167 research outputs found

    Development of 200-GHz to 2.7-THz multiplier chains for submillimeter-wave heterodyne receivers

    Get PDF
    Several astrophysics and Earth observation space missions planned for the near future will require submillimeter-wave heterodyne radiometers for spectral line observations. One of these, the Far InfraRed and Submillimeter Telescope will perform high-sensitivity, high-resolution spectroscopy in the 400 to 2700 GHz range with a seven channel super- conducting heterodyne receiver complement. The local oscillators for all these channels will be constructed around state-of-the-art GaAs power amplifiers in the 71 to 115 GHz range, followed by planar Schottky diode multiplier chains. The Jet Propulsion Laboratory is responsible for developing the multiplier chains for the 1.2, 1.7, and 2.7 THz bands. This paper will focus on the designs and technologies being developed to enhance the current state- of-the-art, which is based on discrete planar or whisker contacted GaAs Schottky diode chips mounted in waveguide blocks. We are proposing a number of new planar integrated circuit and device topologies to implement multipliers at these high frequencies. Approaches include substrateless, framed and frameless GaAs membrane circuitry with single, and multiple planar integrated Schottky diodes. Circuits discussed include 200 and 400 GHz doublers, a 1.2 THz tripler and a 2.4 THz doubler. Progress to date, with the implications of this technology development for future Earth and space science instruments, is presented

    Terahertz frequency receiver instrumentation for Herschel's heterodyne instrument for far infrared (HIFI)

    Get PDF
    The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory is comprised of five SIS receiver channels covering 480-1250 GHz and two HEB receiver channels covering 1410-1910 GHz. Two fixed tuned local oscillator sub-bands are derived from a common synthesizer to provide the front-end frequency coverage for each channel. The local oscillator unti will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, and novel material systems in the SIS mixtures. The National Aeronautics and Space Administration's Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the highest frequency (1650-1910 GHz) HEB mixers, local oscillators for the three highest frequency receivers as well as W-band power amplifiers, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. The current state of the art for each of these devices is presented along with a programmatic view of the development effort

    A 216–256 GHz fully differential frequency multiplier-by-8 chain with 0 dBm output power

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.This work presents a fully differential wideband and low power 240 GHz multiplier-by-8 chain, manufactured in IHP's 130 nm SiGe:C BiCMOS technology with fT/fmax = 300/500 GHz. A single ended 30 GHz input signal is multiplied by 8 using Gilbert cell-based quadrupler and doubler, and then amplified with a wideband differential 3-stage cascode amplifier. To achieve wide bandwidth and optimize for power consumption, the power budget has been designed in order to operate the frequency multipliers and the output amplifier in saturation. With this architecture the presented circuit achieves a 3 dB bandwidth of 40 GHz, meaning a relative 3 dB bandwidth of 17%, and a peak saturated output power of 0 dBm. Harmonic rejections better than 25 dB were measured for the 5th, 6th, and 7th harmonics. It dissipates 255 mW from 3 V supply which results in drain efficiency of 0.4%, while occupying 1.2 mm2. With these characteristics the presented circuit suits very well as a frequency multiplier chain for driving balanced mixers in 240 GHz transceivers for radar, communication, and sensing applications.DFG, 255715243, SPP 1857: Elektromagnetische Sensoren für Life Sciences (ESSENCE

    SuperCam, a 64-pixel heterodyne imaging array for the 870 micron atmospheric window

    Get PDF
    We report on the development of SuperCam, a 64 pixel, superheterodyne camera designed for operation in the astrophysically important 870 micron atmospheric window. SuperCam will be used to answer fundamental questions about the physics and chemistry of molecular clouds in the Galaxy and their direct relation to star and planet formation. The advent of such a system will provide an order of magnitude increase in mapping speed over what is now available and revolutionize how observational astronomy is performed in this important wavelength regime. Unlike the situation with bolometric detectors, heterodyne receiver systems are coherent, retaining information about both the amplitude and phase of the incident photon stream. From this information a high resolution spectrum of the incident light can be obtained without multiplexing. SuperCam will be constructed by stacking eight, 1x8 rows of fixed tuned, SIS mixers. The IF output of each mixer will be connected to a low-noise, broadband MMIC amplifier integrated into the mixer block. The instantaneous IF bandwidth of each pixel will be ~2 GHz, with a center frequency of 5 GHz. A spectrum of the central 500 MHz of each IF band will be provided by the array spectrometer. Local oscillator power is provided by a frequency multiplier whose output is divided between the pixels by using a matrix of waveguide power dividers. The mixer array will be cooled to 4K by a closed-cycle refrigeration system. SuperCam will reside at the Cassegrain focus of the 10m Heinrich Hertz telescope (HHT). A prototype single row of the array will be tested on the HHT in 2006, with the first engineering run of the full array in late 2007. The array is designed and constructed so that it may be readily scaled to higher frequencies.Comment: 12 pages, 14 figures, to be published in the Proceedings of SPIE Vol. 6275, "Astronomical Telescopes and Instrumentation, Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III

    Nanodevices for Microwave and Millimeter Wave Applications

    Get PDF
    The microwave and millimeter wave frequency range is nowadays widely exploited in a large variety of fields including (wireless) communications, security, radar, spectroscopy, but also astronomy and biomedical, to name a few. This Special Issue focuses on the interaction between the nanoscale dimensions and centimeter to millimeter wavelengths. This interaction has been proven to be efficient for the design and fabrication of devices showing enhanced performance. Novel contributions are welcome in the field of devices based on nanoscaled geometries and materials. Applications cover, but not are limited to, electronics, sensors, signal processing, imaging and metrology, all exploiting nanoscale/nanotechnology at microwave and millimeter waves. Contributions can take the form of short communications, regular or review papers

    GigaHertz Symposium 2010

    Get PDF

    SiGe-based broadband and high suppression frequency doubler ICs for wireless communications

    Get PDF
    制度:新 ; 報告番号:甲3419号 ; 学位の種類:博士(工学) ; 授与年月日:2011/9/15 ; 早大学位記番号:新574

    Stability of HEB receivers at THz frequencies

    Get PDF
    Stability of a hot-electron bolometer (HEB) heterodyne receiver was investigated at frequencies from 0.6THz to 1.9THz. The Allan variance was measured as a function of the integration time and the Allan time was obtained for HEB mixers of different size, as well as with different types of the local oscillator: FIR laser, multiplier chain, and BWO. We have found that due to stronger dependence of the mixer gain and noise vs mixer bias voltage and current the Allan time is shorter for smaller mixers. At 1.6THz the Allan time is 3 sec for 4x0.4μm^2 bolometer, and 0.15-0.2 sec for 1x0.15μm^2 bolometer. Obtained stability apears to be the same for the FIR laser and the mulitplier chain. The Allan time for smaller bolometers increases to 0.4-0.5sec at 0.6-0.7THz LO frequencies. The influence of the IF chain on the obtained results is also analyzed
    corecore