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Department of Applied Physics, University of Eastern Finland, Kuopio  
Finland 

1. Introduction 

The discrete wavelet transform (DWT) algorithms have a firm position in multi-scale 

processing of biomedical signals, such as EMG and EEG.  The DWT algorithms were 

initially based on the compactly supported conjugate quadrature filters (CQFs) (Smith & 

Barnwell, 1986; Daubechies, 1988). However, a drawback in CQFs is due to the nonlinear 

phase effects such as spatial dislocations in multi-scale analysis. This is avoided in 

biorthogonal discrete wavelet transform (BDWT) algorithms, where the scaling and wavelet 

filters are symmetric and linear phase. The biorthogonal filters are usually constructed by a 

ladder-type network called lifting scheme (Sweldens, 1988; ITU-T, 2000). Efficient lifting 

BDWT structures have been developed for microprocessor and VLSI environment 

(Olkkonen et al. 2005; Olkkonen & Olkkonen, 2008). Only integer register shifts and 

summations are needed for implementation of the analysis and synthesis filters. 

A severe obstacle in multi-scale DWT analysis is the dependence of the total energy of the 
wavelet coefficients in different scales on the fractional shifts of the analysed signal. If we 

have a discrete-time signal [ ]x n and the corresponding time shifted signal [ ]x n  , where

[0,1]  , there occurs a notable difference in the energy of the wavelet coefficients as a 

function of the time shift. Kingsbury (2001) proposed a nearly shift invariant method, where 
the real and imaginary parts of the complex wavelet coefficients are approximately a Hilbert 
transform pair. The energy (absolute value) of the wavelet coefficients equals the envelope, 
which provides smoothness and approximate shift-invariance. Selesnick (2002) observed 
that using two parallel CQF banks, which are constructed so that the impulse responses of 

the scaling filters have half-sample delayed versions of each other: [ ]h n  and [ 0.5]h n  , the 

corresponding wavelet bases are a Hilbert transform pair. Selesnick (2002) proposed a 
spectral factorization method based on the half delay all-pass Thiran filters for design of the 
scaling filters. However, the scaling filters do not owe coefficient symmetry and the 
nonlinearity interferes with the spatial timing in different scales and prevents accurate 
statistical correlations.  
In this book chapter we review the shift invariant DWT algorithms for multi-scale analysis 
of biomedical signals. We describe a dual-tree DWT, where two parallel CQF wavelet 
sequences form a Hilbert pair, which warrants the shift invariance. Next we review the 
construction of the shift invariant BDWT, which is based on the novel design of the Hilbert 
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transform filter.  Finally, we describe the FFT based computation of the analytic signal and 
the implementation of the shift invariant quadrature mirror filter (QMF) bank.  

2. Shift invariant CQF bank 

In the following we describe a shift invariant DWT algorithm based on two parallel real- 

valued CQF banks. The conventional CQF DWT bank consists of the 0( )H z  and 1( )H z  

analysis filters and 0( )G z  and 1( )G z  synthesis filters for N odd (Fig. 1) 
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where ( )P z is a polynomial in 1z . The scaling filter 0( )H z has the Kth order zero at   . 

The wavelet filter 1( )H z has the Kth order zero at 0  , correspondingly. The filters are 

related via the perfect reconstruction (PR) condition 
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Fig. 1. The analysis and synthesis parts of the real-valued CQF DWT bank. 

Let us denote the frequency response of the z-transform filter as 

        ( ) ( ) j nn
n n

n n

H z h z H h e                                  (3) 

Then we obtain the relations 
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where * denotes complex conjugation. The tree structured implementation of the two 
parallel real-valued CQF filter banks is described in Fig. 2. In M-stage CQF tree the 
frequency response of the wavelet sequence is  

   1 0
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M k
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Fig. 2. The implementation of two parallel real-valued CQF banks, which yields the wavelet 

sequences 1 2[ ], [ ]w n w n
and 1 2[ ], [ ]w n w n

 

Next we construct a phase shifted parallel CQF filter bank consisting of the scaling filter 

0( )H z and the wavelet filter 1( )H z (Fig. 2). Let us suppose that the scaling filters in parallel 

CQF trees are related as 

 ( )
0 0( ) ( )jH e H    (6) 

where ( )  is a 2 periodic phase function. Correspondingly, the CQF filters are related as  

 *
1 0( ) ( )j NH e H   

  
(7) 

We have  

      ( ) ( )* *
1 0 0 1( ) ( ) ( ) ( )j N j N j jH e H e e H e H                      (8) 

We may note that the phase shifted CQF bank (6,8) obeys the PR condition (2). The 
frequency response of the M-stage CQF wavelet sequence is 
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where the phase function 
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By selecting the phase function ( )  in (6) as 

  ( )
2

     (11) 

the scaling filters (6) are half-sample delayed versions of each other. By inserting (11) in (10) 
we have 

 
1 1

2

12
2 22 2

M

k M
k

      



      (12) 

The wavelet sequences (5,9) yielded by the CQF bank (1) and the phase shifted CQF bank 
(6,8) can be interpreted as real and imaginary parts of the complex wavelet sequence 

  ( ) ( ) ( )MC M MW W jW     (13) 

The requirement for the shift-invariance comes from  

  ( ) ( )M MW      (14) 

where   denotes the Hilbert transform. The frequency response of the Hilbert transform 

operator is defined as ( ) sgn( )j   , where sgn( ) 1 for 0    and sgn( ) 0 for 0   . 

In this work we apply the Hilbert transform operator in the form  

  /2( ) sgn( )je     (15) 

The result (12) indicates that if the scaling filters are the half-sample delayed versions of 
each other, the resulting wavelet sequences are not precisely Hilbert transform pairs. There 

occurs a phase error term 1/2M  , which depends both in frequency and the stage M of the 

wavelet sequence. However, the error term can transferred in front of the CQF tree by using 

the equivalence described in Fig. 3. Then the error term reduces to /2  and the phase error 

term can be simply eliminated by prefiltering the analyzed signal by the half-sample delay 

operator, which has the frequency response /2( ) jD e   . The total phase function is then  

( ) ( ) /2 /2 /2D           , which implies that the M-stage CQF wavelet sequence 

and the phase error corrected sequence are a Hilbert transform pair.  
 

 

Fig. 3. The two equivalents for moving the phase function in front of the phase shifted CQF 
tree. 

The two parallel BDWT trees can be considered to form a complex wavelet sequence by 
defining the Hilbert transform operator  

   ( ) 1 ( )a z j z     (16) 
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By filtering the real-valued signal [ ]x n by the Hilbert transform operator results in an 

analytic signal  

  [ ] [ ] { [ ]}ax n x n j x n                       (17) 

whose magnitude response is zero at negative side of the frequency spectrum 

  
2 ( ) 0

( )
0 0a

X
X

  


 
 

    
                 (18) 

Let us consider the complex wavelet sequence at the first stage (Fig. 6).The wavelet sequence 
is obtained by decimation of the high-pass filtered analytic signal  

  1 1 122

1
( ) ( ) ( ) ( )

2 2 2
a a aW X H W X H

     
         
   

    (19) 

The frequency spectrum of the undecimated wavelet sequence ( )aW  contains frequency 

components only in the range 0    , but the frequency spectrum of the decimated 

analytic signal has the frequency band 0 2   .  Hence, the decimation does not produce 

overlapping and leakage (aliasing) to the negative frequency range. 
 A key feature of the dual-tree wavelet transform is the shift invariance of the decimated 
analytic wavelet coefficients. The frequency spectrum of the decimated wavelet sequence of 

the fractionally delayed signal [ ]x n    is /20.5 ( /2)j
ae W  . The energy of the decimated 

wavelet coefficients is 0.5 ( /2)W  , which does not depend on the fractional delay. 

2. Shift invariant BDWT filter bank 

The two-channel BDWT filter bank is of the general form 
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     (20) 

where the scaling filter 0( )H z has the Lth order zero at   . The wavelet filter 1( )H z has 

the Mth order zero at 0  , correspondingly. ( )Q z and ( )R z  are polynomials in 1z . The 

low-pass and high-pass reconstruction filters 0( )G z  and 1( )G z are defined as in the CQF 

bank.  For two-channel BDWT filter bank the PR relation is 

 
0 1 0

0 1 1

( ) ( ) ( ) 2

( ) ( ) ( ) 0

NH z H x G z z

H z H z G z

    
             

 (21) 

An essential result is related to the modification of the BDWT bank (Olkkonen & Olkkonen, 
2007a). 
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Lemma 1: If the scaling filter 0( )H z , the wavelet filter 1( )H z and the reconstruction filters 

0( )G z  and 1( )G z in BDWT filter bank (20) have a perfect reconstruction property (21), the 

following modified BDWT filter bank obeys the PR relation 

    

0 0

1
1 1

1
0 0

1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

H z F z H z
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





 



 
                (22) 

where ( )F z is any polynomial in 1z . Proof is yielded by direct insertion (22) to PR condition 

(21). 

 In the following we apply Lemma 1 for constructing the shift invariant BDWT filter bank. 

We describe a novel method for constructing the Hilbert transform filter ( )z based on the 

half-sample delay filter 0.5( )D z z . The classical approach for design of the half-sample 

delay filter ( )D z is based on the Thiran all-pass interpolator 
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            (23) 

where the kc coefficients are optimized so that the  frequency response follows 

approximately /2( ) .jD e   Correspondingly, the quadrature mirror filter ( )D z has the 

frequency response  

 
( )/2( ) jD e        (24) 

The Hilbert transform filter is then obtained as  

  
/2 ( )/2 /2( ) ( )

( ) ( )
( ) ( )

j j jD D z
e e e z

D D z
   

 
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 
     (25) 

The Hilbert transform filter is inserted in the BDWT bank using the result of Lemma 1 (22). 

The modified prototype BDWT filter bank is 
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1
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1
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  (26) 

A highly simplified  BDWT filter bank can be obtained by noting that in (25) 1( ) ( )z z    . 

We have 
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 (27) 

The modified BDWT filter bank (27) can be realized by the Hilbert transform filter ( )z , 

which works as a prefilter for the analysed signal (Fig. 4). The Hilbert transform filter ( )z
works as a postfilter in the reconstruction stage, respectively.  
 

 

Fig. 4. The realization of the Hilbert transform filter. 

An integer-valued Hilbert transform  filter can be constructed by the B-spline transform (see 
details Olkkonen & Olkkonen, 2011b). The frequency response of the Hilbert transform filter 
shows a maximally flat magnitude spectrum. The phase spectrum corresponds to an ideal 
Hilbert transformer (15). 
The Hilbert transform filter in Fig. 4 can be replaced by the Hilbert transform operator (16), 
which yields an analytic signal. This avoids the need for two parallel filter banks. In the 
following we describe a FFT based method for computation of the analytic signal and the 
implementation of the shift invariant quadrature mirror filter (QMF) bank.  

3. FFT based computation of analytic signal 

The fast Fourier transform of the signal [ ]x n , n = 0, 1, 2, …,N-1 is of the form 

                    
1

0

{ [ ]} [ ] 0,..., 1
N

nk
N k N

n

FFT x n Y x n W k N



               (28) 

where 2 /e j N
NW  . The FFT coefficients kY  (k=N/2,…,N-1) represent the values in the 

negative frequency band  ( 0)    . By zeroing those coefficients, the inverse fast Fourier 

transform (IFFT) yields an analytic signal. A more accurate result is obtained by weighting 
the FFT coefficients by a window  

                 

2 1,2,..., /2 1

0 /2 1,..., 1

1 0 /2
k

k N

w k N N

k and N

 
   
 

                        (29)          

The analytic signal is then computed using the inverse FFT transform 

      
1

0

1
[ ] { }

N
nk

a k k N N k k
k

x n w Y W IFFT w Y
N





    (30) 

The weighting sequence in (29) can be eliminated by writing  

www.intechopen.com



 
Discrete Wavelet Transforms - Biomedical Applications 

 

60

      
/2 1

/20

0

1
[ ] ( 1)

/2

N
Nnk n

a k N
k

YY
x n Y W

N N N





                (31) 

Now, for even n we have 

    
/2 1

/2 /2
0

1
[2 ] { [2 1]} { } { [2 1]}

/2

N
nk

a k N N k
k

x n Y W mean x n IFFT Y mean x n
N





             (32) 

and for odd n 

     
/2 1

/2 /2
0

1
[2 1] [ [2 ]} { } { [2 ]}

/2

N
k nk k

a N k N N N k
k

x n W Y W mean x n IFFT W Y mean x n
N


  


       (33) 

For zero mean signal { [ ]} 0mean x n  , which yields { [2 1]} { [2 ]}mean x n mean x n   .  If the 

even points of the analytic signal are known, the FFT coefficients are solved from (32) 

 /2 { [2 ] { [2 ]}} 0,..., /2 1k N aY FFT x n mean x n k N     (34) 

The odd points of the analytic signal are then computed from (33). We call this as the 

reconstruction property of the zero mean analytic signal. In the following we present a novel 

shift invariant QMF bank, which utilizes the reconstruction property of the analytic signal. 

4. Shift invariant QMF bank 

In QMF bank the scaling and wavelet filters obey the relation 1 0( ) ( )H z H z  , i.e. their 

frequency response is symmetric with respect to /2  . In this work we define the 

scaling and wavelet filters as half band QMFs 

  

1 2
0

1 2
1

1
( ) ( )

2
1

( ) ( )
2

H z z A z

H z z A z





 

 
 (35) 

The shift invariant tree structured QMF DWT is described in Fig. 5. The FFT based Hilbert 
transform operator ( )a z  produces an analytic signal, which is fed to the scaling 0( )H z  and 

wavelet 1( )H z  filters and decimated. If the original zero mean signal is [ ]x n ,  the decimated  

scaling and wavelet coefficients [ ]s n  and [ ]w n  are obtained from 

  
0 2

1 2

[ ] { [ ] [ ]}

[ ] { [ ] [ ]}
a

a

s n h n x n

w n h n x n




 
 

 (36) 

where   denotes convolution. From (35) we have  

  0 1 0 1( ) ( ) 1 [ ] [ ] nH z H z h n h n       (37) 

The reconstruction consists of the summation of the decimated signals. We obtain 

  0 1 2 2
[ ] [ ] {( [ ] [ ]) [ ]} { [ ] [ ]} [2 ]a a as n w n h n h n x n n x n x n         (38) 
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i.e. the summation of the decimated signals produces the even points [2 ]ax n  of the analytic 

signal.  The odd points [2 1]ax n   of the analytic signal are then reconstructed from the even 

points [2 ]ax n  via our results (32)-(34). The original signal is obtained from [ ] ( [ ])ax n real x n .  
 

 

Fig. 5. The shift invariant tree structured QMF DWT. 

5. Conclusion 

The dual-tree DWT algorithms have appeared to outperform the real-valued DWTs in 
several applications such as denoising, texture analysis, speech recognition, processing of 
seismic signals and multiscale-analysis of neuroelectric signal analysis (Olkkonen et al. 2006; 
Olkkonen et al. 2007b, Olkkonen & Olkkonen, 2010, Olkkonen & Olkkonen 2011a).  
Selesnick (2002) noted that a half-sample time-shift between the scaling filters in parallel 
CQF banks yields a nearly shift invariant DWT, where the wavelet bases form a Hilbert 
transform pair. However, the multi-scale analyses of neuroelectric signals have revealed that 
the first stages of wavelet sequences are quite poorly shift invariant. We reanalysed the 

condition and observed a phase-error term 1/2M  (12) compared with the ideal phase 

response ( ) /2    . The phase error attains s highest value at high frequency range and 

small stage M of the wavelet sequence. Fortunately the phase error term can be cancelled by 
adding a half-delay prefilter in front of the CQF chain. For this purpose the half-delay filter 
constructed by the B-spline transform (Olkkonen & Olkkonen, 2011b) is well suited. In 
addition, there exists many other design methods for half-delay filters (see e.g. Laakso et al. 
1996; Johansson & Lowenborg, 2002; Pei & Tseng, 2003; Pei  & Wang, 2004; Tseng, 2006). 
In this book chapter we described a novel shift invariant dual-tree BDWT (27) based on 
Lemma 1 (22) and the Hilbert transform filter (25). In many respects the shift invariant BDWT 
bank outperforms the previous nearly shift invariant DWT approaches. The Hilbert 
transform filter assisted BDWT yields precisely shift invariant wavelet sequences, which 
permits the statistical analyses between scales in multi-scale analyses of biomedical signals 
such as EMG and EEG. 
The Hilbert transform filter in Fig. 4 can be replaced by the Hilbert transform operator (16), 
which yields an analytic signal. This avoids the need for two parallel filter banks. In this 
work we described a FFT based method for computation of the analytic signal and the 
implementation of the shift invariant QMF bank. As a clear advantage of the half-band QMF 
structure is that the frequency responses of the scaling and wavelet filters are mirror 
symmetric with respect to /2  . Hence, they split the energy of the signal precisely to 

the low-pass and high-pass fractions. The energy preservation property is of utmost 
importance in automated statistical signal processing of the multi-scale signals. In tree 
structured multi-scale analysis the linear phase of the QMFs is advantageous since the 
timing information of the wavelet coefficients in different scales is preserved. Without an 
exact timing of the subscale signals the statistical comparison of the wavelet coefficients in 
different scales is not relevant and may lead to misleading results. For example in EEG 
signal the neuroelectric discharge contains fast repetitive transients with related timing and 
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overlapping waveforms. In multi-scale analysis different components can be separated due 
to their different timing and scale related intensification. 
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