4,095 research outputs found

    A Data Fusion Approach to Automated Decision Making in Intelligent Vehicles

    Get PDF
    The goal of an intelligent transportation system is to increase safety, convenience and efficiency in driving. Besides these obvious advantages, the integration of intelligent features and autonomous functionalities on vehicles will lead to major economic benefits from reduced fuel consumption to efficient exploitation of the road network. While giving this information to the driver can be useful, there is also the possibility of overloading the driver with too much information. Existing vehicles already have some mechanisms to take certain actions if the driver fails to act. Future vehicles will need more complex decision making modules which receive the raw data from all available sources, process this data and inform the driver about the existing or impending situations and suggest, or even take actions. Intelligent vehicles can take advantage of using different sources of data to provide more reliable and more accurate information about driving situations and build a safer driving environment. I have identified five general sources of data which is available for intelligent vehicles: the vehicle itself, cameras on the vehicle, communication between the vehicle and other vehicles, communications between vehicles and roadside units and the driver information. But facing this huge amount of data requires a decision making module to collect this data and provide the best reaction based on the situation. In this thesis, I present a data fusion approach for decision making in vehicles in which a decision making module collects data from the available sources of information and analyses this data and provides the driver with helpful information such as traffic congestion, emergency messages, etc. The proposed approach uses agents to collect the data and the agents cooperate using a black board method to provide the necessary data for the decision making system. The Decision making system benefits from this data and provides the intelligent vehicle applications with the best action(s) to be taken. Overall, the results show that using this data fusion approach for making decision in vehicles shows great potential for improving performance of vehicular systems by reducing travel time and wait time and providing more accurate information about the surrounding environment for vehicles. In addition, the safety of vehicles will increase since the vehicles will be informed about the hazard situations

    Model Predictive Control of Highway Emergency Maneuvering and Collision Avoidance

    Get PDF
    Autonomous emergency maneuvering (AEM) is an active safety system that automates safe maneuvers to avoid imminent collision, particularly in highway driving situations. Uncertainty about the surrounding vehicles’ decisions and also about the road condition, which has significant effects on the vehicle’s maneuverability, makes it challenging to implement the AEM strategy in practice. With the rise of vehicular networks and connected vehicles, vehicles would be able to share their perception and also intentions with other cars. Therefore, cooperative AEM can incor- porate surrounding vehicles’ decisions and perceptions in order to improve vehicles’ predictions and estimations and thereby provide better decisions for emergency maneuvering. In this thesis, we develop an adaptive, cooperative motion planning scheme for emergency maneuvering, based on the model predictive control (MPC) approach, for vehicles within a ve- hicular network. The proposed emergency maneuver planning scheme finds the best combination of longitudinal and lateral maneuvers to avoid imminent collision with surrounding vehicles and obstacles. To implement real-time MPC for the non-convex problem of collision free motion planning, safety constraints are suggested to be convexified based on the road geometry. To take advantage of vehicular communication, the surrounding vehicles’ decisions are incorporated in the prediction model to improve the motion planning results. The MPC approach is prone to loss of feasibility due to the limited prediction horizon for decision-making. For the autonomous vehicle motion planning problem, many of detected ob- stacles, which are beyond the prediction horizon, cannot be considered in the instantaneous de- cisions, and late consideration of them may cause infeasibility. The conditions that guarantee persistent feasibility of a model predictive motion planning scheme are studied in this thesis. Maintaining the system’s states in a control invariant set of the system guarantees the persis- tent feasibility of the corresponding MPC scheme. Specifically, we present two approaches to compute control invariant sets of the motion planning problem; the linearized convexified ap- proach and the brute-force approach. The resulting computed control invariant sets of these two approaches are compared with each other to demonstrate the performance of the proposed algorithm. Time-variation of the road condition affects the vehicle dynamics and constraints. Therefore, it necessitates the on-line identification of the road friction parameter and implementation of an adaptive emergency maneuver motion planning scheme. In this thesis, we investigate coopera- tive road condition estimation in order to improve collision avoidance performance of the AEM system. Each vehicle estimates the road condition individually, and disseminates it through the vehicular network. Accordingly, a consensus estimation algorithm fuses the individual estimates to find the maximum likelihood estimate of the road condition parameter. The performance of the proposed cooperative road condition estimation has been validated through simulations

    On the Design of Sidelink for Cellular V2X: A Literature Review and Outlook for Future

    Get PDF
    Connected and fully automated vehicles are expected to revolutionize our mobility in the near future on a global scale, by significantly improving road safety, traffic efficiency, and traveling experience. Enhanced vehicular applications, such as cooperative sensing and maneuvering or vehicle platooning, heavily rely on direct connectivity among vehicles, which is enabled by sidelink communications. In order to set the ground for the core contribution of this paper, we first analyze the main streams of the cellular-vehicle-to-everything (C-V2X) technology evolution within the Third Generation Partnership Project (3GPP), with focus on the sidelink air interface. Then, we provide a comprehensive survey of the related literature, which is classified and critically dissected, considering both the Long-Term Evolution-based solutions and the 5G New Radio-based latest advancements that promise substantial improvements in terms of latency and reliability. The wide literature review is used as a basis to finally identify further challenges and perspectives, which may shape the C-V2X sidelink developments in the next-generation vehicles beyond 5G

    Ultra reliable 5G mmWAve communications for V2X scénarios

    Get PDF
    The Automotive Vehicle to Everything (V2X)technology is one of the most important innovations that theworld will see in the years to come. This paradigm will supportmany advanced services such as object detection and recognition,risk identification and avoidance, car platooning. These serviceswill require several keys among them, the high data transmissionrates of the order of gigabits per driving hour, and highreliability, and high speed for transition of data, which may beavailable through the capabilities of the new architecture for thenext generation of wireless communications 5G and the widebandwidth of the millimeter wave (mm Wave) which is deemed tobe a real solution for the V2X requirements. However, thechallenges related to the reliability/latency and security of theV2X system and nature of mm wave communication requireseveral solutions either for natural challenges such as High pathloss propagation, penetrating disability or for the technicalchallenges. This paper provides an overview of the V2Xcommunication technology investigates the V2X challengesincluding the mm wave and and finally presents some efficientsolutions

    An overview of millimeter waves challenges in 5G vehicle-to-everything networks

    Get PDF
    International audienceThe Automotive Vehicle to Everything (V2X) technology is one of the most important innovations that the world will see in the years to come. This paradigm will support many advanced services such as object detection and recognition, risk identification and avoidance, car platooning. These services will require several keys among them, the high data transmission rates of the order of gigabits per driving hour, and high reliability, and high speed for transition of data, which may be available through the capabilities of the new architecture for the next generation of wireless communications 5G and the wide bandwidth of the millimeter wave (mm Wave) which is deemed to be a real solution for the V2X requirements. However, the challenges related to the reliability/latency and security of the V2X system and nature of mm wave communication require several solutions either for natural challenges such as High path loss propagation, penetrating disability or for the technical challenges. This paper provides an overview of the V2X communication technology investigates the V2X challenges including the mm wave and and finally presents some efficient solutions

    Controlo de acesso ao meio em comunicações veiculares de tempo-real

    Get PDF
    Despite several preventive measures, the number of roadway accidents is still very high, being considered even a problem of public health by some entities. This thesis has as global purpose of contributing to the reduction of that number of accidents, and consequent fatalities, by using safety-related applications that use communication among vehicles. In particular, the primary goal is guaranteeing that communication between users in vehicular environments is done with appropriate time bounds to transfer safety-critical information. In detail, it is studied how to manage the scheduling of message’s transmissions (medium access control - MAC), in order to define precisely who will communicate and when is the appropriate instant. The preferable situation where a communication infrastructure is present with full coverage (RSUs) is also studied, from which medium access control is defined precisely, and vehicles (OBUs) become aware of medium utilization. Also, sporadic situations (e.g., absence of RSUs) are studied in which the communication network is “ad hoc” and solely formed by the current vehicles. It is used the recently WAVE / IEEE 802.11p standard, specific for vehicular communications, and it is proposed a TDMA based solution, with appropriate coordination between RSUs in order to effectively disseminate a critical safety event. It is taken into account two different ways of choosing the instant for the initial broadcast, and both cases are compared. In case there is no infrastructure available, methods are derived to minimize communication medium access collisions, and to maximize the available bandwidth. The results reflect the total end-to-end delay, and show that adequate times are attained, and meet with the requisites for the type of applications being considered. Also, enhancements are obtained when using the alternate choice for the initial broadcast instant.Apesar de diversas medidas preventivas, o número de acidentes rodoviários continua a ser muito elevado, sendo mesmo considerado uma questão de saúde pública por algumas entidades. Esta tese tem como objetivo geral contribuir para a redução desse número de acidentes, e consequentes fatalidades, através da utilização de aplicações de segurança que envolvem comunicação entre veículos. Em particular, o objetivo principal é garantir que a comunicação entre utentes, em ambientes veiculares, seja efetuada com limites temporais apropriados à transferência de informações críticas. De forma mais detalhada, é estudada a gestão do escalonamento das transmissões (controlo de acesso ao meio – MAC) que irá definir quem vai comunicar e quando o pode fazer. São estudadas situações (desejadas) onde há uma infra-estrutura de comunicações com cobertura integral (RSUs), a partir da qual se faz a coordenação do acesso ao meio pelos veículos (OBUs), e situações (esporádicas, por ausência de RSU) em que a rede de comunicação é “ad hoc” e apenas constituída pelos veículos presentes. Utiliza-se a recente norma WAVE / IEEE 802.11p, específica para comunicações veiculares, e propõe-se uma solução baseada em TDMA, com coordenação apropriada entre RSUs para disseminação efetiva de um evento crítico de segurança. A escolha do instante para o broadcast inicial do evento de segurança também é tida em conta, e são comparados dois casos distintos. No caso da ausência de infraestrutura, derivam-se métodos para minimizar colisões no acesso ao meio de comunicação, e maximizar a largura de banda disponível. Os resultados refletem o atraso total end-to-end, mostrando tempos apropriados para os requisitos das aplicações em causa, e evidenciando melhorias aquando da escolha alternativa para o instante do broadcast inicial.Programa Doutoral em Engenharia Eletrotécnic

    Calibrating trust through knowledge : introducing the concept of informed safety for automation in vehicles

    Get PDF
    There has been an increasing focus on the development of automation in vehicles due its many potential benefits like safety, improved traffic efficiency, reduced emissions etc. One of the key factors influencing public acceptance of automated vehicle technologies is their level of trust. Development of trust is a dynamic process and needs to be calibrated to the correct levels for safe deployment to ensure appropriate use of such systems. One of the factors influencing trust is the knowledge provided to the driver about the system’s true capabilities and limitations. After a 56 participants driving simulator study, the authors found that with the introduction of knowledge about the true capabilities and limitations of the automated system, trust in the automated system increased as compared to when no knowledge was provided about the system. Participants experienced two different types of automated systems: low capability automated system and high capability automated system. Interestingly, with the introduction of knowledge, the average trust levels for both low and high capability automated systems were similar. Based on the experimental results, the authors introduce the concept of informed safety, i.e., informing the drivers about the safety limits of the automated system to enable them to calibrate their trust in the system to an appropriate level

    Internet-wide geo-networking problem statement

    Get PDF
    This document describes the need of specifying Internet-wide location-aware forwarding protocol solutions that provide packet routing using geographical positions for packet transport
    • …
    corecore