter is easier to implement than an IIR digital filter because of its linear phase and stability properties. In terms of the stability of an IIR digital filter, the poles generated in the denominator are subject to stability constraints. In addition, a digital filter can be categorized as one-dimensional or multi-dimensional digital filters according to the dimensions of the signal to be processed. However, for the design of IIR digital filters, traditional design methods have the disadvantages of easy to fall into a local optimum and slow convergence. The Teaching-Learning-Based optimization (TLBO) algorithm has been proven beneficial in a wide range of engineering applications. To this end, this dissertation focusses on using TLBO and its improved algorithms to design five types of digital filters, which include linear phase FIR digital filters, multiobjective general FIR digital filters, multiobjective IIR digital filters, two-dimensional (2-D) linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters. Among them, linear phase FIR digital filters, 2-D linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters use single-objective type of TLBO algorithms to optimize; multiobjective general FIR digital filters use multiobjective non-dominated TLBO (MOTLBO) algorithm to optimize; and multiobjective IIR digital filters use MOTLBO with Euclidean distance to optimize. The design results of the five types of filter designs are compared to those obtained by other state-of-the-art design methods. In this dissertation, two major improvements are proposed to enhance the performance of the standard TLBO algorithm. The first improvement is to apply a gradient-based learning to replace the TLBO learner phase to reduce approximation error(s) and CPU time without sacrificing design accuracy for linear phase FIR digital filter design. The second improvement is to incorporate Manhattan distance to simplify the procedure of the multiobjective non-dominated TLBO (MOTLBO) algorithm for general FIR digital filter design. The design results obtained by the two improvements have demonstrated their efficiency and effectiveness

    Time-domain response of nabla discrete fractional order systems

    Full text link
    This paper investigates the time--domain response of nabla discrete fractional order systems by exploring several useful properties of the nabla discrete Laplace transform and the discrete Mittag--Leffler function. In particular, we establish two fundamental properties of a nabla discrete fractional order system with nonzero initial instant: i) the existence and uniqueness of the system time--domain response; and ii) the dynamic behavior of the zero input response. Finally, one numerical example is provided to show the validity of the theoretical results.Comment: 13 pages, 6 figure

    An Electrically Programmable Split-Electrode Charge-Coupled Transversal Filter (EPSEF)

    Get PDF
    A CCD split-electrode transversal filter (EPSEF) with analog controlled tap weights is described. The programmable tap weighting utilizes a novel analog multiplier for sampled data, based on charge profiling underneath a resistive gate structure. The EPSEF device concept and the performance data of a prototype filter with eight programmable taps are presented. Applications of the EPSEF in several programmed filter functions and in an adaptive filter system are demonstrated
    corecore